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BOUNDARY PROBLEM IN (SUPER)GRAVITY

“Bdy problem”: ∂M→Well-def. variational principle, background-independent conserved charges, finiteness?

Gravity and supergravity Lagrangians in the presence of a bdy studied from the early seventies on...

• York, Gibbons, Hawking (1972, 1977): Need of adding a bdy term to the gravity action such as to implement
Dirichlet b.c. for the metric field→Well-def. variational principle

• Horava, Witten (1996): Bdy terms to cancel gauge and grav. anomalies in the Horava-Witten model in 11D

• AdS/CFT (1997): Bulk fields (metric) diverge at the bdy→ Cured by counterterms at the bdy (Holo. ren.)

General lesson: For ∂M 6= 0, the bulk theory needs to be supplemented by bdy terms

Aros, Contreras, Olea, Troncoso, Zanelli, PRL 84 (2000) 1647-1650

Gravity: Consider D = 4 EH action + negative Λ (AdS gravity) + EGB (topological term)

LEGB = Rab ∧Rcd εabcd = d
(
ωab ∧Rcd + ωa

` ∧ ω`b ∧ ωcd
)
εabcd , Rab ≡ dωab + ωa

c ∧ ωcb

⇒ Background-independent def. of Noether charges, without the need of explicitly imposing Dirichlet b.c.

 LEGB regularizes the action and the related conserved charges; Reproduces regularization given by
holographic regularization (counterterms)→ “Topological regularization”; Full action: MacDowell-Mansouri form
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SUPERGRAVITY CASE IN THE GEOMETRIC APPROACH IN SUPERSPACE

Bdy problem in sugra (with Λ), several authors, different approaches→ Point of contact: Add bdy terms

A systematic way to face the bdy problem in sugra is the “geometric approach to sugra in superspace”:

• Theory given in terms of superfields 1-forms µA def. in superspaceM4|4N (we will take N = 1, D = 4)

• Superspace is spanned by the supervielbein {V a, ψ} (dual to {Pa,Q})

• L[µA]: Bosonic 4-form in superspace

• Action:
S =

∫
M4⊂M4|4N

L[µA]

• Susy transformations on spacetime are diffeomorphisms in the fermionic directions of superspace:

Susy: M4|4N (x , θ)→M4|4N (x , θ + δθ)

⇒ Can be described in terms of Lie derivative `ε with fermionic parameter ε(x , θ) (susy parameter):

`ε = ıεd + dıε , ıε(ψ) = ε , ıε(µ
A) = 0 for µA 6= ψ
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Sugra theory→ Invariance of the action under susy transformations: δεS ≡
∫
M4

δεL = 0

• Susy inv. of the superspace Lagrangian:

δεL = `εL = ıε(dL) + d(ıεL) = 0

⇒ Necessary condition for a susy-invariant sugra Lagrangian in superspace:

ıε(dL) = 0

↔ Susy invariance in the bulk of superspace→ Assumed true from now on for Lbulk

• Susy inv. of the action (requires weaker condition on Lbulk):

δεS =

∫
M4

d(ıεLbulk) =

∫
∂M4

ıεLbulk = 0 ⇒ ıεLbulk|∂M4 = dφ

In general. not satisfied by Lbulk in the presence of non-trivial b.c. on ∂M4 6= 0
⇒ Susy inv. requires to add bdy terms→ Consider the full Lagrangian

Lfull = Lbulk + Lbdy , Lbdy = dB(3) ⇒ ıε(dLfull) = 0 and ıεLfull|∂M4 = 0
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CASE OF PURE SUGRA WITH NEGATIVE COSMOLOGICAL CONSTANT

Andrianopoli, D’Auria, JHEP 08 (2014), 012

Consider pure N = 1, D = 4 sugra with negative cosmological constant Λ = −3/`2:

LN=1
bulk =

1
4
RabV cV d εabcd − ψ̄γ5γaρV a −

i
2`
ψ̄γ5γabψV aV b −

1
8`2

V aV bV cV d εabcd

Bulk: ıε(dLN=1
bulk ) = 0; But when background spacetime has a non-trivial bdy: ıεLN=1

bulk |∂M4 6= dφ ⇒ δεSbulk 6= 0

⇒ Add LN=1
bdy = dB(3) to restore susy inv. (do not alter dLN=1

bulk )→ Possible bdy terms (parity, Lorentz inv.):

d
(
ωab ∧Rcd + ωa

` ∧ ω`b ∧ ωcd
)
εabcd = Rab ∧Rcd εabcd , d

(
ψ̄ ∧ γ5ρ

)
= ρ̄ ∧ γ5ρ−

1
4
Rab ∧ ψ̄γ5γab ∧ ψ

⇒ Modify the Lagrangian: LN=1
bulk → LN=1

full ≡ LN=1
bulk + LN=1

bdy , with

LN=1
bdy = αRabRcd εabcd − iβ

(
ρ̄γ5ρ−

1
4
Rabψ̄γ5γabψ

)
Bdy contributions in the variational principle for LN=1

full ⇒ Constraint on the supercurvatures at the bdy

α, β such as susy inv. (& LN=1
bdy susy EGB)⇒ LN=1

full MacDowell-Mansouri in terms of OSp(1|4)-covariant
supercurvatures and vanishing of OSp(1|4) supercurv. at ∂M4 → Bdy enjoys global inv. under OSp(1|4)
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CASE OF “FLAT” SUGRA WITH BOUNDARY

MacDowell-Mansouri Lagrangian:

LN=1
full = −

`2

8
Rab ∧ Rcd εabcd − i`ρ̄γ5 ∧ ρ

Rab ≡ Rab −
1
`2

V aV b −
1
2`
ψ̄γabψ , ρ ≡ ρ−

i
2`
γaψV a

Limit Λ→ 0 (`→∞)?

• Case where the bdy is placed asymptotically at infinity: BMS group emerges as asymptotic symmetry

• ∃ a geometric Lbdy exhibiting super-BMS symmetry?
→ Consider bdy at asymptotic infinity to allow the BMS symmetry to possibly emerge

• But geometric approach scheme does not require to specify bdy

• Focus here: Restore susy inv. when ∂M 6= 0 by adding bdy terms

Start from
Lflat

bulk =
1
4
RabV cV d εabcd − ψ̄γ5γaρV a ← EH + RS, scale as L2

But: Bdy terms that can be constructed using ωab , V a, ψ scale as L0 and L
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Concha, R., Rodrı́guez, JHEP 01 (2019) 192; Andrianopoli, R., Universe 7 (2021) 12, 463

Alternative approach:

Add new gauge fields with higher scale-weight: Aab = −Aba (s.w. L2) and χ (s.w. L3/2)

• Appear only in the bdy Lagrangian (“topological role”)

• Act as auxiliary fields under the bulk perspective (off-shell matching of B and F d.o.f.), implementing the
Bianchi identities of Lorentz and supersymmetry respectively, associated with ωab and ψ

Bdy contributions (not involving a scale parameter):

d
(

Aab ∧Rcd + ωa
f ∧ ωfb ∧ Acd + 2ωa

f ∧ Afb ∧ ωcd + ωab ∧ Fcd
)
εabcd = 2Rab ∧ Fcd εabcd

d
(
ψ̄γ5 ∧ σ + χ̄γ5 ∧ ρ

)
= 2σ̄γ5 ∧ ρ−

1
2
Rab ∧ χ̄γ5γab ∧ ψ

where σ ≡ Dχ and Fab ≡ DAab

Bdy Lagrangian:

Lflat
bdy = α′

(
2RabFcd εabcd

)
− iβ′

(
2σ̄γ5ρ−

1
2
Rabχ̄γ5γabψ

)
→ Scale as L2 X

α′, β′: constant dimensionless parameters amounting to the normalization of the auxiliary fields
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Full Lagrangian: ıε(Lflat
full)|∂M4 = 0↔ α′ 6= 0, β′ 6= 0; for α′ = −1/8, β′ = 1 emerging structure transparent:

Lflat
full = Lflat

bulk + Lflat
bdy = −

1
4
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APPLICATIONS TO ASYMPTOTIC BOUNDARIES: BMS/CARROLL STRUCTURES, FLAT HOLOGRAPHY

Asympt. flat st. at null (light-like) infty: Asympt. symm. group is inf.-dim. BMS group (BMSD ∼= conf. CarrollD−1)

Ciambelli, Marteau, Petkou, Petropoulos, Siampos, JHEP 07 (2018) 165

“Flat holography” context: A natural bdy dual to flat gravity identified in the framework of Carrollian fluids
(fluids in 2 space dim., dynamics left invariant by the action of the infinite-dim. conformal Carroll group)

Λ→ 0 of AdS holography→ Holographic description of D = 4 asympt. locally flat spacetimes

→ Carrollian geometry emerges in flat holography, since Λ→ 0 bulk↔ Carrollian limit bdy

• Starting point: D = 4 bulk Einstein st. with Λ = −3κ2 = −3/`2, dual to a bdy relativistic fluid

• Ricci-flat limit achieved in the limit κ→ 0→ 2D spatial conformal structure emerges at null infinity:
Randers-Papapetrou parametrization of the D = 3 bdy spacetime metric:

ds2 = −κ2 (Ωdt − badxa)2 + dl2 , dl2 = aabdxadxb

For k → 0, time decouples in the bdy geom.; k role of speed of light⇒ Flat limit k → 0 is Carrollian limit
⇒ Carrollian bdy geom.: Spatial surface with positive-def. metric dl2 = aabdxadxb and Carrollian time t ∈ R
 Carrollian surface hosts a conformal Carrollian fluid (holo. dual to Ricci-flat spacetime)
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 At susy level?

Regarding our construction in this context:

• Role of the “topological auxiliary fields” Aab and χ?

• Relation between super-Maxwell and super-bms4 (or super-Carroll)?
[Known: bms4 → super-bms4 (finite or infinite number of fermionic generators)]

First step:

Intrinsic description of the bdy Lagrangian for the case of a null bdy geometry

Decomposition of tensorial structures w.r.t. those covariant under the symmetries of the chosen bdy

Thank you!
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Supplementary material



SUPER-MAXWELL ALGEBRA

Super-Maxwell algebra ({Jab,Pa,Q,Zab,Σ} dual to {ωab,V a, ψ,Aab, χ}):

[Jab, Jcd ] ∝ ηbcJad − ηacJbd − ηbd Jac + ηad Jbc , [Jab,Pc ] ∝ ηbcPa − ηacPb , [Pa,Pb] ∝ Zab

[Jab,Zcd ] ∝ ηbcZad − ηacZbd − ηbd Zac + ηad Zbc

[Jab,Q] ∝ γabQ , [Jab,Σ] ∝ γabΣ , [Pa,Q] ∝ γaΣ , {Q,Q} ∝ CγaPa , {Q,Σ} ∝ CγabZab



THE OTHER FIELD EQS. IN THE FLAT MACDOWELL-MANSOURI-LIKE SUGRA CASE

• E.o.m. of ωab and ψ:

e.o.m. ωab ↔ DF̂ab − 2R[a
cAc|b] + Ξ̄γabψ − χ̄γabρ = 0

e.o.m. ψ ↔ DΞ−
1
4
Rabγabχ+

i
2
γaρV a = 0

• E.o.m. of V a:
1
2

V bRcd εabcd − ψ̄γaγ5ρ = 0

Einstein eqs. in superspace (written in the Einstein-Cartan formalism)



RELATION WITH THE AVZ MODEL

Λ 6= 0 case:

Andrianopoli, Cerchiai, D’Auria, Trigiante, JHEP 04 (2018), 007

AVZ D = 3 model (“unconventional SUSY”) from N = 2, D = 4 pure sugra with a 3D boundary:

• AVZ (Alvarez, Valenzuela, Zanelli) model: Based on a 3D CS Lagrangian with OSp(2|2) supergroup, but
features a Dirac spinor χ(AVZ) as the only propagating d.o.f.; Important applications in the description of
graphene-like systems near the Dirac points

• χ(AVZ) emerges by imposing the following cond. on the spacetime comp. of the odd CS connection 1-form Ψ:

χ(AVZ)
α = i(γ i )αβΨβµeµi (α, β = 1, 2 , i = 0, 1, 2 , µ = 0, 1, 2)

• Correspondence with the CS model of AVZ found for specific choice of the D = 3 bdy: Local AdS3 geometry
at spatial infinity of the D = 4 theory (asymptotically AdS4 solutions featuring this boundary geometry
comprise the “ultraspinning limit” of AdS4-Kerr black hole)



SYMMETRY STRUCTURE OF ASYMPTOTICALLY FLAT SPACETIMES: BMS AND CARROLL GROUPS

Maximal set of symmetries admitted by a D = 4 theory including gravity with asymptotically locally flat b.c.?

With Dirichlet-type b.c. (non-deg. spatial part of bdy metric: round 2-sphere)→ Asympt. symm. algebra: bms4

Asympt. flat spacetimes at null (i.e., light-like) infinity: Asympt. symm. group is the infinite-dim. BMS group
(instead of the Poincaré group)

AdS/CFT duality: A necessary condition is that the asymp. symm. group of the bulk dictates the global symm. of
the dual field theory living on the bdy of spacetime

→ Holographic formulation of quantum gravity in asympt. flat spacetimes: Putative dual field theory expected to
be a BMS invariant theory on the null bdy of spacetime ( Celestial holography)

Asympt. bdy as a spatial surface at null infinity⇒ Null surfaces have in general a deg. metric
→ Any given holographic model has to deal with a consistent definition of the 2D induced spatial metric

⇒ Consider a systematic singular limit where an infinite boost is implemented on a space-like surface of a
relativistic field theory: c → 0 in the field theory→ Contraction of the Poincaré group to the Carrollian group

 As fields on a null hypersurface of spacetime necessarily propagate at the speed of light and they must
therefore be massless, consider a conformal extension of the Carroll group

BMS (D) ∼= conformal Carroll(D − 1)
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