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BOUNDARY PROBLEM IN (SUPER)GRAVITY

“Bdy problem”: 9M — Well-def. variational principle, background-independent conserved charges, finiteness?

Gravity and supergravity Lagrangians in the presence of a bdy studied from the early seventies on...

» York, Gibbons, Hawking (1972, 1977): Need of adding a bdy term to the gravity action such as to implement
Dirichlet b.c. for the metric field — Well-def. variational principle

» Horava, Witten (1996): Bdy terms to cancel gauge and grav. anomalies in the Horava-Witten model in 11D
» AdS/CFT (1997): Bulk fields (metric) diverge at the bdy — Cured by counterterms at the bdy (Holo. ren.)

General lesson: For 9M # 0, the bulk theory needs to be supplemented by bdy terms
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Gravity: Consider D = 4 EH action + negative A (AdS gravity) + EGB (topological term)

Lege = R A RCdeabcd =d (wab AR 4 w A w? A de) €abed > R® = dw® + wi A w®

=- Background-independent def. of Noether charges, without the need of explicitly imposing Dirichlet b.c.

~ Lggg regularizes the action and the related conserved charges; Reproduces regularization given by
holographic regularization (counterterms) — “Topological regularization”; Full action: MacDowell-Mansouri form
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Bdy problem in sugra (with A), several authors, different approaches — Point of contact: Add bdy terms
A systematic way to face the bdy problem in sugra is the “geometric approach to sugra in superspace”:
« Theory given in terms of superfields 1-forms . def. in superspace Myap (we will take N =1, D = 4)
Superspace is spanned by the supervielbein {V2,} (dual to {Pa, Q})
L:[;ﬂ‘]: Bosonic 4-form in superspace

Action:
S= L[uA]

MyCMyan
Susy transformations on spacetime are diffeomorphisms in the fermionic directions of superspace:
SUSYZ M4‘4N’(X, 09) — M4‘4N(X, 0+ 59)

= Can be described in terms of Lie derivative . with fermionic parameter ¢(x, 6) (susy parameter):

le = 1ed + due 1e(h) = €, 1c(u) =0 for p? #£




Sugra theory — Invariance of the action under susy transformations: .S = 6eL=0
My

» Susy inv. of the superspace Lagrangian:
8L =0L=1.(dL) +d(2.L) =0
= Necessary condition for a susy-invariant sugra Lagrangian in superspace:
1(dL) =0

<« Susy invariance in the bulk of superspace — Assumed true from now on for Ly
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» Susy inv. of the superspace Lagrangian:
8L =0L=1.(dL) +d(2.L) =0
= Necessary condition for a susy-invariant sugra Lagrangian in superspace:
1(dL) =0

<« Susy invariance in the bulk of superspace — Assumed true from now on for Ly

+ Susy inv. of the action (requires weaker condition on Lyy):

0eS = d(2e Louk) = / 1eLoyk =0 = e Louklom, = do
My oM,

In general. not satisfied by Lk in the presence of non-trivial b.c. on 9My # 0
= Susy inv. requires to add bdy terms — Consider the full Lagrangian

Lot = Louk + Lody s Lody = dBzy = (L) =0 and 2 Lyyi|or, =0




CASE OF PURE SUGRA WITH NEGATIVE COSMOLOGICAL CONSTANT
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d (wab AR 4wy Aw®® A ww) €abed = R® AR%eapeg, d (P Asp) =5 Aysp — ZRab A y5yap N Y

= Modify the Lagrangian: £" — £~ = £ + £057", with

N e 1w
Lhy" = aRPRD ey — 18 (P’YSP = ZRabw'%'Yabw)

Bdy contributions in the variational principle for 6%11 = Constraint on the supercurvatures at the bdy

«, 3 such as susy inv. (& Lbdy susy EGB) = L’{L\,f,:‘ MacDowell-Mansouri in terms of OSp(1|4)-covariant
supercurvatures and vanishing of OSp(1|4) supercurv. at 9 M4 — Bdy enjoys global inv. under OSp(1|4)
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Start from |
e ZRab VeV9e,peq — Uv57apV2 < EH + RS, scale as L2

But: Bdy terms that can be constructed using W, v 4 scale as L and L
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» Appear only in the bdy Lagrangian (“topological role”)

 Act as auxiliary fields under the bulk perspective (off-shell matching of B and F d.o.f.), implementing the
Bianchi identities of Lorentz and supersymmetry respectively, associated with w? and
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» Appear only in the bdy Lagrangian (“topological role”)

 Act as auxiliary fields under the bulk perspective (off-shell matching of B and F d.o.f.), implementing the
Bianchi identities of Lorentz and supersymmetry respectively, associated with w? and

Bdy contributions (not involving a scale parameter):
d (Aab AR 4w Aw® A A% 4 203 A AP A W 4 30 A ]—‘Cd) €avod = 2R A F9 pcq
- B _ 1 B
d (975 Ao+ X5 A p) =257 A p— SR¥ A X15Ya0 A

where o = Dy and F2 = DA%
Bdy Lagrangian:

. _ 1 -
ngty =a (ZRab}'Cdeade> —ig’ (20’75,0 — ERabX'ys'yab'z/)) — Scaleasl? v

o', B': constant dimensionless parameters amounting to the normalization of the auxiliary fields
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> Super-Maxwell algebra emerges as global symmetry at the bdy
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A?® and y aux. fields under bulk perspective, their field egs. implement Bianchi identities of Lorentz and susy:

field egs. A% < DR =0, fieldegs. x < Dp— %Rab’yabw =0

Lﬂf‘l} is the £ — oo limit of a theory orig. from AdS, sugra (AdS-Lor. cov.), adding A%, x (also in bulk) and redef.

1 1
W @b ZzAab (torsionful), ¢ — v+ ;x
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Asympt. flat st. at null (light-like) infty: Asympt. symm. group is inf.-dim. BMS group (BMSp 22 conf. Carrollp_1)

Ciambelli, Marteau, Petkou, Petropoulos, Siampos, JHEP 07 (2018) 165
“Flat holography” context: A natural bdy dual to flat gravity identified in the framework of Carrollian fluids
(fluids in 2 space dim., dynamics left invariant by the action of the infinite-dim. conformal Carroll group)
A — 0 of AdS holography — Holographic description of D = 4 asympt. locally flat spacetimes

— Carrollian geometry emerges in flat holography, since A — 0 bulk «+ Carrollian limit bdy

« Starting point: D = 4 bulk Einstein st. with A = —3x? = —3/¢?, dual to a bdy relativistic fluid
« Ricci-flat limit achieved in the limit « — 0 — 2D spatial conformal structure emerges at null infinity:
Randers-Papapetrou parametrization of the D = 3 bdy spacetime metric:

ds? = —k? (Qdt — badx®)? +dPP,  dP = agedx®dx®

For k — 0, time decouples in the bdy geom.; k role of speed of light = Flat limit kK — 0 is Carrollian limit
= Carrollian bdy geom.: Spatial surface with positive-def. metric d/?> = a,,dx®dx® and Carrollian time t € R
~ Carrollian surface hosts a conformal Carrollian fluid (holo. dual to Ricci-flat spacetime)




~ At susy level?
Regarding our construction in this context:

+ Role of the “topological auxiliary fields” A%’ and x?

» Relation between super-Maxwell and super-bmsy (or super-Carroll)?
[Known: bmsys — super-bmsy (finite or infinite number of fermionic generators)]

First step:
Intrinsic description of the bdy Lagrangian for the case of a null bdy geometry

Decomposition of tensorial structures w.r.t. those covariant under the symmetries of the chosen bdy
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Regarding our construction in this context:

+ Role of the “topological auxiliary fields” A%’ and x?

» Relation between super-Maxwell and super-bmsy (or super-Carroll)?
[Known: bmsys — super-bmsy (finite or infinite number of fermionic generators)]

First step:
Intrinsic description of the bdy Lagrangian for the case of a null bdy geometry

Decomposition of tensorial structures w.r.t. those covariant under the symmetries of the chosen bdy

Thank you!
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SUPER-MAXWELL ALGEBRA

Super-Maxwell algebra ({Jap, Pa, Q, Zap, £} dual to {w?®, V2,4, A% x}):

[Yab, Jod] o< Nbedad — Nacdba — Nbadac + Naddbc s [Jabs Pel o< npcPa — nacPp,  [Pa, Pp] &< Zap
[Yab, Zod] X MbeZad — NacZba — NMbaZac + NadZbe
[Ja ’ O] & ’Yabov [Jab7 z] X ’Yabz ; [P37 O] & ’Yaz ; {07 O} X C’YaPS ; {07 z} X C’yabZab




THE OTHER FIELD EQS. IN THE FLAT MACDOWELL-MANSOURI-LIKE SUGRA CASE

« E.o.m. of w® and ¢

eom. w® <« DF® _2Rla Aclbl L = @by, gab, — g

1 i
eom.y <+ D=-— ZRab’YabX + %yapva =0

« E.om. of V& |
5 VIR eapog — Pyarsp =0

Einstein egs. in superspace (written in the Einstein-Cartan formalism)




RELATION WITH THE AVZ MODEL

Andrianopoli, Cerchiai, D’Auria, Trigiante, JHEP 04 (2018), 007

AVZ D = 3 model (“unconventional SUSY”) from N = 2, D = 4 pure sugra with a 3D boundary:

« AVZ (Alvarez, Valenzuela, Zanelli) model: Based on a 3D CS Lagrangian with OSp(2|2) supergroup, but
features a Dirac spinor xA¥?) as the only propagating d.o.f.; Important applications in the description of
graphene-like systems near the Dirac points

« x"¥2) emerges by imposing the following cond. on the spacetime comp. of the odd CS connection 1-form W:

XV =i(y)apViel  (a,8=1,2,i=0,1,2,p=0,1,2)

» Correspondence with the CS model of AVZ found for specific choice of the D = 3 bdy: Local AdS; geometry
at spatial infinity of the D = 4 theory (asymptotically AdS, solutions featuring this boundary geometry
comprise the “ultraspinning limit” of AdS4-Kerr black hole)




SYMMETRY STRUCTURE OF ASYMPTOTICALLY FLAT SPACETIMES: BMS AND CARROLL GROUPS

Maximal set of symmetries admitted by a D = 4 theory including gravity with asymptotically locally flat b.c.?

With Dirichlet-type b.c. (non-deg. spatial part of bdy metric: round 2-sphere) — Asympt. symm. algebra: bmsy

Asympt. flat spacetimes at null (i.e., light-like) infinity: Asympt. symm. group is the infinite-dim. BMS group
(instead of the Poincaré group)

AdS/CFT duality: A necessary condition is that the asymp. symm. group of the bulk dictates the global symm. of
the dual field theory living on the bdy of spacetime

— Holographic formulation of quantum gravity in asympt. flat spacetimes: Putative dual field theory expected to
be a BMS invariant theory on the null bdy of spacetime (~~ Celestial holography)

Asympt. bdy as a spatial surface at null infinity = Null surfaces have in general a deg. metric
— Any given holographic model has to deal with a consistent definition of the 2D induced spatial metric

= Consider a systematic singular limit where an infinite boost is implemented on a space-like surface of a
relativistic field theory: ¢ — 0 in the field theory — Contraction of the Poincaré group to the Carrollian group

~ As fields on a null hypersurface of spacetime necessarily propagate at the speed of light and they must
therefore be massless, consider a conformal extension of the Carroll group

BMS (D) = conformal Carroll(D — 1)
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