

A GEOMETRIC PERSPECTIVE ON FLAT SUPERGRAVITY WITH BOUNDARY AND ITS ASYMPTOTIC SYMMETRIES

Based on Concha, R., Rodríguez, JHEP 01 (2019) 192 and Andrianopoli, R., Universe 7 (2021) 12, 463

Lucrezia Ravera Politecnico di Torino, DISAT

3rd Carroll Workshop, Thessaloniki, 2-6 October 2023

"Bdy problem": $\partial \mathcal{M} \rightarrow$ Well-def. variational principle, background-independent conserved charges, finiteness? Gravity and supergravity Lagrangians in the presence of a bdy studied from the early seventies on...

- York, Gibbons, Hawking (1972, 1977): Need of adding a bdy term to the gravity action such as to implement Dirichlet b.c. for the metric field → Well-def. variational principle
- Horava, Witten (1996): Bdy terms to cancel gauge and grav. anomalies in the Horava-Witten model in 11D
- AdS/CFT (1997): Bulk fields (metric) diverge at the bdy → Cured by counterterms at the bdy (Holo. ren.)

General lesson: For $\partial M \neq 0$, the bulk theory needs to be supplemented by bdy terms

"Bdy problem": $\partial \mathcal{M} \rightarrow$ Well-def. variational principle, background-independent conserved charges, finiteness? Gravity and supergravity Lagrangians in the presence of a bdy studied from the early seventies on...

- York, Gibbons, Hawking (1972, 1977): Need of adding a bdy term to the gravity action such as to implement Dirichlet b.c. for the metric field → Well-def. variational principle
- Horava, Witten (1996): Bdy terms to cancel gauge and grav. anomalies in the Horava-Witten model in 11D
- AdS/CFT (1997): Bulk fields (metric) diverge at the bdy \rightarrow Cured by counterterms at the bdy (Holo. ren.)

General lesson: For $\partial \mathcal{M} \neq 0$, the bulk theory needs to be supplemented by bdy terms

Aros, Contreras, Olea, Troncoso, Zanelli, PRL 84 (2000) 1647-1650

Gravity: Consider D = 4 EH action + negative Λ (AdS gravity) + EGB (topological term)

$$\mathcal{L}_{\mathsf{EGB}} = \mathcal{R}^{ab} \wedge \mathcal{R}^{cd} \epsilon_{abcd} = \mathrm{d} \left(\omega^{ab} \wedge \mathcal{R}^{cd} + \omega^{a}_{\ell} \wedge \omega^{\ell b} \wedge \omega^{cd} \right) \epsilon_{abcd} \,, \quad \mathcal{R}^{ab} \equiv \mathrm{d} \omega^{ab} + \omega^{a}_{c} \wedge \omega^{cb} + \omega^{cb}_{c} \wedge \omega^{$$

 \Rightarrow Background-independent def. of Noether charges, without the need of explicitly imposing Dirichlet b.c.

"Bdy problem": $\partial \mathcal{M} \rightarrow$ Well-def. variational principle, background-independent conserved charges, finiteness? Gravity and supergravity Lagrangians in the presence of a bdy studied from the early seventies on...

- York, Gibbons, Hawking (1972, 1977): Need of adding a bdy term to the gravity action such as to implement Dirichlet b.c. for the metric field → Well-def. variational principle
- Horava, Witten (1996): Bdy terms to cancel gauge and grav. anomalies in the Horava-Witten model in 11D
- AdS/CFT (1997): Bulk fields (metric) diverge at the bdy → Cured by counterterms at the bdy (Holo. ren.)

General lesson: For $\partial \mathcal{M} \neq 0$, the bulk theory needs to be supplemented by bdy terms

Aros, Contreras, Olea, Troncoso, Zanelli, PRL 84 (2000) 1647-1650

Gravity: Consider D = 4 EH action + negative Λ (AdS gravity) + EGB (topological term)

 $\mathcal{L}_{\mathsf{EGB}} = \mathcal{R}^{ab} \wedge \mathcal{R}^{cd} \epsilon_{abcd} = \mathrm{d} \left(\omega^{ab} \wedge \mathcal{R}^{cd} + \omega^{a}_{\ell} \wedge \omega^{\ell b} \wedge \omega^{cd} \right) \epsilon_{abcd} \,, \quad \mathcal{R}^{ab} \equiv \mathrm{d} \omega^{ab} + \omega^{a}_{c} \wedge \omega^{cb}$

 \Rightarrow Background-independent def. of Noether charges, without the need of explicitly imposing Dirichlet b.c.

 $\sim \mathcal{L}_{EGB}$ regularizes the action and the related conserved charges; Reproduces regularization given by holographic regularization (counterterms) \rightarrow "Topological regularization"; Full action: MacDowell-Mansouri form

Bdy problem in sugra (with Λ), several authors, different approaches \rightarrow Point of contact: Add bdy terms

- Theory given in terms of superfields 1-forms μ^{A} def. in superspace $\mathcal{M}_{4|4\mathcal{N}}$ (we will take $\mathcal{N} = 1, D = 4$)
- Superspace is spanned by the supervielbein $\{V^a, \psi\}$ (dual to $\{P_a, Q\}$)

- Theory given in terms of superfields 1-forms μ^{A} def. in superspace $\mathcal{M}_{4|4\mathcal{N}}$ (we will take $\mathcal{N} = 1, D = 4$)
- Superspace is spanned by the supervielbein $\{V^a, \psi\}$ (dual to $\{P_a, Q\}$)
- $\mathcal{L}[\mu^{\mathcal{A}}]$: Bosonic 4-form in superspace
- Action:

$$\mathcal{S} = \int_{\mathcal{M}_4 \subset \mathcal{M}_4 \mid 4\mathcal{N}} \mathcal{L}[\mu^{\mathcal{A}}]$$

- Theory given in terms of superfields 1-forms μ^{A} def. in superspace $\mathcal{M}_{4|4\mathcal{N}}$ (we will take $\mathcal{N} = 1, D = 4$)
- Superspace is spanned by the supervielbein $\{V^a, \psi\}$ (dual to $\{P_a, Q\}$)
- $\mathcal{L}[\mu^{\mathcal{A}}]$: Bosonic 4-form in superspace
- Action:

$$\mathcal{S} = \int_{\mathcal{M}_4 \subset \mathcal{M}_{4|4\mathcal{N}}} \mathcal{L}[\mu^{\mathcal{A}}]$$

• Susy transformations on spacetime are diffeomorphisms in the fermionic directions of superspace:

Susy:
$$\mathcal{M}_{4|4\mathcal{N}}(x,\theta) \to \mathcal{M}_{4|4\mathcal{N}}(x,\theta+\delta\theta)$$

 \Rightarrow Can be described in terms of Lie derivative ℓ_{ϵ} with fermionic parameter $\epsilon(x, \theta)$ (susy parameter):

$$\ell_{\epsilon} = \imath_{\epsilon} d + d\imath_{\epsilon} , \qquad \imath_{\epsilon}(\psi) = \epsilon , \ \imath_{\epsilon}(\mu^{\mathcal{A}}) = 0 \text{ for } \mu^{\mathcal{A}} \neq \psi$$

Sugra theory \rightarrow Invariance of the action under susy transformations: $\delta_{\epsilon} S \equiv \int_{\mathcal{M}_4} \delta_{\epsilon} \mathcal{L} = 0$

• Susy inv. of the superspace Lagrangian:

$$\delta_{\epsilon}\mathcal{L} = \ell_{\epsilon}\mathcal{L} = \imath_{\epsilon}(\mathbf{d}\mathcal{L}) + \mathbf{d}(\imath_{\epsilon}\mathcal{L}) = \mathbf{0}$$

 \Rightarrow Necessary condition for a susy-invariant sugra Lagrangian in superspace:

$\imath_{\epsilon}(\mathrm{d}\mathcal{L})=0$

 \leftrightarrow Susy invariance in the bulk of superspace \rightarrow Assumed true from now on for $\mathcal{L}_{\text{bulk}}$

Sugra theory \rightarrow Invariance of the action under susy transformations: $\delta_{\epsilon} S \equiv \int_{\mathcal{M}_4} \delta_{\epsilon} \mathcal{L} = 0$

Susy inv. of the superspace Lagrangian:

$$\delta_{\epsilon}\mathcal{L} = \ell_{\epsilon}\mathcal{L} = \imath_{\epsilon}(\mathrm{d}\mathcal{L}) + \mathrm{d}(\imath_{\epsilon}\mathcal{L}) = 0$$

 \Rightarrow Necessary condition for a susy-invariant sugra Lagrangian in superspace:

$\imath_{\epsilon}(\mathrm{d}\mathcal{L})=0$

- \leftrightarrow Susy invariance in the bulk of superspace \rightarrow Assumed true from now on for $\mathcal{L}_{\text{bulk}}$
- Susy inv. of the action (requires weaker condition on \mathcal{L}_{bulk}):

$$\delta_{\epsilon}\mathcal{S} = \int_{\mathcal{M}_{4}} \mathrm{d}(\imath_{\epsilon}\mathcal{L}_{\mathsf{bulk}}) = \int_{\partial \mathcal{M}_{4}} \imath_{\epsilon}\mathcal{L}_{\mathsf{bulk}} = 0 \quad \Rightarrow \quad \imath_{\epsilon}\mathcal{L}_{\mathsf{bulk}}|_{\partial \mathcal{M}_{4}} = \mathrm{d}\phi$$

In general. not satisfied by $\mathcal{L}_{\text{bulk}}$ in the presence of non-trivial b.c. on $\partial \mathcal{M}_4 \neq 0$ \Rightarrow Susy inv. requires to add bdy terms \rightarrow Consider the full Lagrangian

$$\mathcal{L}_{\text{full}} = \mathcal{L}_{\text{bulk}} + \mathcal{L}_{\text{bdy}} \,, \quad \mathcal{L}_{\text{bdy}} = \mathrm{d}\mathcal{B}_{(3)} \quad \Rightarrow \quad \imath_{\epsilon}(\mathrm{d}\mathcal{L}_{\text{full}}) = 0 \quad \text{and} \quad \imath_{\epsilon}\mathcal{L}_{\text{full}}|_{\partial\mathcal{M}_{4}} = 0$$

Consider pure $\mathcal{N} = 1$, D = 4 sugra with negative cosmological constant $\Lambda = -3/\ell^2$:

$$\mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} = \frac{1}{4} \mathcal{R}^{ab} V^c V^d \epsilon_{abcd} - \bar{\psi} \gamma_5 \gamma_{a\rho} V^a - \frac{\mathrm{i}}{2\ell} \bar{\psi} \gamma_5 \gamma_{ab} \psi V^a V^b - \frac{1}{8\ell^2} V^a V^b V^c V^d \epsilon_{abcd}$$

Bulk: $\imath_{\epsilon}(d\mathcal{L}_{bulk}^{\mathcal{N}=1}) = 0$; But when background spacetime has a non-trivial bdy: $\imath_{\epsilon}\mathcal{L}_{bulk}^{\mathcal{N}=1}|_{\partial \mathcal{M}_{4}} \neq d\phi \Rightarrow \delta_{\epsilon}S_{bulk} \neq 0$

Consider pure $\mathcal{N} = 1$, D = 4 sugra with negative cosmological constant $\Lambda = -3/\ell^2$:

$$\mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} = \frac{1}{4} \mathcal{R}^{ab} V^c V^d \epsilon_{abcd} - \bar{\psi} \gamma_5 \gamma_{a\rho} V^a - \frac{\mathrm{i}}{2\ell} \bar{\psi} \gamma_5 \gamma_{ab} \psi V^a V^b - \frac{1}{8\ell^2} V^a V^b V^c V^d \epsilon_{abcd}$$

Bulk: $\imath_{\epsilon}(d\mathcal{L}_{bulk}^{\mathcal{N}=1}) = 0$; But when background spacetime has a non-trivial bdy: $\imath_{\epsilon}\mathcal{L}_{bulk}^{\mathcal{N}=1}|_{\partial\mathcal{M}_{4}} \neq d\phi \Rightarrow \delta_{\epsilon}\mathcal{S}_{bulk} \neq 0$ $\Rightarrow \operatorname{\mathsf{Add}} \mathcal{L}_{bdy}^{\mathcal{N}=1} = d\mathcal{B}_{(3)}$ to restore susy inv. (do not alter $d\mathcal{L}_{bulk}^{\mathcal{N}=1}) \rightarrow \operatorname{\mathsf{Possible}}$ bdy terms (parity, Lorentz inv.):

$$d\left(\omega^{ab}\wedge\mathcal{R}^{cd}+\omega^{a}{}_{\ell}\wedge\omega^{\ell b}\wedge\omega^{cd}\right)\epsilon_{abcd}=\mathcal{R}^{ab}\wedge\mathcal{R}^{cd}\epsilon_{abcd}\,,\quad d\left(\bar{\psi}\wedge\gamma_{5}\rho\right)=\bar{\rho}\wedge\gamma_{5}\rho-\frac{1}{4}\mathcal{R}^{ab}\wedge\bar{\psi}\gamma_{5}\gamma_{ab}\wedge\psi$$

 $\Rightarrow \text{Modify the Lagrangian: } \mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} \ \rightarrow \ \mathcal{L}_{\text{full}}^{\mathcal{N}=1} \equiv \mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} + \mathcal{L}_{\text{bdy}}^{\mathcal{N}=1}, \text{ with }$

$$\mathcal{L}_{\mathsf{bdy}}^{\mathcal{N}=1} = \alpha \mathcal{R}^{ab} \mathcal{R}^{cd} \epsilon_{abcd} - \mathrm{i}\beta \left(\bar{\rho} \gamma_5 \rho - \frac{1}{4} \mathcal{R}^{ab} \bar{\psi} \gamma_5 \gamma_{ab} \psi \right)$$

Consider pure $\mathcal{N} = 1$, D = 4 sugra with negative cosmological constant $\Lambda = -3/\ell^2$:

$$\mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} = \frac{1}{4} \mathcal{R}^{ab} V^c V^d \epsilon_{abcd} - \bar{\psi} \gamma_5 \gamma_{a\rho} V^a - \frac{\mathrm{i}}{2\ell} \bar{\psi} \gamma_5 \gamma_{ab} \psi V^a V^b - \frac{1}{8\ell^2} V^a V^b V^c V^d \epsilon_{abcd}$$

Bulk: $\imath_{\epsilon}(d\mathcal{L}_{bulk}^{\mathcal{N}=1}) = 0$; But when background spacetime has a non-trivial bdy: $\imath_{\epsilon}\mathcal{L}_{bulk}^{\mathcal{N}=1}|_{\partial\mathcal{M}_{4}} \neq d\phi \Rightarrow \delta_{\epsilon}\mathcal{S}_{bulk} \neq 0$ $\Rightarrow \operatorname{\mathsf{Add}} \mathcal{L}_{bdy}^{\mathcal{N}=1} = d\mathcal{B}_{(3)}$ to restore susy inv. (do not alter $d\mathcal{L}_{bulk}^{\mathcal{N}=1}) \rightarrow \operatorname{\mathsf{Possible}}$ bdy terms (parity, Lorentz inv.):

$$d\left(\omega^{ab}\wedge\mathcal{R}^{cd}+\omega^{a}{}_{\ell}\wedge\omega^{\ell b}\wedge\omega^{cd}\right)\epsilon_{abcd}=\mathcal{R}^{ab}\wedge\mathcal{R}^{cd}\epsilon_{abcd}\,,\quad d\left(\bar{\psi}\wedge\gamma_{5}\rho\right)=\bar{\rho}\wedge\gamma_{5}\rho-\frac{1}{4}\mathcal{R}^{ab}\wedge\bar{\psi}\gamma_{5}\gamma_{ab}\wedge\psi$$

 $\Rightarrow \text{Modify the Lagrangian: } \mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} \ \rightarrow \ \mathcal{L}_{\text{full}}^{\mathcal{N}=1} \equiv \mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} + \mathcal{L}_{\text{bdy}}^{\mathcal{N}=1}, \text{ with }$

$$\mathcal{L}_{\mathsf{bdy}}^{\mathcal{N}=1} = \alpha \mathcal{R}^{ab} \mathcal{R}^{cd} \epsilon_{abcd} - \mathrm{i}\beta \left(\bar{\rho} \gamma_5 \rho - \frac{1}{4} \mathcal{R}^{ab} \bar{\psi} \gamma_5 \gamma_{ab} \psi \right)$$

Bdy contributions in the variational principle for $\mathcal{L}_{full}^{\mathcal{N}=1} \Rightarrow$ Constraint on the supercurvatures at the bdy

Consider pure $\mathcal{N} = 1$, D = 4 sugra with negative cosmological constant $\Lambda = -3/\ell^2$:

$$\mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} = \frac{1}{4} \mathcal{R}^{ab} V^c V^d \epsilon_{abcd} - \bar{\psi} \gamma_5 \gamma_{a\rho} V^a - \frac{\mathrm{i}}{2\ell} \bar{\psi} \gamma_5 \gamma_{ab} \psi V^a V^b - \frac{1}{8\ell^2} V^a V^b V^c V^d \epsilon_{abcd}$$

Bulk: $\imath_{\epsilon}(d\mathcal{L}_{bulk}^{\mathcal{N}=1}) = 0$; But when background spacetime has a non-trivial bdy: $\imath_{\epsilon}\mathcal{L}_{bulk}^{\mathcal{N}=1}|_{\partial\mathcal{M}_{4}} \neq d\phi \Rightarrow \delta_{\epsilon}\mathcal{S}_{bulk} \neq 0$ $\Rightarrow \mathsf{Add} \ \mathcal{L}_{bdy}^{\mathcal{N}=1} = d\mathcal{B}_{(3)}$ to restore susy inv. (do not alter $d\mathcal{L}_{bulk}^{\mathcal{N}=1}) \rightarrow \mathsf{Possible bdy terms}$ (parity, Lorentz inv.):

$$d\left(\omega^{ab}\wedge\mathcal{R}^{cd}+\omega^{a}{}_{\ell}\wedge\omega^{\ell b}\wedge\omega^{cd}\right)\epsilon_{abcd}=\mathcal{R}^{ab}\wedge\mathcal{R}^{cd}\epsilon_{abcd}\,,\quad d\left(\bar{\psi}\wedge\gamma_{5}\rho\right)=\bar{\rho}\wedge\gamma_{5}\rho-\frac{1}{4}\mathcal{R}^{ab}\wedge\bar{\psi}\gamma_{5}\gamma_{ab}\wedge\psi$$

 $\Rightarrow \text{Modify the Lagrangian: } \mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} \ \rightarrow \ \mathcal{L}_{\text{full}}^{\mathcal{N}=1} \equiv \mathcal{L}_{\text{bulk}}^{\mathcal{N}=1} + \mathcal{L}_{\text{bdy}}^{\mathcal{N}=1}, \text{ with }$

$$\mathcal{L}_{\mathsf{bdy}}^{\mathcal{N}=1} = \alpha \mathcal{R}^{ab} \mathcal{R}^{cd} \epsilon_{abcd} - \mathrm{i}\beta \left(\bar{\rho} \gamma_5 \rho - \frac{1}{4} \mathcal{R}^{ab} \bar{\psi} \gamma_5 \gamma_{ab} \psi \right)$$

Bdy contributions in the variational principle for $\mathcal{L}_{full}^{\mathcal{N}=1} \Rightarrow$ Constraint on the supercurvatures at the bdy α , β such as susy inv. (& $\mathcal{L}_{bdy}^{\mathcal{N}=1}$ susy EGB) $\Rightarrow \mathcal{L}_{full}^{\mathcal{N}=1}$ MacDowell-Mansouri in terms of OSp(1|4)-covariant supercurvatures and vanishing of OSp(1|4) supercurv. at $\partial \mathcal{M}_4 \rightarrow$ Bdy enjoys global inv. under OSp(1|4)

CASE OF "FLAT" SUGRA WITH BOUNDARY

MacDowell-Mansouri Lagrangian:

$$\begin{split} \mathcal{L}_{\text{full}}^{\mathcal{N}=1} &= -\frac{\ell^2}{8} \mathbf{R}^{ab} \wedge \mathbf{R}^{cd} \epsilon_{abcd} - \mathrm{i}\ell\bar{\rho}\gamma_5 \wedge \rho \\ \mathbf{R}^{ab} &\equiv \mathcal{R}^{ab} - \frac{1}{\ell^2} V^a V^b - \frac{1}{2\ell} \bar{\psi}\gamma^{ab}\psi \,, \quad \rho \equiv \rho - \frac{\mathrm{i}}{2\ell} \gamma_a \psi V^a \end{split}$$

CASE OF "FLAT" SUGRA WITH BOUNDARY

MacDowell-Mansouri Lagrangian:

$$\begin{split} \mathcal{L}_{\text{full}}^{\mathcal{N}=1} &= -\frac{\ell^2}{8} \mathbf{R}^{ab} \wedge \mathbf{R}^{cd} \epsilon_{abcd} - \mathrm{i}\ell \bar{\rho} \gamma_5 \wedge \rho \\ \mathbf{R}^{ab} &\equiv \mathcal{R}^{ab} - \frac{1}{\ell^2} V^a V^b - \frac{1}{2\ell} \bar{\psi} \gamma^{ab} \psi \,, \quad \rho \equiv \rho - \frac{\mathrm{i}}{2\ell} \gamma_a \psi V^a \end{split}$$

Limit $\Lambda \rightarrow 0 \ (\ell \rightarrow \infty)$?

MacDowell-Mansouri Lagrangian:

$$\begin{split} \mathcal{L}_{\text{full}}^{\mathcal{N}=1} &= -\frac{\ell^2}{8} \mathbf{R}^{ab} \wedge \mathbf{R}^{cd} \epsilon_{abcd} - \mathrm{i} \ell \bar{\boldsymbol{\rho}} \gamma_5 \wedge \boldsymbol{\rho} \\ \mathbf{R}^{ab} &\equiv \mathcal{R}^{ab} - \frac{1}{\ell^2} V^a V^b - \frac{1}{2\ell} \bar{\psi} \gamma^{ab} \psi \,, \quad \boldsymbol{\rho} \equiv \boldsymbol{\rho} - \frac{\mathrm{i}}{2\ell} \gamma_a \psi V^a \end{split}$$

Limit $\Lambda \rightarrow 0$ ($\ell \rightarrow \infty$)?

- · Case where the bdy is placed asymptotically at infinity: BMS group emerges as asymptotic symmetry
- \exists a geometric \mathcal{L}_{bdy} exhibiting super-BMS symmetry?
 - ightarrow Consider bdy at asymptotic infinity to allow the BMS symmetry to possibly emerge
- · But geometric approach scheme does not require to specify bdy

MacDowell-Mansouri Lagrangian:

$$\begin{split} \mathcal{L}_{\text{full}}^{\mathcal{N}=1} &= -\frac{\ell^2}{8} \mathbf{R}^{ab} \wedge \mathbf{R}^{cd} \epsilon_{abcd} - \mathrm{i}\ell\bar{\rho}\gamma_5 \wedge \rho \\ \mathbf{R}^{ab} &\equiv \mathcal{R}^{ab} - \frac{1}{\ell^2} V^a V^b - \frac{1}{2\ell} \bar{\psi}\gamma^{ab}\psi \,, \quad \rho \equiv \rho - \frac{\mathrm{i}}{2\ell}\gamma_a \psi V^a \end{split}$$

Limit $\Lambda \rightarrow 0 \ (\ell \rightarrow \infty)$?

- · Case where the bdy is placed asymptotically at infinity: BMS group emerges as asymptotic symmetry
- \exists a geometric \mathcal{L}_{bdy} exhibiting super-BMS symmetry?
 - ightarrow Consider bdy at asymptotic infinity to allow the BMS symmetry to possibly emerge
- · But geometric approach scheme does not require to specify bdy
- Focus here: Restore susy inv. when $\partial \mathcal{M} \neq 0$ by adding bdy terms

MacDowell-Mansouri Lagrangian:

$$\begin{split} \mathcal{L}_{\text{full}}^{\mathcal{N}=1} &= -\frac{\ell^2}{8} \mathbf{R}^{ab} \wedge \mathbf{R}^{cd} \epsilon_{abcd} - \mathrm{i}\ell \bar{\boldsymbol{\rho}} \gamma_5 \wedge \boldsymbol{\rho} \\ \mathbf{R}^{ab} &\equiv \mathcal{R}^{ab} - \frac{1}{\ell^2} V^a V^b - \frac{1}{2\ell} \bar{\psi} \gamma^{ab} \psi \,, \quad \boldsymbol{\rho} \equiv \boldsymbol{\rho} - \frac{\mathrm{i}}{2\ell} \gamma_a \psi V^a \end{split}$$

Limit $\Lambda \rightarrow 0 \ (\ell \rightarrow \infty)$?

- · Case where the bdy is placed asymptotically at infinity: BMS group emerges as asymptotic symmetry
- \exists a geometric \mathcal{L}_{bdy} exhibiting super-BMS symmetry?
 - ightarrow Consider bdy at asymptotic infinity to allow the BMS symmetry to possibly emerge
- · But geometric approach scheme does not require to specify bdy
- Focus here: Restore susy inv. when $\partial \mathcal{M} \neq 0$ by adding bdy terms

Start from

$$\mathcal{L}_{\text{bulk}}^{\text{flat}} = \frac{1}{4} \mathcal{R}^{ab} V^c V^d \epsilon_{abcd} - \bar{\psi} \gamma_5 \gamma_a \rho V^a \quad \leftarrow \quad \text{EH + RS, scale as } L^2$$

But: Bdy terms that can be constructed using ω^{ab}, V^{a}, ψ scale as L^{0} and L

Alternative approach:

Add new gauge fields with higher scale-weight: $A^{ab} = -A^{ba}$ (s.w. L²) and χ (s.w. L^{3/2})

- Appear only in the bdy Lagrangian ("topological role")
- Act as auxiliary fields under the bulk perspective (off-shell matching of B and F d.o.f.), implementing the Bianchi identities of Lorentz and supersymmetry respectively, associated with ω^{ab} and ψ

Alternative approach:

Add new gauge fields with higher scale-weight: $A^{ab} = -A^{ba}$ (s.w. L²) and χ (s.w. L^{3/2})

- Appear only in the bdy Lagrangian ("topological role")
- Act as auxiliary fields under the bulk perspective (off-shell matching of B and F d.o.f.), implementing the Bianchi identities of Lorentz and supersymmetry respectively, associated with ω^{ab} and ψ

Bdy contributions (not involving a scale parameter):

$$d\left(A^{ab}\wedge\mathcal{R}^{cd}+\omega^{a}{}_{f}\wedge\omega^{fb}\wedge A^{cd}+2\omega^{a}{}_{f}\wedge A^{fb}\wedge\omega^{cd}+\omega^{ab}\wedge\mathcal{F}^{cd}\right)\epsilon_{abcd}=2\mathcal{R}^{ab}\wedge\mathcal{F}^{cd}\epsilon_{abcd}$$
$$d\left(\bar{\psi}\gamma_{5}\wedge\sigma+\bar{\chi}\gamma_{5}\wedge\rho\right)=2\bar{\sigma}\gamma_{5}\wedge\rho-\frac{1}{2}\mathcal{R}^{ab}\wedge\bar{\chi}\gamma_{5}\gamma_{ab}\wedge\psi$$

where $\sigma \equiv \mathcal{D}\chi$ and $\mathcal{F}^{ab} \equiv \mathcal{D}A^{ab}$

Bdy Lagrangian:

$$\mathcal{L}_{bdy}^{\text{flat}} = \alpha' \left(2\mathcal{R}^{ab} \mathcal{F}^{cd} \epsilon_{abcd} \right) - \mathrm{i}\beta' \left(2\bar{\sigma}\gamma_5 \rho - \frac{1}{2} \mathcal{R}^{ab} \bar{\chi}\gamma_5 \gamma_{ab} \psi \right) \quad \rightarrow \quad \text{Scale as } \mathrm{L}^2 \quad \checkmark$$

 α', β' : constant dimensionless parameters amounting to the normalization of the auxiliary fields

Full Lagrangian: $\iota_{\epsilon}(\mathcal{L}_{\text{full}}^{\text{flat}})|_{\partial \mathcal{M}_4} = 0 \leftrightarrow \alpha' \neq 0, \ \beta' \neq 0; \text{ for } \alpha' = -1/8, \ \beta' = 1 \text{ emerging structure transparent:}$

$$\mathcal{L}_{\text{full}}^{\text{flat}} = \mathcal{L}_{\text{bulk}}^{\text{flat}} + \mathcal{L}_{\text{bdy}}^{\text{flat}} = -\frac{1}{4}\mathcal{R}^{ab} \wedge \hat{\mathcal{F}}^{cd}\epsilon_{abcd} - 2i\bar{\Xi}\gamma_5 \wedge \rho$$

 $\Rightarrow \text{``MacDowell-Mansouri-like'' Lagrangian, with} \quad \hat{\mathcal{F}}^{ab} \equiv \mathcal{F}^{ab} - V^a V^b - \bar{\chi} \gamma^{ab} \psi, \ \Xi \equiv \sigma - \frac{i}{2} \gamma_a \psi V^a \rightarrow \mathcal{L}_{\text{full}}^{\text{flat}} \text{ in}$ terms of the so-called (minimal) Maxwell-covariant supercurvatures Full Lagrangian: $\iota_{\epsilon}(\mathcal{L}_{\text{full}}^{\text{flat}})|_{\partial \mathcal{M}_{4}} = 0 \leftrightarrow \alpha' \neq 0, \beta' \neq 0$; for $\alpha' = -1/8, \beta' = 1$ emerging structure transparent:

$$\mathcal{L}_{\text{full}}^{\text{flat}} = \mathcal{L}_{\text{bulk}}^{\text{flat}} + \mathcal{L}_{\text{bdy}}^{\text{flat}} = -\frac{1}{4}\mathcal{R}^{ab} \wedge \hat{\mathcal{F}}^{cd}\epsilon_{abcd} - 2i\bar{\Xi}\gamma_5 \wedge \rho$$

 $\Rightarrow \text{``MacDowell-Mansouri-like'' Lagrangian, with} \quad \hat{\mathcal{F}}^{ab} \equiv \mathcal{F}^{ab} - V^a V^b - \bar{\chi} \gamma^{ab} \psi , \ \Xi \equiv \sigma - \frac{i}{2} \gamma_a \psi V^a \rightarrow \mathcal{L}_{\text{full}}^{\text{flat}} \text{ in terms of the so-called (minimal) Maxwell-covariant supercurvatures}$

Bdy contributions to the variational principle result in bdy constraints:

$$\mathcal{R}^{ab}|_{\partial \mathcal{M}_4} = 0, \quad \hat{\mathcal{F}}^{ab}|_{\partial \mathcal{M}_4} = 0, \quad \rho|_{\partial \mathcal{M}_4} = 0, \quad \Xi|_{\partial \mathcal{M}_4} = 0$$

 \leftrightarrow Super-Maxwell algebra emerges as global symmetry at the bdy (Consistency of the bulk theory: $R^a = 0 \Rightarrow$ Continuity: $R^a|_{\partial M_4} = 0$) Full Lagrangian: $\iota_{\epsilon}(\mathcal{L}_{\text{full}}^{\text{flat}})|_{\partial \mathcal{M}_{4}} = 0 \leftrightarrow \alpha' \neq 0, \beta' \neq 0$; for $\alpha' = -1/8, \beta' = 1$ emerging structure transparent:

$$\mathcal{L}_{\text{full}}^{\text{flat}} = \mathcal{L}_{\text{bulk}}^{\text{flat}} + \mathcal{L}_{\text{bdy}}^{\text{flat}} = -\frac{1}{4}\mathcal{R}^{ab} \wedge \hat{\mathcal{F}}^{cd}\epsilon_{abcd} - 2i\bar{\Xi}\gamma_5 \wedge \rho$$

 $\Rightarrow \text{``MacDowell-Mansouri-like'' Lagrangian, with} \quad \hat{\mathcal{F}}^{ab} \equiv \mathcal{F}^{ab} - V^a V^b - \bar{\chi} \gamma^{ab} \psi , \ \Xi \equiv \sigma - \frac{i}{2} \gamma_a \psi V^a \rightarrow \mathcal{L}_{\text{full}}^{\text{flat}} \text{ in terms of the so-called (minimal) Maxwell-covariant supercurvatures}$

Bdy contributions to the variational principle result in bdy constraints:

$$\mathcal{R}^{ab}|_{\partial \mathcal{M}_4} = 0, \quad \hat{\mathcal{F}}^{ab}|_{\partial \mathcal{M}_4} = 0, \quad \rho|_{\partial \mathcal{M}_4} = 0, \quad \Xi|_{\partial \mathcal{M}_4} = 0$$

 \leftrightarrow Super-Maxwell algebra emerges as global symmetry at the bdy (Consistency of the bulk theory: $R^a = 0 \Rightarrow$ Continuity: $R^a|_{\partial M_4} = 0$)

 A^{ab} and χ aux. fields under bulk perspective, their field eqs. implement Bianchi identities of Lorentz and susy:

field eqs.
$$A^{ab} \leftrightarrow D\mathcal{R}^{ab} = 0$$
, field eqs. $\chi \leftrightarrow D
ho - \frac{1}{4}\mathcal{R}^{ab}\gamma_{ab}\psi = 0$

Full Lagrangian: $\iota_{\epsilon}(\mathcal{L}_{\text{full}}^{\text{flat}})|_{\partial \mathcal{M}_{4}} = 0 \leftrightarrow \alpha' \neq 0, \beta' \neq 0$; for $\alpha' = -1/8, \beta' = 1$ emerging structure transparent:

$$\mathcal{L}_{\text{full}}^{\text{flat}} = \mathcal{L}_{\text{bulk}}^{\text{flat}} + \mathcal{L}_{\text{bdy}}^{\text{flat}} = -\frac{1}{4}\mathcal{R}^{ab} \wedge \hat{\mathcal{F}}^{cd}\epsilon_{abcd} - 2i\bar{\Xi}\gamma_5 \wedge \rho$$

 $\Rightarrow \text{``MacDowell-Mansouri-like'' Lagrangian, with} \quad \hat{\mathcal{F}}^{ab} \equiv \mathcal{F}^{ab} - V^a V^b - \bar{\chi} \gamma^{ab} \psi , \ \Xi \equiv \sigma - \frac{i}{2} \gamma_a \psi V^a \rightarrow \mathcal{L}_{\text{full}}^{\text{flat}} \text{ in terms of the so-called (minimal) Maxwell-covariant supercurvatures}$

Bdy contributions to the variational principle result in bdy constraints:

$$\mathcal{R}^{ab}|_{\partial \mathcal{M}_4} = 0\,, \quad \hat{\mathcal{F}}^{ab}|_{\partial \mathcal{M}_4} = 0\,, \quad \rho|_{\partial \mathcal{M}_4} = 0\,, \quad \Xi|_{\partial \mathcal{M}_4} = 0$$

 \leftrightarrow Super-Maxwell algebra emerges as global symmetry at the bdy (Consistency of the bulk theory: $R^a = 0 \Rightarrow$ Continuity: $R^a|_{\partial \mathcal{M}_4} = 0$)

 A^{ab} and χ aux. fields under bulk perspective, their field eqs. implement Bianchi identities of Lorentz and susy:

field eqs.
$$A^{ab} \leftrightarrow \mathcal{DR}^{ab} = 0$$
, field eqs. $\chi \leftrightarrow \mathcal{D\rho} - \frac{1}{4}\mathcal{R}^{ab}\gamma_{ab}\psi = 0$

 $\mathcal{L}_{\text{full}}^{\text{flat}}$ is the $\ell \to \infty$ limit of a theory orig. from AdS₄ sugra (AdS-Lor. cov.), adding A^{ab} , χ (also in bulk) and redef.

$$\omega^{ab} \to \omega^{ab} + \frac{1}{\ell^2} A^{ab}$$
 (torsionful), $\psi \to \psi + \frac{1}{\ell} \chi$

Ciambelli, Marteau, Petkou, Petropoulos, Siampos, JHEP 07 (2018) 165

"Flat holography" context: A natural bdy dual to flat gravity identified in the framework of Carrollian fluids (fluids in 2 space dim., dynamics left invariant by the action of the infinite-dim. conformal Carroll group)

Ciambelli, Marteau, Petkou, Petropoulos, Siampos, JHEP 07 (2018) 165

"Flat holography" context: A natural bdy dual to flat gravity identified in the framework of Carrollian fluids (fluids in 2 space dim., dynamics left invariant by the action of the infinite-dim. conformal Carroll group)

 $\Lambda \rightarrow 0$ of AdS holography \rightarrow Holographic description of D = 4 asympt. locally flat spacetimes

 \rightarrow Carrollian geometry emerges in flat holography, since $\Lambda \rightarrow 0$ bulk \leftrightarrow Carrollian limit bdy

Ciambelli, Marteau, Petkou, Petropoulos, Siampos, JHEP 07 (2018) 165

"Flat holography" context: A natural bdy dual to flat gravity identified in the framework of Carrollian fluids (fluids in 2 space dim., dynamics left invariant by the action of the infinite-dim. conformal Carroll group)

 $\Lambda \rightarrow 0$ of AdS holography \rightarrow Holographic description of D = 4 asympt. locally flat spacetimes

 \rightarrow Carrollian geometry emerges in flat holography, since $\Lambda \rightarrow 0$ bulk \leftrightarrow Carrollian limit bdy

- Starting point: D = 4 bulk Einstein st. with $\Lambda = -3\kappa^2 = -3/\ell^2$, dual to a bdy relativistic fluid
- Ricci-flat limit achieved in the limit $\kappa \to 0 \to 2D$ spatial conformal structure emerges at null infinity: Randers-Papapetrou parametrization of the D = 3 bdy spacetime metric:

$$\mathrm{d}s^2 = -\kappa^2 \left(\Omega \mathrm{d}t - \mathbf{b}_{\mathfrak{a}} \mathrm{d}x^{\mathfrak{a}}\right)^2 + \mathrm{d}/^2, \quad \mathrm{d}/^2 = \mathbf{a}_{\mathfrak{a}\mathfrak{b}} \mathrm{d}x^{\mathfrak{a}} \mathrm{d}x^{\mathfrak{b}}$$

For $k \to 0$, time decouples in the bdy geom.; k role of speed of light \Rightarrow Flat limit $k \to 0$ is Carrollian limit \Rightarrow Carrollian bdy geom.: Spatial surface with positive-def. metric $d/^2 = \mathbf{a}_{ab} dx^a dx^b$ and Carrollian time $t \in \mathbb{R}$ \sim Carrollian surface hosts a conformal Carrollian fluid (holo. dual to Ricci-flat spacetime)

→ At susy level?

Regarding our construction in this context:

- Role of the "topological auxiliary fields" A^{ab} and χ ?
- Relation between super-Maxwell and super- $b\mathfrak{ms}_4$ (or super-Carroll)? [Known: $b\mathfrak{ms}_4 \rightarrow super-b\mathfrak{ms}_4$ (finite or infinite number of fermionic generators)]

First step:

Intrinsic description of the bdy Lagrangian for the case of a null bdy geometry

Decomposition of tensorial structures w.r.t. those covariant under the symmetries of the chosen bdy

→ At susy level?

Regarding our construction in this context:

- Role of the "topological auxiliary fields" A^{ab} and χ ?
- Relation between super-Maxwell and super- $b\mathfrak{ms}_4$ (or super-Carroll)? [Known: $b\mathfrak{ms}_4 \rightarrow super-b\mathfrak{ms}_4$ (finite or infinite number of fermionic generators)]

First step:

Intrinsic description of the bdy Lagrangian for the case of a null bdy geometry

Decomposition of tensorial structures w.r.t. those covariant under the symmetries of the chosen bdy

Thank you!

Supplementary material

Super-Maxwell algebra ({ J_{ab} , P_a , Q, Z_{ab} , Σ } dual to { ω^{ab} , V^a , ψ , A^{ab} , χ }):

$$\begin{split} & [J_{ab}, J_{cd}] \propto \eta_{bc} J_{ad} - \eta_{ac} J_{bd} - \eta_{bd} J_{ac} + \eta_{ad} J_{bc} , \quad [J_{ab}, P_c] \propto \eta_{bc} P_a - \eta_{ac} P_b , \quad [P_a, P_b] \propto Z_{ab} \\ & [J_{ab}, Z_{cd}] \propto \eta_{bc} Z_{ad} - \eta_{ac} Z_{bd} - \eta_{bd} Z_{ac} + \eta_{ad} Z_{bc} \\ & [J_{ab}, Q] \propto \gamma_{ab} Q , \quad [J_{ab}, \Sigma] \propto \gamma_{ab} \Sigma , \quad [P_a, Q] \propto \gamma_a \Sigma , \quad \{Q, Q\} \propto C \gamma^a P_a , \quad \{Q, \Sigma\} \propto C \gamma^{ab} Z_{ab} \end{split}$$

• E.o.m. of ω^{ab} and ψ :

e.o.m.
$$\omega^{ab} \quad \leftrightarrow \quad \mathcal{D}\hat{\mathcal{F}}^{ab} - 2\mathcal{R}^{[a}{}_{c}A^{c|b]} + \bar{\Xi}\gamma^{ab}\psi - \bar{\chi}\gamma^{ab}\rho = 0$$

e.o.m. $\psi \quad \leftrightarrow \quad \mathcal{D}\Xi - \frac{1}{4}\mathcal{R}^{ab}\gamma_{ab}\chi + \frac{i}{2}\gamma_{a\rho}V^{a} = 0$

• E.o.m. of V^a:

$$\frac{1}{2}V^{b}\mathcal{R}^{cd}\epsilon_{abcd}-\bar{\psi}\gamma_{a}\gamma_{5}\rho=0$$

Einstein eqs. in superspace (written in the Einstein-Cartan formalism)

 $\Lambda \neq 0$ case:

Andrianopoli, Cerchiai, D'Auria, Trigiante, JHEP 04 (2018), 007

AVZ D = 3 model ("unconventional SUSY") from $\mathcal{N} = 2$, D = 4 pure sugra with a 3D boundary:

• AVZ (Alvarez, Valenzuela, Zanelli) model: Based on a 3*D* CS Lagrangian with OSp(2|2) supergroup, but features a Dirac spinor $\chi^{(AVZ)}$ as the only propagating d.o.f.; Important applications in the description of graphene-like systems near the Dirac points

• $\chi^{(AVZ)}$ emerges by imposing the following cond. on the spacetime comp. of the odd CS connection 1-form Ψ :

$$\chi^{(\text{AVZ})}_{\alpha} = \mathrm{i}(\gamma^{i})_{\alpha\beta}\Psi^{\beta}_{\mu}e^{\mu}_{i}$$
 ($\alpha, \beta = 1, 2, i = 0, 1, 2, \mu = 0, 1, 2$)

 Correspondence with the CS model of AVZ found for specific choice of the *D* = 3 bdy: Local AdS₃ geometry at spatial infinity of the *D* = 4 theory (asymptotically AdS₄ solutions featuring this boundary geometry comprise the "ultraspinning limit" of AdS₄-Kerr black hole) Maximal set of symmetries admitted by a D = 4 theory including gravity with asymptotically locally flat b.c.? With Dirichlet-type b.c. (non-deg. spatial part of bdy metric: round 2-sphere) \rightarrow Asympt. symm. algebra: bms4

Asympt. flat spacetimes at null (i.e., light-like) infinity: Asympt. symm. group is the infinite-dim. BMS group (instead of the Poincaré group)

AdS/CFT duality: A necessary condition is that the asymp. symm. group of the bulk dictates the global symm. of the dual field theory living on the bdy of spacetime

 \rightarrow Holographic formulation of quantum gravity in asympt. flat spacetimes: Putative dual field theory expected to be a BMS invariant theory on the null bdy of spacetime (\sim Celestial holography)

Asympt. bdy as a spatial surface at null infinity \Rightarrow Null surfaces have in general a deg. metric \rightarrow Any given holographic model has to deal with a consistent definition of the 2D induced spatial metric

 \Rightarrow Consider a systematic singular limit where an infinite boost is implemented on a space-like surface of a relativistic field theory: $c \rightarrow 0$ in the field theory \rightarrow Contraction of the Poincaré group to the Carrollian group

→ As fields on a null hypersurface of spacetime necessarily propagate at the speed of light and they must therefore be massless, consider a conformal extension of the Carroll group

BMS (D) \cong conformal Carroll(D - 1)