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Motivation
b Flat space holography?
- y Carrollian

4D
gravity

Massless particles:

* 4D asymptotic symmetries - 2D currents

e Collinear limits - 2D OPEs?

* Most entries in the holographic
dictionary so far are kinematic...

2D
celestial CFT
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Motivation
Flat space holography??

Basic missing entries:

Let p be a pure state on a Cauchy slice 2 and R C X

Entanglement entropy:  Sx(*p) = — Tr (%plog®p), %p = Trgp



Motivation
Flat space holography??

Basic missing entries:

Let p be a pure state on a Cauchy slice 2 and R C X

Entanglement entropy:  Sx(*p) = — Tr (%plog®p), %p = Trgp

* |If theory is a CFT, conformal transformation maps spacetime to R and vacuum to thermal state

entanglement entropy = thermal entropy [Casini, Huerta, Myers *11]



Broad goals/questions

Does R admit a holographic description?

For gauge and gravity theories constraint on 2 —

“edge mode” contribution to entanglement entropy

[Donnelly, Wall ’14; Donnelly, Freidel *106]

* Are soft modes” related to the DW "edge modes”?

« Entanglement entropy across a cut of #1?

[Kapec, A.R., Strominger ’10]



Outline

1. Setup: conformal primary wavefunctions, Einstein static universe
2. Subregions, inversions and the thermofield double

3. Soft modes and constraints

4. Entanglement

5. Outlook
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Free Maxwell theory in 4D Minkowski spacetime: 1. Rich asymptotic symmetry structure

2. Weyl invariance
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Setup: soft sector

Free Maxwell theory in 4D Minkowski spacetime: 1. Rich asymptotic symmetry structure

 "Memory” solutions to the vacuum Maxwell equations

# Null cone

0,F2) + DZFLE(Z)) + DZFLE? = (0 have both Coulomb and radiative modes:

0
F ~ 5(u),

F,szt) ~ 0(—u) matched across i,
Null plane

* Field strength in a

[diagonalizing boosts towards (z, Z)] associated with

A = 1 wavefunctions [Donnay, Puhm, Strominger ’18]



Conformal primary wavefunctions

Solutions to the free Maxwell equations

N
m-. (w; X) e - X
At v VY — _2F * (we Y — L _a ~* H— YH T jent

Agor (w3 X) 0 X5 M., (W; X) = &, 0 X, q, X,=X'TFien".
» FEigenstates of Milne time translation: 0 AT = — jpAlTA T = 5 log(—X?)

o Al (w; X) + Al (w; X) G

A7 (W, X) = > = dyo, (W, X) [Goldstone, pure gauge]
« Soft wavefunctions have 4 = 0: | |
0g,+ __ Alog,—
A (W, X) = Ag (W, X)z .Aa (W, %) [Conformally soft, memory]
Tl

AL = lim 9, A= + AZ78%] = — log(— XA, ™
[Donnay, Puhm, Strominger 18]



Setup: soft sector

Free Maxwell theory in 4D Minkowski spacetime: 1. Rich asymptotic symmetry structure

 Conformally soft/memory mode ACS is exact in celestial space =—> integrated mode is path independent

nwz
A w,wy X)=| ASW; X)

le

* Field strength:




Setup: embedding inside the Einstein static universe

Free Maxwell theory in 4D Minkowski spacetime:

2. Weyl invariance

VMF,MI/ — O > V'MF — O
ds? — Q 2ds?

« ¥T Cauchy slice inside the Einstein static universe

« Entanglement across ¥+ ~ entanglement across S 3 in Einstein static universe

 Domains of dependence of partitions are the future Milne patches (R) of the original Minkowski geometry and

another one (L) related by



Inversions vs. shadow transforms

A is weight 0 under Weyl rescalings:

v

oX*

A (X), X%2> (0 [inQ, then analytically continue outside]

A (X) =

* Applying to CPW and using that  I!(X) m;;(w; X) = mj (W; X)

Atr v V2NA—T A At e, v — o Him(A—1) A%/ ox.
éa,,u (W9X) - (Xi) Aa,,u (W9X) = € l Aa,lu (W9X)

Inversion:

1Z

X
Ag’i — (—)(i)A_lAaA’i ZXMXU
1/(X) = &

. A% isthe of dimension A = XZI,Z(X) =X_215Q()

= IY(X)

X2



Inversions vs. shadow transforms

Aﬁf(w; X) = ei"”(A_l)Avé’f(w; X) ininverted Minkowski patch =

« Decompose conformal primary wavefunctions (cpw) supported on S 3 slice of cylinder

[dotted white] in terms of cpw supported on the |- and R Milne patches:

AA,i — eiiﬂ(A—l)LAA -|—RAA, A ¢ 7

- A% has opposite Milne frequency to A® (A = 1 + iA)

| Span{positive frequency plane waves} = Span{positive Milne energy cpw} |

Global definite energy modes decompose into positive and negative energy Milne modes

Compare to Rindler decomposition [decompositions related by time translation on the cylinder]



Minkowski vacuum as TFD

AA,i — eiiﬂ(A—l)LAA +RAA, A % 7

“Hard” mode decomposition

AX) = [e@)(w)J dAN(L) [LA'HM : LOLM + Rpl+id, ROM + [soft]
R—i0*

[ 0], =#"a] O(=1) +#a,,;;0() Ra,Ra® and La,ta’

~ - - are canonically conjugate in R and L
l LOLM = #LaLM@(/l) +#a, ,0(=1) y U9



Minkowski vacuum as TFD

AA,i — eiiﬂ(A—l)LAA +RAA, A ¢ 7

“Hard” mode decomposition

AX) = [e@)(w)J dAN(L) [LA'HM.LOT +RA1+M-R01T+M] + [soft]

1+i4
R—i0+
[ ROLM = #Raﬂiz@(_@ + #%a,, ,0(1) Ra, RaT and Léi, Lat
LAT  _ gLst L~ _ are canonically conjugate in Rand L
l O),.,=#4a, 00 +#4d,,,0(=1)
. . . N AA,+ _ AA,— —iﬂAAA,+ _ iﬂAAA,—
L (R) decompose into +/- Minkowski modes: 1A% = j : . Ras = ie : ‘
2 sin 7A 2 sin 7A

——> Vacuum is TFD with respect to L and R Milne patches |0) = exp { Je(z)J' d) llog(l —e 7 + e‘”y“’;dﬂaﬂ] } 10), ]0)p
A>0



Soft sector of subregions

AA,i — eiin(A—l)LAA -|-RAA, A g 7

« L/R decompositions degenerate for A = 1 = need independent construction of L/R soft sectors

AST L AR
A% = lim : =LA+ FA = A =TAC + RAC
A—1




Soft sector of subregions

AA,i — eiin(A—l)LAA -|-RAA, A g 7

« L/R decompositions degenerate for A = 1 = need independent construction of L/R soft sectors

AST L AR
AC = lim : =LAl 4 RAl — AG =LAC 4 RAG
A—1

* Appropriate definitions of conformally soft modes found by considering inversion of A®>:
AR(X) =AM + AT — ASS(X) = 249(X) - AS(X)
—> R, L components of conformally soft wf from restriction of A®® and its inverse to the R, L Milne patches:

ACS:2LAG+LAE+RAE .
. ) edge modes”

-

~_ "




Soft sector of subregions

ADE = ptinA=DLAA 4 RAA A ¢ 7

 L/R decompositions degenerate for A = 1 = need independent construction of L/R soft sectors

AST L AR
AC = lim : =LAl 4 RAl — AG =LAC 4 RAG
A—1

ACS — 2LAG LAE + RAE .
. , edge modes”

~ 7~

“~_ "

. LA G, LAR and R counterparts are canonically conjugate in the respective patches (for ¢ — ()

(ooo) =, 0)+5(e.0)




Sources in inverted patch

Extension of the conformally soft field
configuration obtained by inversion coincides
with the Lienard Wiechert fields of

sources outside the two Minkowski patches




Sources in inverted patch

Extension of the conformally soft field
configuration obtained by inversion coincides

with the Lienard Wiechert fields of

sources outside the two Minkowski patches

Extension of conformally soft field configuration

with sources inside the inverted patch is

indistinguishable from Minkowski perspective

* Can also construct fully sourceless extension to the cylinder



Constraints O+t =0

Gauss law imposes constraints on physical state space:

H =ker@™" = H CH, K, Z ey
« Cauchy slices in Einstein static universe are compact = ® = vacuum
large gauge charges vanish \
%Mink.
Ein. gent w) = L@(w) + R@Q(w) [Freidel, Donnelly *16]

RGO = —i(RAC, A)

ACS — 2LAG+LAE+RAE

AG=LAG+RAG



Constraints O+t =0

Gauss law imposes constraints on physical state space:

H =ker@™" = H CH, K, Z ey
« Cauchy slices in Einstein static universe are compact = ® = vacuum
large gauge charges vanish \
%Mink.
Ein. gent w) = L@(w) + R@Q(w) [Freidel, Donnelly *16]

RGO = —i(RAC, A)
e On the other hand, large gauge charges in may be non-zero:
J5 95 ) g Rg = —i(RAE A)
Minkgen(w) = La(w) + FQ(w) + “S(w) — S(w)

— picked out by the condition that it commutes with the Minkowski CS and G modes A =2LA0 4 LAE 4 RAE

AG=LAG+RAG



Physical state space ie=0

Minkowski theory

» Define the vacuum state @;;[0) =0

« Use & to generate states of arbitrary large gauge charge:
® — vacuum

q) = 141 0) Y

| g) is physical: Mink-gent(wy| 4y = ()

cyl.



Physical state space arie=0

Minkowski theory

« Define the vacuum state @, | 0)=0 %cyl.

« Use & to generate states of arbitrary large gauge charge:
® — vacuum

q) = 141 0) \

| g) is physical: Mink-gent(wy| 4y = ()

(AS(w), A (W) = — (4n)%id,d,, G(w, W) >
STql = — i{A®"[q], A),

.
A q] = - e 2(w)g(w)A“ (W, o0)
/.




Physical state space . +\@ =0

Minkowski theory

» Define the vacuum state @;;[0) =0

« Use & to generate states of arbitrary large gauge charge:

| ® — vacuum
|q) = €911 0) \
| g) is physical: Mink-gent(wy| 4y = () # Mink
. Define ®p[g] = Trig | g){q|
* (Goldstone dressing admits decomposition in terms of L and R
Goldstone and edge modes — Rp[q], Rp[()] have the same Slq] = le
2

von Neumann entropy




Entanglement in the soft sector

IDVaC. — ‘O><O‘ satisfies [@, pvac] =0 — [LQ, pvac] — = [R@’ pV&C]

» tracing over the left sector we find  [X@, £p[0]] =

Rp[0] =

0

Elqlplql*p[0.q]

e associated von Neumann entropy receives two contributions

S (Fpl01) = Ssu(p) + | ElalplalS (*pl0.q1)

—> It remains to determine p[g]

(010, q4]
0

0

SO Rp[O] decomposes into blocks of definite R charge

0

0

L associated with classical probability distribution

0

,0[0, q3]




Entanglement in the soft sector

Consider correlator of R operators in the global vacuum:

[T &A] e A R R

(0|%0--R0]0) = == % = | &lqlplgltr (*O---F6%p[0,9])
2r J




Entanglement in the soft sector

Consider correlator of R operators in the global vacuum:

[T gA] e b Ro. KRG
(01%0---F0]0) = — = [ &lql plg]tr (RO---FO*p[0,q])

O

e insert the identity in @ as an integral over sectors of definite k@

1l = | &lglé(g — , * ﬂg‘;z x F)




Entanglement in the soft sector

Consider correlator of R operators in the global vacuum:

[T gA] e b Ro. KRG
(01%0---F0]0) = — = [ &lql plg]tr (RO---FO*p[0,q])

O

e insert the identity in @ as an integral over sectors of definite k@

1l = | &lglé(g — , * s * 1)

» shift the integration variable A = A’ + RAE

Jir=2ﬂ Z[A] e lAlAl (M. * RO’

__ Hir=0

_ R

% ok —
Ty F=0

<O | R@.”R@ ‘ O> — g[q]e_]zﬂ[RAE] ch , Rc‘g



Entanglement in the soft sector

<O ‘ R@“.R@ | O> — %[Q]G_I%[RAE] ch

e = | Eldlplal (*0---R6*p[0,9])

Setting: ~ f0 =1 = Rz, =FzE Rz 0], RZF = |&[gle~s""

o —h*AF(g]]

RZE

Ko =R —= plq] =

Path integral in zero charge sector:

J<iT=27T L[A] e ~l2elA] O, * HRo'...

it=0

kg

_ R
s *F=0 >,



Entanglement in the soft sector

(01%0--%010) = | Elgle > 1%e| = |&lqlplgltr (*0--F0%pl0.q])

@

Setting: Ro =1 = Rz, =RzER710], RZE = | &[gle Il
p s P p

*k
T5Ry

o —hFAF(g]]

RZE

Ro =R —= plqg] =

» Classical probability distribution of "edge modes” given by

on-shell action of conformally soft modes!

“ 4 , Path integral in zero charge sector:
 Donnelly-Wall static” edge modes in R patch related to the

og-mode constituents of CS modes by gauge transformation JiT=2ﬂ'

g o BlA) e s PO

71'*

_ R
aRZ*F_O ZZyz'



Bulk entanglement from CCFT

Thermofield double vacuum = celestial amplitudes decompose in terms of L and R CFT correlators:

(T
(O] «]0) = (e * (%)'>LCFT,RCFT

« entangling operator: FHt = —

* Bulk subregion eg . e are in R; tracing L out =—

(P dle™™ 1 4 A

Jo Qm)® 22

00 —27A 2 r
Roy — _ J die 1+4 o) Rpl—i , Rgpl+il

o Qm? 224

rn

6(2) L@l—ixl . R@1+M

_R
(€ S >RCFT

» Build up flat spacetime/celestial amplitudes from interacting 2D CFTs?

—@

o, interact{

@

interact{

<




Summary

e Conformal primary modes in subregions partitioning . into two halves

* In 4D Maxwell theory = CFT. In CFT inversions ~ shadows: - i€ matters!

- asymptotic expansions and matching matter!

 Minkowski vacuum = TFD with respect to subregions in the non-soft sector
. Soft modes = constraint relating “asymptotic” charges “@, X@ of the subregions

« In vacuum - fluctuations in %@ lead to Donnelly-Wall edge mode entropy; log CS modes ~ edge modes



Outlook

e Generalize to (3+1)-d gravity — not conformal, but similar "conformally soft” modes present

 Edge modes and entanglement in Carroll FT?

 Infrared divergences and soft effective actions?

e Spacetime fluctuations?

* Implications for black hole information paradox...?
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