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By the pioneering work of Bargmann and Wigner, elementary particles are defined to be the
irreducible unitary representations of the isometry group of a spacetime. [Bargmann, Wigner 1948]

- Casimir elements of a Lie algebra provide a convenient way to distinguish
irreducible representations of a Lie algebra g.

The corresponding physical quantities are given by the value of Casimir elements in a representation R of g

The Lie algebras we are interested in are of the form of a semi-direct sum

k = Quotient n = Abelian normal ideal
g=k@®n
(® means that k acts on n by the Lie bracket

For p € n*, the isotropy algebra is defined as  iso(p) := {u € k ‘ ad), p =0}

This subalgebra has an important role in the study of representation theory of 8

Ex. : Poincaré, BMS (and its extension), conformal Carrollian symmetries



- Excluding gravity

We can study physical theories in a fixed spacetime M :
We can define elementary particles with respectto g [M ] , the isometry group of the spacetime.

Casimir elements of g[M] can be used to define the conserved quantities of the theory.



- Excluding gravity

We can study physical theories in a fixed spacetime M :
We can define elementary particles with respectto g [M ] , the isometry group of the spacetime.

Casimir elements of g[M] can be used to define the conserved quantities of the theory.

* Including gravity

In quantum gravity, there is no fixed spacetime and the study its isometry group a la Bargmann—-Wigner
to define elementary particles as its irreducible unitary representations do not make much sense.

» However, one can fix the asymptotic structure Soo and define the asymptotic symmetry group as those
elements of the bulk diffeomorphisms that preserve Soo:
Isometry group replaced by the asymptotic symmetry group that act on the gravitational phase space.

The view of defining fundamental excitations in gravity as irreducible unitary representations
of an asymptotic symmetry group has been advocated by [McCarthy 1973]

» Conserved quantities in the presence of gravity can be defined with respect to relevant
asymptotic symmetries, via their Casimir elements (using the notion of moment-map):
Generalization of the familiar example of the Poincaré algebra.
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1. Poincaré algebra
The isometry group of the 4D Minkowski spacetime is the Poincaré algebra
iso(3,1) = so(3,1) PR*

[P,LMPV] =0, [J/waPp] :i(nupPV_anPu)a
[yvs Jpol = ppdve + Muodup = Muodvp — Mupdue);

PM = Translations generators

J,.u = Angular momentum generating Lorentz transformations
p g

Casimir elements:

AN AN

Ca(iso(3,1)) = —P,P", Csa(iso(3,1)) = W, WH



1
+ Pauli—Lubanski pseudo-vector W, := §€MVPJP”JPJ

1. Invariant under translation and it transforms as a vector under Lorentz transformations

it satisfies the algebra  [W,,, W, ] = ic,,,0 PPW°



1
+ Pauli—Lubanski pseudo-vector W, := §€MVPJP”JPJ

1. Invariant under translation and it transforms as a vector under Lorentz transformations

it satisfies the algebra  [W,,, W, ] = ic,,,0 PPW°

2. Is orthogonal to the 4-momentum operator (P, W* = 0). Moreover, if we diagonalize P, and
evaluate W, when P, = k,, we find that it satisfies

the isotropy subalgebra so(3) of Lorentz transformation preserving the vector £, :

W2 as one of the Casimir elements of the Poincaré algebra provides an

unambiguous definition of the spin of a particle in any special-relativistic system



2. Issues with BMS algebra

Abelian ideal of supertranslations
BMS = S0O(3,1)T x R®,

proper orthochronous Lorentz subgroup

« Supertranslation ambiguity [Sachs, 1962]; [Geroch, 19771:

Given a cut Clocated at © = T (o) andaCKV Y49, € T'S

canonical Lorentz generators are represented by

1
¢S =Y 204 + Y204Tc0, + iDAYA(u —T¢)0,, tangentto C

2 different cuts lead to two different notion of Lorentz generator related to -

each other by a supertranslation with parameter AT =T — T Figure credit:
[Ashtekar, De Lorenzo, Khera, gr-qc/1910.02907]

bms does not have a canonical Lorentz subalgebra in the presence of radiation

It appears that enlarging Poincaré to BMS creates a problem...
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Abelian ideal of supertranslations
BMS = S0O(3,1)T x R®,

proper orthochronous Lorentz subgroup

« Supertranslation ambiguity [Sachs, 1962]; [Geroch, 19771:

Given a cut Clocated at © = T (o) andaCKV Y49, € T'S

canonical Lorentz generators are represented by

1
¢S =Y 204 + Y204Tc0, + §DAYA(u —T¢)0,, tangentto C

2 different cuts lead to two different notion of Lorentz generator related to -

each other by a supertranslation with parameter AT =T — T Figure credit:
[Ashtekar, De Lorenzo, Khera, gr-qc/1910.02907]

bms does not have a canonical Lorentz subalgebra in the presence of radiation

It appears that enlarging Poincaré to BMS creates a problem...
« Undefined angular momentum aspect: The knowledge of the BMS charges JYKV , with Yiv CKV of (S, quB) ,

only determines an equivalence class [jA] : j’A = 74+ DBTBA with  TBA symmetric traceless tensor
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- Absence of spin generator

Isotropy group Fixed Points

Lo m(z, Z)
r m(|z])

Possible little groups of the BMS group (I" = double covering group of s0(2)) [McCarthy 1973]

A A generic supertranslation would have the group Z- as its little group
and hence we cannot associate any Casimir element to it



- Absence of spin generator

Isotropy group Fixed Points

Lo m(z, Z)
r m(|z])
SU(2) mo

Possible little groups of the BMS group (I" = double covering group of s0(2)) [McCarthy 1973]

A A generic supertranslation would have the group Z- as its little group
and hence we cannot associate any Casimir element to it

w No natural way to define the Pauli-Lubanski and spin generators from bms

It turns out that BMS is actually too small!

If the mass aspect is in the orbit of the constant mass aspect, there is an SU(2) isotropy group:
recently used in [Compere, Gralla, Wei 2023] to define the spin in scattering problems



3. GBMS algebra (to the rescue)

GBMS has a desired feature that makes it suitable for the definition of PL and spin generators,
i.e. it has a suitable isotropy algebra with an infinite set of Casimir functionals

Method of coadjoint orbits = Classical analog of the representation theory [Kirillov 1976]

1. There exists a moment-map [gbms : I' — gbms* for gbms -action on gravitational phase space.

2. This allows us to purely work at the algebraic level i.e. with (the dual of) gbms, instead of using phase

space generators, to construct (classical) conserved quantities O € C'°°(gbms™) for gbms-action

3. Pull these Casimir functionals back to the phase space through the moment-map



Given the spacetime vector field on yA

1
§(Y,T) = T(O’)au + YA(O')aA -+ Wy(O')(uau — Tar) : Wy = iDAYA

[Campiglia, Laddha 2014];

gbms Lie bracket [g(yl’Tl) 7 g(YQ’TQ)]gbmS - g(Ym’Tm) [Compere, Fiorucci, Ruzziconi 2018]

Yo = [V1, Y35,

with
Tio = (Y1[T3] — ToWy,) — (Yo[T1] — T1Wy,)

—  gbms = diff(S)® R?,

Ri = space of functions on the celestial sphere of conformal weight A
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Given the spacetime vector field on yA

1
§(Y,T) = T(O’)au + YA(O')aA -+ Wy(O')(Uau — Tar) : Wy = iDAYA

[Campiglia, Laddha 2014];

gbms Lie bracket [g(yl’Tl) 7 g(YQ’TQ)]gbmS - S(YD’TD) [Compere, Fiorucci, Ruzziconi 2018]

Yo = [V1, Y35,

with
Tio = (Y1[T3] — ToWy,) — (Yo[T1] — T1Wy,)

—  gbms = diff(S)® R?,
Ri = space of functions on the celestial sphere of conformal weight A

Via,s) = Space of spin-s tensor fields of weight A (symmetric and traceless contravariant tensor 74,..-A, )

®: vOn,s =Ly[Owns] + (A=) WyOa.s, VOas €Viasy — TeViig,Y eV

[Freidel, DP, Raclariu 2021]

Choice of an area form € := \/qd*c,  with / e =1 preserved by gbms: Iy, 1)v/q=0=0y1)€
S
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- gbms coadjoint action *

m = Mass aspect (scalar dual to 1)
(m,j) € gbms”
] = jAdO'A = Angular momentum aspect (one form dualto Y = YAﬁA)

Canonical charges: M ::/Tme, Jy :/YAjAe
S S

Canonical pairing (|-) : gbms x gbms® — R (7,m|Y,T) = My + Jy

*See [Barnich, Ruzziconi 2021] for coadjoint orbit study of EBMS group and [Ciambelli, Leigh 2022] for the corner symmetry group
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- gbms coadjoint action *

m = Mass aspect (scalar dual to 1)
(m,j) € gbms”
] = jAdO'A = Angular momentum aspect (one form dualto Y = YAﬁA)

Canonical charges: M ::/Tme, Jy :/YAjAe
S S

Canonical pairing (|-) : gbms x gbms® — R (7,m|Y,T) = My + Jy

infinitesimal coadjoint action of (Y,7') € gbms on (j,m) € gbms”
<5(Y1,T1 (]7 )‘Y27T2> <j7m‘Y127T12>

Syrym =Y A0 am + 3Wym, m € Viz.0) ja € Via
- | | 3 T - N
Ov,r)ja = Lyja+2Wyja+ §maAT + gaAm (IT'm+Y*"j4) € Vi2,0)

*See [Barnich, Ruzziconi 2021] for coadjoint orbit study of EBMS group and [Ciambelli, Leigh 2022] for the corner symmetry group
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« Casimir functionals
Symmetry algebra of 2-dimensional barotropic fluids [Marsden, Ratiu and Weinstein, 1984], [Arnold, Khesin, 1999]
h := diff(S) GRS variables parametrizing h* : Density £ € V(2,0) Momentum Pa € V(1,1)

Casimirs for this algebra constructed in [Donnelly, Freidel, Moosavian, Speranza, 2021]:

Enstrophies = moments of the vorticity WFuid ‘= dp

12



« Casimir functionals
Symmetry algebra of 2-dimensional barotropic fluids [Marsden, Ratiu and Weinstein, 1984], [Arnold, Khesin, 1999]
h := diff(S) GRS variables parametrizing h* : Density £ € V(2,0) Momentum Pa € V(1,1)

Casimirs for this algebra constructed in [Donnelly, Freidel, Moosavian, Speranza, 2021]:

Enstrophies = moments of the vorticity WFuid ‘= dp

2 1.
p:i=m3 € V(g,o), pPA = p 1JA S V(l,l)

3
orp =0, dyp = Da(pY?) and OTpA = iaA(\fPT), Ooypa = Lypa

1
Vorticity w := p~ 1ePOupp, where €= §€ABdO'A AdoB and drw =0, dyw=7Y[w]

Casimir functionals Cn(gbms) := / w" pe s.t. 5(y,T)Gn(gbmS) — / DA(wn;OYA)E =0
S S
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4. Spin generator

|sotropy subalgebra

To determine the isotropy algebra of gbms, we choose ™ € (R—l)*

and study those gbms transformations that preserves it:

1
3ms

Syrym =Y A0 am + 3Wym = div,(Y) =0,

wiN

, 1
rescaled measure p:= pe = m3e and lep(Y) = ;&4 (pYA)

13



4. Spin generator

|sotropy subalgebra
To determine the isotropy algebra of gbms, we choose ™ € (R—l)*

and study those gbms transformations that preserves it:

1
3ms

Syrym =Y A0 am + 3Wym = div,(Y) =0,

, 1
rescaled measure  p := pe = ms e and div,(Y) := ;6’A (pYA)

—  The isotropy subalgebra of gbms is the one that preserves p :
iso(gbms) = sdiff ,(S) ®R?,
generated by vector fields Yy := —p~ 1€ P 0,4 405, ¢ € C(S)

with Lie bracket [Y¢, Yw]s — Y{gb,zp}p ) {¢7 ¢}p = ,0_1€AB(9A¢6?B¢

/

Poisson bracket on S equipped with a rescaled symplectic structure
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Consider a smeared version of the vorticity

wlg] = L ppwe = /5 bAPOuppe,  deC(S)

transformation properties under gbms : 5TUJ[¢] =0, 5Y’LU[¢] — —w[Y[¢]]

—  Awlel,wly]} . = —w[{s,¥},]

g

w|@] implements the action of sdiff,(S) on gbms”

14



Consider a smeared version of the vorticity

wlg] = [5 ppwe = /5 bAPOuppe,  deC(S)

transformation properties under gbms : 5TUJ[¢] =0, 5Y’LU[¢] — —w[Y[¢]]

—  Awlel,wly]} . = —w[{s,¥},]

g

w|@] implements the action of sdiff,(S) on gbms”

1. w[¢] IS invariant under supertranslations

2. w[¢] generates the isotropy algebra of gbms

w w|¢p] = Spin generator
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Finite dimensional subalgebra

Given an orientation preserving diffeomorphism of the sphere F' : S — S we can construct a density

1
s.t. F*e = pre and op = ieABﬁAFcﬁBFD(eCD o F)

and the mass aspect, the curvature tensor and the angular momentum aspect transform as
7 3
m—m- = prmolkF,
R— R == ppRoF+ ppAlnpp

ja = jh i=pr (jpo F)OAF”

15



Finite dimensional subalgebra

Given an orientation preserving diffeomorphism of the sphere F' : S — S we can construct a density

1
s.t. F*e = pre and op = ieABﬁAFcﬁBFD(eCD o F)

and the mass aspect, the curvature tensor and the angular momentum aspect transform as
7 3
m—m- = prmolkF,
R— R == ppRoF+ ppAlnpp

ja = ja = pr (jp o F)OaF"
Notions of preferred frames:
Bondi frame 94 RP = 0, Oam® # 0

Center-of-mass frame dam™ =0, O, RM £ 0,

-CM . B
m- = = jo€a 0N
[Flanagan, Nichols 2015] A JA JO€A B3

Therefore, two frames are related by a diffeomorphism F' : SM s SB under which
3
2

m® =MMpz ., RM=pp(R®+ Alnpp)
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Let us consider a boost operator that maps the rest frame vector ¢, = (1,0,0,0) onto

a unit vector in the hyperboloid of velocity v € R® : P, ,, = 7,(1,v;) :

The boost yields a transformation given by

1
o (1 —vin)

with n; = (sinf cos p,sinfsinp,cosf) and pr, = -

16



Let us consider a boost operator that maps the rest frame vector ¢, = (1,0,0,0) onto

a unit vector in the hyperboloid of velocity v € R® : P, ,, = 7,(1,v;) :

The boost yields a transformation given by
: : : ijn - :
Filn)=n"=a ! (n'+ RULL Rl VR
’U( ) v f)/,v _|_ 1 /Y'U

1
Yo (1 —ving)?

with n; = (sinf cos p,sinfsinp,cosf) and pr, =

In particular, this means that the mass aspect of a particle with velocity v is given by

mCM

Yo(1 = v'ny)]?

expression for the Bondi mass aspect in any general boosted frame [Bondi, van der Burg, Metzner, Sachs 1962],

my(n) =

define the total mass M 3 — mass aspect in the center-of-mass frame p“M = A 3
- — 3 - - p—
(Casimir of gbms) ‘ S m P P
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Poincaré embedding: Four-momentum Py, := (E, P;) with o := ./Sme’ P = /Sm me

[Barnicha, Troessaert 2011];
[Flanagan, Nichols 2015];

: o . _ A . A
[Compere, Oliveri, Seraj 2019] rotation and boost generators Jz c— / Yc]i JA Kz = / YKz JA
S S

1
with in_l = eABﬁgni, Yjé = qABaan- satisfying DaYp + DYy = iDCYCqAB

JiJJ' * :_5i'k<]7
{PM,Py}g* _0. { J}g Jj Yk

- {JzaK} * — —&j 'kKka
{Pu, Jupte = NuwPp — NupPo e Jk
{Kz';Kj}g* = ‘|‘€z‘j Jk
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Poincaré embedding: Four-momentum Py, := (E, P;) with o := ./Sme’ P = /Snz me

[Barnicha, Troessaert 2011];
[Flanagan, Nichols 2015];

: o . _ A . A
[Compere, Oliveri, Seraj 2019] rotation and boost generators Jz c— / Yc]i JA Kz = / YKz JA
S S

1
with in_l = eABﬁgni, Yjé, = qABaan- satisfying DaYp + DYy = iDCYCqAB

(P PYg =0 (is Jie = =i
wy L vJyg*r — Yo

- {JMK} * — —&j 'kKka
{Pus Jupter = MuwPp — MupPo ' Jk
{Ki, Kj}g = +ei5

CM
1 p
Pauli-Lubanski generator W = M543 0 with — ,

v P [pU M] Po ,-Yg(l _ vlni)

2

« Supertranslation invariant {P/u Ww}g* =0
- Covariant under Lorentz transformations ~ {Ju0s Wop e = (M0 poWop — 10pWor)

- Satisfying the algebra  { Wy, Wou ter = €pvpa PYW,]

17



5. GBMS moment map

To connect these GBMS algebraic results with the gravitational physics, one has to identify
(1) the appropriate phase space on which gbms acts by a Hamiltonian action

(2) the momentum map for this Hamiltonian action

Asymptotic expansions of Well scalars around future null infinity:

>y (s) 0 0 0 0
v v _ \ _ v _ v _

Uy = 5137 \Iflzr—i—t—(?(r %), \Ifgzr—?)z+(9(r 4, \Ilgzr—23+(9(r 3, \1;4:74—%0(7“ 2)

s=0
InTcoming radiation Outgoing radiation at Z+

V=N, W=7, U9 =Mc, W=7, V=T  where
AB ~ A 1 AB 1 A Y 1 AB
N I:CAB, Z ::iDBN —I—Zﬁ R, MC:M+ZM, M:M+§N CAB
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5. GBMS moment map

To connect these GBMS algebraic results with the gravitational physics, one has to identify
(1) the appropriate phase space on which gbms acts by a Hamiltonian action

(2) the momentum map for this Hamiltonian action

Asymptotic expansions of Well scalars around future null infinity:

= up 0 s 15 4 U 3 vy -
‘1;0:8:0 5ts \Iflzr—4—}—0<r )5 \IJ2ZT—3+O(T ) ‘IJSZT—2+O(T ), ‘I’T4ZT+O<7’ )
|ncoming radiation Outgoing radiation at I+
V=N, W=7, U9 =Mc, W=7, V=T  where
AB ~ A 1 AB 1 A Y 1 AB
N I:CAB, Z ::iDBN —I—Zﬁ R, MC:M+ZM, M:M+§N CAB
Electric and strongly non-radiative phase space I'esnr @ NAP = 0, 74 = 0, M=0
v
Nap = nas, CaB = unap + can
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Conserved charges under the time evolution in I'esNR

1
Q(T,U,C) ‘= L (TM + UAj T C BTAB) demanding aUQ(T,’U,C) — O
CAB(U) _ ZAB
2
L v w) =Y+ ;D ZAB
2
1
r(u) =T+ = (DAYA ZABCAB)+%DADBZAB—ZuzZABnAB

19



Conserved charges under the time evolution in I'esNR

1
Q(T,’U,C) = /S (TM + UAj T C BTAB) demanding aUQ(T,’U,C) — O
CAB(U) _ ZAB
2
L v w) =Y+ ;D ZAB
2
1
r(u) =T+ = (DAYA ZABCAB)—I—%DADBZAB—ZuZZABnAB

Quvr,z) = / (Tm + Y44+ ZAB’CAB) € with
S

m=M,

_ 1
ja=g (Ta —uDaM]
1 u? 3 a1
tap =g Tap —uDaJpy + 7D<ADB>M — 5(% Cap)M
[Compere, Fiorucci, Ruzziconi 2018]; [Freidel, DP 2021]; [Donnay, Ruzziconi 2021]
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gbmes-action on the conserved charge aspects parametrizing I'esnr

5(Y,T)m = EY + 3Wy] m
. : . 3 T
5(Y,T)JA = _»CY + 2I/VY]JA + imﬁAT + EaAm 3
_ 8. 2 .
dvyrytap = [Ly + Wy |tap + §J<A33>T + §TD<AJB>
Moment map  gbms : I'EsNr — gbms” 0T = g* st
I«'ngms(majAatAB) — (mvjA) {F’ G}g* °H = {FOH”GO“’}F
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gbmes-action on the conserved charge aspects parametrizing I'esnr

5(Y,T)m = £y + 3Wy] m
. : . 3 T
5(Y,T)JA = _EY + 2I/VY]JA + imﬁAT + 58Am 3
_ 8. 2 .
dvyrytap = [Ly + Wy |tap + §J<AaB>T + §TD<AJB>
ms o L i *
Moment map  Mgb ESNR — gbms 0T 5 g st
/«Lgbms(majAatAB) — (m)jA) {FaG}g* OI’L:{FO“’?GOH’}F
Gravitational Casimirs
oy .. * 1 —2 AB _2
Gravitational vorticity W 1= fgp W = 5/\/1 3¢770 (/\/l 3 jB)

Crn(TESNR) = HgpmsCn(gbms) = / Msw" e
S

1 2
Gravitational spin generator ~ 8[®] 1= UgpmsW|P] = 5 / b erBoy (/\/l_ng> €
S
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Poincaré GBMS

Lie Group SO(3,1)T x R* Diff(S) x RS,
Lie Algebra so(3,1) PR* diff(S) ®R?,
e Coliebra am)
Type of Orbits Massive Massive
Label of Orbits —p? >0 m > (
Isotropy Subalgebra so(3) PR* sdiff ,(S) ®BR?,
Spin Generators W, w| @]
Casimirs (—p?, w?) Cr = Jopwe n=01,...

Table 1: The comparison between the Poincaré algebra in four dimensions
. . 2 . .

iso(3, 1) and gbms. In this table, p = pe = m3 € is a rescaling of the round-sphere
area form €, w, denotes the components of the Pauli-Lubanski pseudo-vector,

and w|¢] is the smeared vorticity with ¢ € C°(.5).
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Pauli-Lubanski pseudo-vector in the component form W, = JiP,L-, W,=FEJ,— (P x K);
with P, =(E,P;), J,:= gz.jkjj rotation generators and  K; := Jy; boost generators

- Rest frame: P[LeSt = (m, 0) pure boost transformation Ap st. (P - Ap), = P,

« Intrinsic spin vector = Spatial components of the Pauli-Lubanski pseudo-vector in the rest frame

1 J; PJ
j = W'A_li — SZ:— Wi_ J PfL
It satisfies [P, S;] =0, 1S:, S;] = ieiijk : |Ji, S| = ieiijk but not preserved under boost

S'; is uniquely determined by these conditions (see e.g [Bogolubov et al., “General principles of QFT” 1990])

The intrinsic spin implements the action of the isotropy subalgebra 50(3) of Poincaré and W2 = mQSZ-Si
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Weyl BMS group

Bondi-Sachs coordinates z* = (u,r, o) :

TA TE
ds? = —2e2Pdu(dr + ®du) + rivyap (daA - —du) (dO’B - —du)

r2

2
The Bondi gauge conditions:

9r =0, gra=0, arﬁ:() (i)

BMSW boundary conditions:

Gur = -1+ O(T_Q)v JuA = 0(1)7 Juu — 0(1)7

Original BMS boundary conditions:  guu = —1 + O(r™1),
[Bondi, van der Burg, Metzner, Sachs 1962]

Metric coefficients:

1 C 4gCAB

P = TR +o(r '), B= 33 3 +o(r?),
14— _lpyosa_l (gPA ~Leaspecy, - Lo (CBCCBC)) +o(r )
2 r \ 3 2 16 ’
1 1 e 1 (1 1 on »
YAB = qAB + ;CAB + 2448 (CepC™7) + 3 (gTAB + 1—60AB(C’(;DC )) +o(r7),

Minkowski spacetime: M, P4, Cap,Tap — 0, R — 2
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