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Introduction

Introduction

@ Carroll symmetries and Carroll invariant field theories might be useful for a variety of
applications, e.g.,
» physics of black hole horizons/null hypersurfaces
> flat space and celestial holography
> hydrodynamics (Ciambelli, Marteau, Petkou, Petropoulos, Siampos)
> tensionless strings (Bagchi)
| 2

o Carroll field theories are still relatively unexplored. Mostly bosonic so far. (e.g.. de Boer,
Hartong, Obers, Sybesma, Vandoren; Bagchi, Grumiller, Mehra, Nandi)

@ Supersymmetry is very powerful and thus natural to consider to better understand the
behavior of Carroll QFTs.

o Need to get complete understanding of fermionic field representations of the
(homogeneous) Carroll group, coupling to Carroll geometry, ...

@ One approach is to build these up from scratch, e.g., by defining suitable spinor
representations from a construction of ‘Carrollian’ Clifford algebras (Bagchi, Banerjee, Basu,
Islam) Or by constructing unitary irreducible representations. (Figueroa-O’Farill, Perez, Prohazka)
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Introduction

Introduction

While general, this can obscure a possible relativistic field theory origin.

Other approach: define Carroll fermions via a Carrollian limit.

o @ Redefine fields, symmetry parameters, ... of relativistic theory with contraction
parameter ¢ (inverse speed of light).
@ Plug in in transformation rules, action, ...
© ¢ — oo limit of a quantity = leading order term of ¢-expansion.

End result uses the usual I'-matrices of the relativistic parent theory.

e Plan:
@ Show two different types of such limits (electric, magnetic) for spinor fields.
@ Discuss Carroll geometry, the geometry they couple to from a limit point of view.

© Discuss coupling of the two types of Carroll fermions to Carroll geometry and
(magnetic Carroll) gravity.

© Argue how the two types of Carroll fermion can appear in supermultiplets.
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Carroll fermions

Carroll fermions

e Homogeneous Carroll transformations = {spatial rotations, Carroll boosts}.
Action on space-time coordinates {#, X" }: (Lévy-Leblond)

St = —2%x", Sx* = =\«

o Obtained from action of Lorentz transformations on coordinates X* = {X°, X*} of
Minkowski space-time:

A A B
0X" = —-AN'g X",
by rescaling coordinates and parameters with contraction parameter ¢ (= ¢~ '):

X():é’ Xa:xa7 Aab:)\ab7 AOaZi)\Oa7
c c

and taking the ¢ — oo limit.
o Extend this limit to the Lorentz transformation rule of a Majorana or Dirac spinor ¥ in

flat 4D Minkowski space-time:

o :AABXB% — %AABFAB“Da
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Carroll fermions

Carroll fermions

o First limit: using the above rescalings, as well as
U=y
and taking ¢ — oo gives the following transformation rule of a Carroll fermion:

30 w9 e p OY
oY = Nax 8t—|—)\bx g™

Applying this limit to the Lagrangian:

1 ab
— L.
g T

£:@ﬂmmf¥®y
c

gives (upon also rescaling M = & m): (Bagehi, Grumiller, Nandi)

— - )
Lelectric Carroll = wr w - m¢w: with ’¢ = a .
@ This is an ‘electric’ Carroll fermion:
» Trivial boost transformation, i.e., only via transport term.
» Lagrangian contains only time derivative.
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Carroll fermions

Carroll fermions

@ How to obtain a ‘magnetic’ Carroll fermion with non-trivial Carroll boost transformation
and spatial derivatives in its Lagrangian?

@ Start from a Dirac spinor ¥ and introduce the projections:
Uy =PV,
with Py = %(1 +il%), ((P+)*=Ps, PP+ =0, P, =Py)
Note that
TPy =Pl and I'oP+ = Pxl0a,

= W are subrepresentations under SO(3) subgroup but ¥ <+ ¥_ under Lorentz
boosts.

@ Introduce the (invertible) field redefinition:
\I/j: — E:t]/2+e d}:l:
Note that this requires working with a Dirac spinor: for a Majorana spinor
Uy =iy'C (Ug)",

so that consistency requires rescaling W in the same way.
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Carroll fermions

Carroll fermions

@ The ¢ — oo limit of the Lorentz transformation rule of ¥ then gives:

.0 a« b0 1 a

Sihy = A% 4 gw-+k h?%}—szrww+,
OV, 1, 100

ot = A0y x* g + 2% bga—ZAH@¢,—§wIm¢+

indecomposable, reducible representation of the homogeneous Carroll algebra.

@ To get Lagrangian for both ¢4 and ¢ _ that includes spatial derivatives, one should start
from a ‘tachyonic’ Dirac Lagrangian:

c:@ﬂn@@—g@w, with Ts = il°r"'°1? .
C

o Taking € = —% and rescaling M = ¢ m gives in the ¢ — oo limit:

_ . _ . o O _
Lonagnetic Carrotl = P-TTst)y + 9, TTsp_ + 9, TT's aﬁj —mpipy .
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Carroll geometry

o Coupling of Carroll fermions to curved space and to gravity requires understanding of the
geometry they live in in a Cartan formulation (using Vielbeine and spin connections).
Stresses local homogeneous Carroll symmetries.

@ Can be obtained as limit of Cartan formulation of Lorentzian geometry.

o Lorentzian geometry a la Cartan:

» Vielbein E MA (inverse E4*) transforming under local Lorentz transformations as
OE, = —N'BE.".
> Spin connection 2,*% = —Q,,* transforming as
69, = 9,A" — 20", 1"
> st Cartan structure equations express 2,,*® uniquely in terms of E,,* and torsion:
ZO[MEV]A + 2Q[MABEV]B = TWA TWA = torsion tensor

= M = (20,E," - T.,") - %E#c EY B (20,E,° ~ T,,°) .
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Carroll geometry

@ Carrollian analogue can be obtained by rescaling
E)S =-1,, E. =e.", Eot =¢ert E) = e,
0,0 = %Wu0u7 Q% = w0, A% = pb Ale — %)\0147
and taking the ¢ — oo limit.
@ Vielbeine: 7, e, transforming under local homogeneous Carroll transformations as

0 b
0y = —XNaeu”, de, = —XN'pe,”,

0 b
(57’”’ =0, (5€a” A a 7'” - )\u eb” .

T+, e,** are dual to 7, €, "
)
=1, 7, =0, el =0, ele) =06, 7.7 +es e =6,

@ Can be used to decompose tensors into time-like (index 0) and space-like (index a)
components, e.g., for a one-form/vector X,,/X*:

Xo=7"X,, X.=el'X,, X' =7,X", X“=e, X",
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Carroll geometry

@ 2 spin connections:

spatial rotation connection w,,“’ wp ™ = 9 A — 22k, 1P

. 0 0 0 0 40 b
Carroll boost connection w,, * Swy = 0N — X w” — XN pw .

@ First Cartan structure equations:
200,70 + 2w ey = Tuw 2060 + 2w Cey = T
with the torsion tensors 7,,,, and 7,,,,“ transforming as:
6Ty = =00 T, 0T = =X T

o Important differences with Lorentzian geometry

@ Setting torsion components equal to zero does not always just lead to a particular
choice of connection, but can also lead to geometric constraints: intrinsic torsion.

@ w," and w,™ are no longer uniquely determined by the 1st Cartan structure
equations.
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Carroll geometry

@ In particular, the Ist Cartan structure equations can be split up in two sets:
@ “Intrinsic torsion equations”:
e (20peip) + 2w ee) = Towpy € 277" Openin) = Tow) -

Setting components of Ty, ) equal to zero implies geometric constraints. Four
consistent possibilities: (Bergshoeff, Figueroa-O’Farrill, van Helden, JR, Rotko, ter Veldhuis)

0 Toap =0

@ only trace part 7o, = 0

© only symmetric traceless part Tog, 53 = 0

@ no constraints on To(a,»)

@ Remaining 1st Cartan structure equations are “conventional constraints” that do

contain spin connection components. Can be used to express

ab Oa alp 0lb
el O

Wy, THw, e as dependent fields.

e<"‘“wu0‘b> remain independent: no unique metric compatible connection (for given
torsion).
@ These (and other related) observations generalize to arbitrary non-Lorentzian (p-brane
Galilean and Carrollian) geometries. (Bergshoeff, Figueroa-O’Farrill, van Helden, JR, Rotko, ter Veldhuis)
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Carroll geometry

@ Gravitational action with local homogeneous Carroll symmetry from ¢ — oo limit of first
order Einstein-Hilbert action:

SEH X /deEEA'uEBV (ZB[MQV]AB + ZQ[HWC‘QV]CB]) .

@ Gives first order ‘magnetic Carroll gI'ElVity7 action (Bergshoeff, Gomis, Rollier, JR, ter Veldhuis; Campoleoni,

Henneaux, Pekar, Pérez, Salgado-Rebolledo)
S, D nov ab nov Oa
Carr.grav. OX /d xe |:ea ép R[,A,IJ (J) +27"e, R,}LV (G):| s
with Rﬂyah(.[) = 2((9[#0.),,]“'7 + Zw[#[a‘clwy]cb]
and R,woa(G) = 28[#(1.1,,]0“ + Zw[#abwu]ob.

Equations of motion for w,“” and w,,* reproduce the Carrollian 1st Cartan structure
equations for T, = 0 = T,,,“. In particular Ty, ) = 0.

@ Going to the second order formulation, one finds that the independent spin connection
components are Lagrange multipliers for the Ty(,,;) = O intrinsic torsion constraint.
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Coupling fermions to Carroll geometry

Coupling fermions to Carroll geometry

@ We can then consider the limit of the Einstein-Hilbert action, coupled to a
Dirac/tachyonic Dirac fermion, in the first order formulation:

S = SgH + Sterm » with
—1 T ATA L, e M
E Liom = WELHT (a,tqf + % FBC\p> — S0 o
—1 T pA 1 B M -
E™ Ly = WEATATs (0,9 + e Thcl) - =2
@ Option 1: electric fermion limit:
_ _ . 1
S = SCarr.grav, + /d4xe [wFOTHDH'l,Z) — mdn/)] s with Duw = 8u’lf) + Zwu”bl"abw .
@ Option 2: magnetic fermion limit
S = Scarr.grav. + / d*xe [1Z+F"F5r“Dw_ +§_TOTsTDytby + 9y TTsea Dty
- ml@+¢+] )

. 1 1 1
with DYy = Optpy + Zwu‘”’rabw and Dy = Oup— + EwH“bFadef + EwHO”Foal/ur .
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Coupling fermions to

Coupling fermions to Carroll geometry

@ To go to second order formulation, find Carrollian 1st Cartan structure equations,
obtained by varying S with respect to w,** and w,, ™.

@ Fermion bilinears give rise to particular non-zero torsion components in Carrollian 1st
Cartan structure equations.

@ Only conventional constraints acquire non-zero torsion components.
= expressions for dependent spin connection components now contain fermion
bilinears
= give rise to quartic fermion terms in second order action.

@ No fermion bilinear torsion in intrinsic torsion equations: one still has the geometric
constraint

Totap) = 27" (0" Operipy = 0
o Note that the fermionic part of the Lagrangian only contains 7w, *’, 7w, that
become dependent. Does not contain independent spin connection components.
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Coupling fermions to Carroll geometry

@ It is also possible to take the limit of the Einstein-Hilbert action, coupled to fermions
directly in the second order formulation.

o UsingE,’=¢""7,,E," =e,"in

QAP = Eot [ZE[Aly‘a[uEy]B] —Euc EM EPP Q[VEP]C] )

one finds
a ~ a 1 a a
Qo b — CT‘LUJH b(T, e) + O (g) s Qc b= ecHUJH h(7—7 e) )
1
QOOH _ 7_,uouy‘0a(7_7 6) 7 Qa,()b _ E_Tv()(a,b) + je[a\,u,uj’u0|b] (7_7 6) ,
C

where w,, (7, ¢), 7w, " (1, €), el"w, ") (7, ¢) are the dependent spin connection
components of torsionless Carroll geometry. Note the divergence o< TO@h) jpn Q0.

@ c-expansion of 2nd order Einstein-Hilbert action

S o ¢ /dee (T0<a’b>T0(a,b) - TOauTObb) + O(Z'O)-

Leading order = ¢ — oo limit = ‘electric’ Carroll gravity. (Henneaux, Pilat, Teitelboim)
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Coupling fermions to Carroll geometry

Coupling fermions to Carroll geometry

o Alternatively, first replace the leading order & term by the classically equivalent:

D ab a ab 2
/d xe (A( ) Toap) — Moa® — EM ) Xa) + 4—22>\ ) .

and then take the ¢ — oo limit. Gives 2nd order formulation of magnetic Carroll gravity.

o There are no extra &> divergences when adding fermions.
@ For electric fermion:

_ 1 1
§= Smagn. gravity + /d4xe |:1/"FOTH (aml’ + Zw/»t (T e) abd’) - *TOa T/JFOT/J}
@ For magnetic fermion:

S= Smagn, gravity + /d4xe|:1/_’+F0FSTHDMw— + @Z—FOFST#DHQZJ%— + 1Z+FHF5DH¢’+

1 — 1 -
— ST 4 Tolst— — 5 Tos"B-Tolsp |

with

1
Duthy = Oupy + Zwﬂ(r, T wy

1 1
D = TR + Zwoah(ﬂ Tt + EWOOQ(T, &)Toathy -
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Supersymmetry

Supersymmetry

@ Can one supersymmetrize electric and magnetic Carroll fermions? (see also recent work by
Koutrolikos and Najafizadeh)

@ Look at simplest cases of multiplets containing only scalars, alongside the fermions:
N =1 chiral multiplet and A" = 2 hypermultiplet.
e N =1, D = 4 (off-shell) chiral multiplet:

» Field content: {Z, ¥, F}
with Uy p = P gV = $(1 £ T5)¥, ¥ Majorana

» Lagrangian:
M
Lwz = —OuZ&*Z* — IT* O, PV + FF* + ( FZ — Z\IJPL\IJ + hc) .

e N =2, D = 4 (on-shell) hypermultiplet:
> Field content: {Z', T}, i= 1,2,
with ¥ Dirac and Z; = (Z)*.

> Lagrangian:

£hyp:—faAzaAz TPV — 2 U — 2—zz,,
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Supersymmetry

Supersymmetry

@ The electric limit can be taken straightforwardly. E.g. for the N' = 1 chiral multiplet, one
uses the rescalings:

€
oné, X = x*, z:%, qz:%, ="z F=f
This gives (with M = mé&*):
Lewmonwz = 2% — PT%, +f* + (mfz - S+ h.c.) ,
which is invariant under the following supersymmetry transformation rules:
o= —ep,  Gp= — (Mzextfer) , o = Loy,
V2 V2 V2

@ The superalgebra of this ‘electric Carroll chiral multiplet’ then closes off-shell:

[6(c1), 8(2)] = % (20) %

@ The scalar sector, with kinetic term zZ* gives an ‘electric’ Carroll scalar. (e.g., de Boer, Hartong,

Obers, Sybesma, Vandoren)
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Supersymmetry

Supersymmetry

o The magnetic limit is trickier. Requires different rescalings of ¥4 = P4 W projections,
which can not be done sensibly for ¥ Majorana =  look at A/ = 2 hypermultiplet.

@ Need for tachyonic version of the fermion part, including I's in the kinetic term of W.
o To get magnetic scalar part, write the scalar kinetic terms in first order form:
—GoZ' + G"i0:Z' — Go'0Zi + G/ O'Z; — GuGo' + GGy .
and rescale

1 i 1 i a a i i
Goi = = goi s Go = =go , Gi=g, G, =ga .
¢ ¢

o Limit of Lagrangian = sum of magnetic fermion Lagrangian and
—go,'Zi — g()iZ,' — 8“Zi8aZi + 2mZZiZ,' .
@ Only properly supersymmetric when there are no ‘divergences’ in the supersymmetry
transformation rules!
o Redefining transformation rules with ‘zilch’ symmetries
08
§¢™ = QP =

can however remove potential divergences.
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Conclusions

Conclusions

@ Defined two types of Carrollian limits of a Dirac/tachyonic Dirac fermion: electric and
magnetic.

o Cartan formulation of Carrollian geometry, needed for coupling to non-trivial
backgrounds and gravity, is available.

o Supersymmetrization of the electric fermion is straightforward. Supersymmetrizing the
magnetic one is a bit more tricky.

e To do:

» connect the fermion limits to classification of unitary irreducible representations
(Figueroa-O’Farrill, Perez, Prohazka)

study Carrollian superalgebras and their representations in more detail
generic Carrollian supermultiplets?

Carrollian supergravity?

vV v . v VY

application to (some of) the topics discussed at this workshop?
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