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Introduction

Solution space of Einstein’s equations
@ AIAdSs: boundary metric & energy-momentum tensor
@ AlMinks: shearless boundary metric & Bondi shear & Chthonian (deep)

as well as flux-balance laws

Dynamical equations obeyed by Chthonian dof [Godazgar?, Pope '18] [Freidel, Pranzetti '21]

A-BMS gauge offers deep insights in the A — 0 limit [Compere, Fiorucci, Ruzziconi '19]



Introduction

Solution space of Einstein’s equations
@ AIAdSs: boundary metric & energy-momentum tensor
@ AlMinks: shearless boundary metric & Bondi shear & Chthonian (deep)

as well as flux-balance laws

Dynamical equations obeyed by Chthonian dof [Godazgar?, Pope '18] [Freidel, Pranzetti '21]

A-BMS gauge offers deep insights in the A — 0 limit [Compere, Fiorucci, Ruzziconi '19]

Plan:
@ covariant Newman-Unti gauge for A <0
@ transverse decomposition of energy-momentum and Cotton tensors
@ solve Einstein's equations (up to order 1/r?)
@ Laurent-expansion in powers of A = —3k?: Carrollian replicas

@ flux-balance laws for Chthonian degrees of freedom
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Gauges for General Relativity (D = 4)

Fefferman-Graham

Holographic boundary (p — o0) Gf;z) and Ty, = iG,(ill,) [

167C Fefferman, Graham '85]

d/)2 1 . v
ds§u|k = kT/)Q aF Z kTpSG‘(“’)(X) dX‘udX (1)
s>—2

invariant under boundary diffeos, but no smooth zero-k limit
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Gauges for General Relativity (D = 4)

Fefferman-Graham

Holographic boundary (p — o0) ijz) and T, = 25 G(1 [Fefferman, Graham '85]
2 d/) (s) i
dspux = peye + Z ko -G, (x) dx dx” (1)
s>—2

invariant under boundary diffeos, but no smooth zero-k limit

.

Partial Bondi gauge

Given Gj, U', V and g functions of all coordinates [Geiller, Zwikel '22]

s = em%dug — 2e?®dudr + Gj (dx" - U"du) (dxf - deu) ()

valid regardless of k, not invariant under boundary diffeos

A
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Covariant Newman-Unti gauge

Newman-Unti gauge

Integral transformation of r — affine coordinate [Newman, Unti '62]
dstu = L du® — 2dudr + Gy (ax = U'du) (ax’ = Ldu) (3)
r

with Gj = r’g; + O(r), U = v + O(1/r) and V = —k?r* + O(r?)
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Covariant Newman-Unti gauge

Newman-Unti gauge

Integral transformation of r — affine coordinate [Newman, Unti '62]
dsiu = %duz —2dudr + G; (dx' = U'du) (dx’ = du) (3)

with Gj = r’g; + O(r), U = v + O(1/r) and V = —k?r* + O(r?)

Covariantisation (boundary coordinates x*)

Covariantise under boundary diffs [Ciambelli, Marteau, Petkou, Petropoulos, Siampos '18]

1
kT TRk
—k2du® + gi (dx" — vidu) (dx’ - vjdu) —  dsiy, = g dxMdx”

du — u,ldx“

Go to Cartan’s frame dsfdV = naB 07408 and u = s 07 with uau® = —k?
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Weyl invariance

The Weyl connection

Redefinition r — Z(x)r gives rise to boundary Weyl invariance
dsgd/v — B2 dsgdy, u— 2B tu
once a Weyl connection A is introduced [Ciambelli, Leigh '19]
A—A—-dInZ

Non-zero asymptotic charge for FG [Ciambelli, Delfante, Ruzziconi, Zwikel '23]

(4)

Weyl-covariant Newman-Unti gauge up to order r>

2
dst = Y (dr + rA) + r dSEdy + O(r)

From A and u, build Weyl-covariant derivative s.t. Zau® =0, u*Zaug =0

(6)
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Radial expansion

Assume a radial expansion (bulk metric has Weyl weight 0)

2 : 1
dstu = U (dr+rA) + r?dsiy, +r€as 07 0° + o 0" 0°

1 1 (s) 2 2 (s) A (s) pAnB
+ZF(Ff 0+ 50 uet +£2 0%

s>1

(7)

for the moment, everything is arbitrary:

@ the (w = —2) boundary metric dsp,,

@ the (w = 1) tensor %ag is the shear along O,
@ the (w = 2) tensor
(

@ the (w = s +2) tensors &), £{7) and £{2) with uv*#{”) = 0 and v*£{2) =0
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Transversality, vorticity and shear

Dualise (traceless) transverse objects using

C

fag = —eapc—-  — xX" =g X" (8)

Introduce the vorticity two-form and scalar
1 1 1
w : (du + —~uA A) and = 2ﬁABwAB (9)

k2 2k

Fundamental object: the shear of the congruence u

©
uaagy — — has (10)

ong = V(aup) + 5

k2

with aa = UBVBUA and © = VAUA
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The energy-momentum and Cotton tensors

The energy-momentum tensor (electric)

Transverse decomposition of the energy-momentum tensor (weight 3)

Tas = (e + p) E 4 pnag + Tas + k2 uage + -5 k2 Usqa (11)

with u*7ag =0, u'ga =0, e =2p and 72" =0
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The energy-momentum and Cotton tensors

The energy-momentum tensor (electric)

Transverse decomposition of the energy-momentum tensor (weight 3)

€ 1 1
+§77AB+TAB+EUAQB+EUBC]A (11)

3e uaup

Tas =5 72

with uA7ag =0, u'ga =0, e =2p and 72" =0
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The energy-momentum and Cotton tensors

The energy-momentum tensor (electric)

Transverse decomposition of the energy-momentum tensor (weight 3)

3¢ upug

5 e usqa (11)

1
uags + —

TAB = k2

€
+§77AB+7'AB+ k2

with v = 0, quA =0, e=2pand =0

.

The Cotton tensor (magnetic)

Transverse decomposition of the Cotton tensor (weight 3)
o R
Cag:=€a V¢ (RBD = ZTIBD> (12)

symmetric, traceless and conserved (equation vs identity: electric vs magnetic)

1 3c uaug ¢ CAB 1
—C = e — ===
P 5 12 + 5 1B = 73 T T 2 uAcs S

k2 UBca (13)




Solving Einstein's equations in AIAdS

@000

Solving Einstein's equations: up to order 1

Einstein tensor &un == Rijn' — 2R™“gmin — 3k’ gmine (M, N =r,0,1,2)

Einstein's equations &uyy = 0 split into dynamical and constraint

Constraint: up to order r

Equality of geometric and Bondi shear (now traceless and transverse)
kK Gap = —20a8 (14)

Define the news tensor (Weyl-invariant, traceless, transverse) Aag = uDcCasp
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Solving Einstein's equations: up to order 1

Einstein tensor &un := RE — 1Rb“'kg,\b,,”,{,k — 3K2gPu< (M,N =r,0,1,2)

Einstein's equations &uyy = 0 split into dynamical and constraint

Constraint: up to order r

Equality of geometric and Bondi shear (now traceless and transverse)
K € = —2 048 (14)

Define the news tensor (Weyl-invariant, traceless, transverse) Aag = uDcCasp

Constraint: up to order 1

4
= 2U(A@C (08)c +wp)c) — - Uals

. (15)
+ <§(TCD(TCD + k2?2> has + 2’w‘<ACUB)c

with Z = R + 4VgAB
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Solving Einstein's equations: up to order 1/r

The metric up to order 1/r is determined

1wy 260 08 D g4 ge

K K2 A 16)
16
8nG 2 4 A 2k2 AAB
= k4 (€U + gAqAUG -‘rTATABe 0
where
Aga = ! d A = !
qga = ga — %*C‘A an TAB = TAB + W*CAB (17)

o fj,lg) is constrained to be traceless by Einstein's equations
@ energy-momentum (electric) data appear decomposed

@ receive contributions from geometry under the dualised Cotton (magnetic)
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Solving Einstein's equations: conservation equations

Dynamical part (choosing u = —k8°, A=0,1,2 and a =1,2)

k 1 B 1

87T7Gé000: ﬁ-@BTO'i‘O(%):_WK'FO(%) (18)
k 1 B 1

grcfe = 5785+ 0(%) = 57+ 0(%) (19)

Einstein's equations require
L =uDne + @AqA +oasmf =0 (20)

ogra 1 a a 2 a 1 a a
T = 5@ e+ P8+ PquB + e (uB@,n;q +o BqB) =0 (21)

Analogue of Bondi evolution equations (mass-loss, etc.)



Solving Einstein's equations in AIAdS
[e]e]e] ]

Solving Einstein’s equations: up to order 1/r?

Constraint equations &n = & = 0 fix the metric up to order 1/r2

£ = ?Tf (UCDATCD + @CAqC) tc (22)
£ 83kG 4:G (hAC@DArCD + g’Y*AQA) (23)
— 4::46 ( u€ DcDras + 3hAch309 v
—ghABhCD@CAqD + 2a(ACATB)c) (24)
~ 5 (87 Geoag — c xoag) + 33Z2G’7 *ATag

Interplay between electric (Tag, qa, €) and magnetic (cag, ca, ¢) quantities
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[llustration: Tea Party with the Mad Hatter, John Tenniel 1865]
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Boundary geometry

Carrollian limit of the triad and its inverse (choosing u = —k@°)
. u Ad o a
B= /!To pel and 07 = /!lno 0 (25)
where the field of observers | v" = ll(imo u” | verifies p(v) = —1
—

The boundary metric d/* = §,,676" is invariant under local rotations

Coefficients of the Weyl connection, shear and vorticity

. . da . . Wab
0= lim© v, = lim — 2= lim oy ., = lim 26
k—0 T kDo k2 & k=0 T ko0 k2 (26)

Transverse dualisation on a, b ~ xw = —%eabwgb
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Flat limit: up to order 1

Constraint: up to order r

Geometric and dynamic shear decouple (¢, remains traceless transverse)

KCp = —2 Eap T)o ©.p arbitrary , £, =0 (27)
—

News tensor ., = P, Gap differs from Bondi's by g(ﬁab [Barnich, Troessaert '10]

Constraint: up to order 1

|

Upon substituting &.;, for —% 6.5 in the expression of

- 1 ab 2 2 14 - a 2
— = 7(13(1 *TT . —R 20
fim (Smrf + >dz (2 +Vy>u -

— PPCoy 07 — 2% Do w07 + w0 xGa, 07 0°

is regular in the k — 0 limit (some terms drop) and contains %5
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Flat limit: the energy-momentum tensor

Crucial step: analytic expansion of the energy-momentum in Laurent series

€= Z K2 (29)

nez
k2" 24 Qo+ K+ Y kY (30)
n>2 n>2
(n)
a Za — n n
Tab = —Z %2[’,7 — % — T; ) Zk2 E;,Sb) (31)
n>3 n>2

@ substitute in £ =0, 77 = 0 and line-element F(=1 =1 (=1

g 2
@ replace systematically £., by —%- %,

@ require the line-element to be finite when k — 0
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Flat limit: up to order 1/r

Algebraic relations

Finiteness at order 1/r requires

g<f—9p (rA_og (F_g (32)
Some components of g° and 77 are locked in terms of Cotton coeffs
ot o ) L e
°T 8nG ‘T 8rG 7 8nG T 8rG " 8rG

Line element at order 1/r

T ——

e (33)
omG o 56"

=8rGe® p? — gNa no’ —

where N, = —8nGm, + *c‘gl) and E,, is the covariant stress of [Freidel, Pranzetti '21]
.




Flat limit
0000080

Flat limit: conservation equations

Flux-balance laws
Example: limyg_0.¥ =

. » 1 sy g 1 Yo 5 g
Pe? + D0Q — 1= (@a@bma" <ﬁb@a%+§<ﬂab%%a") (34)

Bondi mass aspect M = 4 Ge© — 1((”"“’ Nab [Compgre, Fiorucci, Ruzziconi '19]

Finite part of the line element at order 1/r?

f® = lim £ = —%@aNa + 2% v (35)
—
£ = lim £ = %N”%’ba - gm «N, — 41 G D, E®, (36)

where v = % limg_0c = ; %@ Dy xE? — %‘fab 4
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Flat limit: up to order 1/r?

Tensorial contribution at order 1/r?

fa(lf) = % (1671-6-@1) b+ = 9<3Nb +orGe0%, — %*%’Qb)

flux-balance law for E_j, agrees with [Freidel, Pranzetti '21]

167TG 3 (1), 3 3 o 37
3 (91) N 779<a7rb +8€ 6, 87TG*$ *6ab> (37

new tensor Fp,

— 4G L Epy + O(K)

Only F.p is relevant, not E e ), 7 or e ) (flux-balance law obtained at 1/r®)

Pattern:
o 22 and £52? have a smooth k — 0 limit

>2 . . .
o fa(;— ) has singular contributions: flux-balance laws

@ regular contribution repackages Ea(f)), m(f) and 67 into a single Fa(f,)



Conclusion and outlook
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Ingredients
@ covariant Newman-Unti gauge + Weyl connection + 1/r-expansion
@ choice of boundary metric and energy-momentum tensor

@ solve Einstein's equations in AIAdSs (metric + flux-balance laws)

Method for taking the flat limit

@ transverse decomposition of metric, energy-momentum tensor, ...
@ Laurent expansion of the energy-momentum tensor
@ take the k — 0 limit, informed with k> %, = —2 0.5

@ finiteness of the line element: additional flux-balance equations
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Results and future direction

@ Carrollian boundary-covariant metric reconstruction for AIMinka
@ correct solution space and flux-balance laws (Bondi mass-loss etc.)
@ Carrollian origin of the Chthonian degrees of freedom

@ class of resummable metrics for €., = N? = F5)., =0

Future directions

@ asymptotic symmetries and (subleading) charges
@ link Newman-Penrose formalism [Mittal, Petropoulos, Rivera-Betancour, Vilatte '22]
@ generalisations: higher dimensions? logarithms?

@ consequences for flat holography?
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Weyl-covariant derivative

In a 1/r-expansion, objects have Weyl weight w, e.g.

Dad :=Vad 4+ wA,P

C (38)
Dave = Vave +wAsvg + Agva — nagA vc
Weyl-covariant derivative is metric-compatible
@AnBC =0 (39)
Has effective torsion (dA = F420% A 67) and curvature
_@A,@B d) = W¢FAB
[ ] (40)

[.@A, .@B] ve = t@CDABvD + (W + 1)FABVC
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Expression of the Weyl connection

If we require 2 to preserve the congruence u, i.e.
Dau’ =0 and u* Daug =0 (41)

then its components are fixed

1 ©
A= Pl (a — Eu) where as = u®Vgus and © =Vt (42)
Weyl-covariant derivative preserves transversality

uaup
k2

uA_@Ath =0 where hag 1= nas + (43)
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Car

(e]o]e}

rollian Cotton tensor

Decomposition of the Cotton coefficients in powers of k2

=D

c=cMiIP 404 e + i (44)
0 D
=i+ 9+ ak2 (45)
=D
Cab = el b ) K2 + cw + ’/:—2 (46)
Conservation of the Cotton — 8 Carrollian identities for n € {—2,...,1}

__@vc(n) _ @a ﬁiCén) + C(H 1)£ab -0 (47)

ab

@aCM) + 2 %o @b N\l + _@ rr\l + Cé” 1) {gb -0 (48)

N =
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Solving Einstein’s equations

Constraint equations, up to now

1 3 1
& = —377ABfﬁa); -6 (UABfﬁa) + ﬁa/\BfA(}S)) = +0(7)

1 1
o= (262 - 318060 + L (5.5 12..7) ) L o2
Ora — a _5 a BC"’E s +4w, B F'ﬁ‘ (f5)
Eup = (—f(z)hab + vy + 40 S+ 262050 — 2u€ Def )

+ ﬁcaﬁDb-@(c fD(i) +

1 /. 1 1
2 (nc(aﬁb)c c— f(l)ﬂab) + 405#&2) 2

+0(%)
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Dictionary between Bondi and covariant Newman-Unti

Comparison with [Compere, Fiorucci, Ruzziconi '19] [Freidel, Pranzetti '21]
@ = —du (dp:goaéa/\p.erabéa/\éb = xw=0, ¢ =0)
¢ = Cégndi
Nt = ngndi - %‘5“’
0= éBondi
47 Ge® = Meondi

1 _(0 -
v = EC( ) — MBondi

N = P? = Niows + } (€9 G + 3V7(6"%1c))

Y Eab —__1 Tab — 3 (gégndi _ %cgab(gcdcgcd)

167G 167G
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Flat limit: recursive pattern

@ 22 have a smooth zero-k limit involving

@a f’;(sf

1)

and

2k _(0)

g

@ 2% have a smooth zero-k limit involving

@b f(sfl)

ab

and

HTU % 1?3(571)

and

>2 . . . .
° fa(,f* ) have singular pieces imposing flux-balance laws

f-(s) # @s 2 BS,

ab k2s—2

(s—1)
+ F“FBab

#

+(ézk@m@£“”}+u)+o&ﬁ

F(z) — {915) 1

E(S)

ab »

FBY) = 9uF§) +

fab

99,

£(s)

(s)

aThy »

6(5_1)*’25

2¢p
Yb}

(49)

(50)

(51)

(52)

(53)
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The resummable case

AIAdS case

Take 04z = AG” = ATag = 0 (therefore ff) = f/ﬁf; =0) and

f-(25+1) _ (—)587TG5’Y2S and f-(25+2) _ (—)SC’YZS+1 (54)
then the 1/r expansion resums to (where p? = r? 4+ ~?)
2 2 2,2 ﬁ Ll2
dSies Einstein = Pk (dr + rA) + rodssg, + @ + K2 (8w Ger + ) (55)
v
Take Gap = N? = F5).p = 0 and
FEsHY — (-)8rG @y ® and & = (—)Sc<0) * o2t (56)

then the 1/r expansion resums to (p> = r? + xw?)

2
dsr2es. Ricci-flat — 2 [ (dr ‘ I'A) + p2d(2 + % (871'G8(0)I’ + C(O) & w) (57)
P

v
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Link with Newman-Penrose

In the resummable case (algebraically special)

d€2—7dCdC
P(u,¢,¢)?
The Weyl scalars are
Yo=Y =0
i
W2_2(rfi*w)3
___iPx¢ i 3
\y37(r—i*w)2+0(1/(r /*w))
v, 71)(( O (1
= o (Ur—ie=))

with 7 = —c©@ 4+ /187G

(58)

(59)
(60)

(61)

(62)
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