Higher spin 'superrotations' from the BBB action

Sucheta Majumdar
Laboratoire de Physique, ENS de Lyon

3rd Carroll Workshop, Thessaloniki
October 2-6, 2023

Motivation

- What is the Bengtsson-Bengtsson-Brink (BBB) action?

A higher spin action in the light-cone formalism with cubic interaction vertices
light-cone coordinates+ light-cone gauge
[Bengtsson-Bengtsson-Brink, 1983]

Motivation

- What is the Bengtsson-Bengtsson-Brink (BBB) action?

A higher spin action in the light-cone formalism with cubic interaction vertices
light-cone coordinates+ light-cone gauge
[Bengtsson-Bengtsson-Brink, 1983]

- Why consider higher spins?

Some interesting results for higher spin supertranslations and superrotations at null infinity [Campoleoni-Francia-Heissenberg]

More recently, higher spin Carrollian algebras and field theories

[Bekaert, Campoleoni, Nyugen, Oblak, Pekar West, ...]

- Why the BBB action?

An interacting model for studying HS generalizations of supertranslations/ superrotations

Motivation

- What is the Bengtsson-Bengtsson-Brink (BBB) action?

A higher spin action in the light-cone formalism with cubic interaction vertices

> light-cone coordinates+ light-cone gauge
[Bengtsson-Bengtsson-Brink, 1983]

- Why consider higher spins?

Some interesting results for higher spin supertranslations and superrotations at null infinity [Campoleoni-Francia-Heissenberg]

More recently, higher spin Carrollian algebras and field theories

[Bekaert, Campoleoni, Nyugen, Oblak, Pekar West, ...]

- Why the BBB action?

An interacting model for studying HS generalizations of supertranslations/ superrotations
Another motivation: Andrea and Dario had asked me once
Focus of the talk:
A particular example of higher spin theories in a reduced phase space of on-shell modes

Light-cone coordinates: The front form

DOI:10.1016/j.physrep.2015.05.001

"Forms of relativistic dynamics" [Dirac '49]
(a) Instant form: time x^{0} Initial data on a spatial hyperplane $\left(x^{0}=0\right)$
(b) Front form: time $x^{+}=\frac{x^{0}+x^{3}}{\sqrt{2}}$

Initial data on a null hyperplane $\left(x^{+}=0\right)$

- Poincaré generators in the instant form: $\left(P_{\mu}, M_{\mu \nu}\right)$

$$
[P, P] \sim 0, \quad[P, M] \sim P, \quad[M, M] \sim M
$$

$\left(P_{0}, M_{0 i}\right) \rightarrow$ four "Hamiltonians"

- Poincaré generators in light-cone coordinates, $x^{\mu}=\left(x^{+}, x^{-}, x^{i}\right), \quad i=1,2$

Kinematical $K=\left\{P_{i}, P_{-}, M_{i j}, M_{i_{-}}, M_{+-}\right\}$,
Dynamical $D=\left\{P_{+}, M_{i+}\right\} \rightarrow$ three "Hamiltonians"
Non-linear corrections to \mathbb{D} give us the dynamics of the interacting theory

Light-cone coordinates: The front form

DOI:10.1016/j.physrep.2015.05.001

"Forms of relativistic dynamics" [Dirac '49]
(a) Instant form: time x^{0} Initial data on a spatial hyperplane $\left(x^{0}=0\right)$
(b) Front form: time $x^{+}=\frac{x^{0}+x^{3}}{\sqrt{2}}$

Initial data on a null hyperplane $\left(x^{+}=0\right)$

- Poincaré generators in the instant form: $\left(P_{\mu}, M_{\mu \nu}\right)$

$$
[P, P] \sim 0, \quad[P, M] \sim P, \quad[M, M] \sim M
$$

$\left(P_{0}, M_{0 i}\right) \rightarrow$ four "Hamiltonians"

- Poincaré generators in light-cone coordinates, $x^{\mu}=\left(x^{+}, x^{-}, x^{i}\right), \quad i=1,2$

Kinematical $K=\left\{P_{i}, P_{-}, M_{i j}, M_{i_{-}}, M_{+-}\right\}$,
Dynamical $D=\left\{P_{+}, M_{i+}\right\} \rightarrow$ three "Hamiltonians"
Non-linear corrections to \mathbb{D} give us the dynamics of the interacting theory
\rightarrow a key advantage when the interactions are not known

Light-cone Poincaré algebra in $d=4$

- Non-vanishing commutators of the Poincaré algebra

$$
\begin{array}{cll}
J^{+}= & \frac{J^{+1}+i J^{+2}}{\sqrt{2}}, \quad \bar{J}^{+}=\frac{J^{+1}-i J^{+2}}{\sqrt{2}}, \quad J=J^{12}, & H=P_{+}=-P^{-} . \\
{\left[H, J^{+-}\right]=-i H,} & {\left[H, J^{+}\right]=-i P,} & {\left[H, \bar{J}^{+}\right]=-i \bar{P}} \\
{\left[P^{+}, J^{+-}\right]=i P^{+},} & {\left[P^{+}, J^{-}\right]=-i P,} & {\left[P^{+}, \bar{J}\right]=-i \bar{P}} \\
{\left[P, \bar{J}^{-}\right]=-i H,} & {\left[P, \bar{J}^{+}\right]=-i P^{+},} & {[P, J]=P}
\end{array}
$$

... and many more
[Bengtsson-Bengtsson-Brink '83]

- Underlying Carrollian structure

Rotation $\mathbb{J}=\left\{J^{12}, J^{+-}, \boldsymbol{J}^{+}, \bar{J}^{+}\right\}$, Boosts $\mathbb{K}=\left\{J^{-}, \bar{J}^{-}\right\}$
Translations $\mathbb{P}=\left\{P, \bar{P}, P_{-}\right\}$, Hamiltonian $\mathbb{H}=P_{+}$

$$
\begin{aligned}
& {[\mathbb{J}, \mathbb{J}]=\mathbb{J}, \quad[\mathbb{J}, \mathbb{P}]=\mathbb{P}, \quad[\mathbb{J}, \mathbb{K}]=\mathbb{K}} \\
& {[\mathbb{J}, \mathbb{H}]=0, \quad[\mathbb{H}, \mathbb{P}]=0, \quad[\mathbb{H}, \mathbb{K}]=0} \\
& {[\mathbb{P}, \mathbb{P}]=0, \quad[\mathbb{K}, \mathbb{K}]=0, \quad[\mathbb{P}, \mathbb{K}]=\mathbb{H}}
\end{aligned}
$$

Light-cone Poincaré algebra in $d=4$

- Non-vanishing commutators of the Poincaré algebra

$$
\begin{array}{rll}
J^{+}=\frac{J^{+1}+i J^{+2}}{\sqrt{2}}, \quad \bar{J}^{+}=\frac{J^{+1}-i J^{+2}}{\sqrt{2}}, \quad J=J^{12}, & H=P_{+}=-P^{-} . \\
{\left[H, J^{+-}\right]=-i H,} & {\left[H, J^{+}\right]=-i P,} & {\left[H, \bar{J}^{+}\right]=-i \bar{P}} \\
{\left[P^{+}, J^{+-}\right]=i P^{+},} & {\left[P^{+}, J^{-}\right]=-i P,} & {\left[P^{+}, \bar{J}^{-}\right]=-i \bar{P}} \\
{\left[P, \bar{J}^{-}\right]=-i H,} & {\left[P, \bar{J}^{+}\right]=-i P^{+},} & {[P, J]=P}
\end{array}
$$

... and many more
[Bengtsson-Bengtsson-Brink '83]

- Underlying Carrollian structure

Rotation $\mathbb{J}=\left\{\boldsymbol{J}^{12}, \boldsymbol{J}^{+-}, \boldsymbol{J}^{+}, \bar{J}^{+}\right\}$, Boosts $\mathbb{K}=\left\{\boldsymbol{J}^{-}, \bar{J}^{-}\right\}$
Translations $\mathbb{P}=\left\{P, \bar{P}, P_{-}\right\}$, Hamiltonian $\mathbb{H}=P_{+}$

$$
\begin{aligned}
& {[\mathbb{J}, \mathbb{J}]=\mathbb{J}, \quad[\mathbb{J}, \mathbb{P}]=\mathbb{P}, \quad[\mathbb{J}, \mathbb{K}]=\mathbb{K}} \\
& {[\mathbb{J}, \mathbb{H}]=0, \quad[\mathbb{H}, \mathbb{P}]=0, \quad[\mathbb{H}, \mathbb{K}]=0} \\
& {[\mathbb{P}, \mathbb{P}]=0, \quad[\mathbb{K}, \mathbb{K}]=0, \quad[\mathbb{P}, \mathbb{K}]=\mathbb{H}}
\end{aligned}
$$

- In terms of the Kinematical-Dynamical split

$$
\begin{gathered}
\mathbb{K}=\left\{P_{i}, P_{-}, M_{i j}, M_{+-}\right\}, \quad \mathbb{D}=\left\{P_{+}, M_{i+}\right\} \\
{[\mathbb{K}, \mathbb{K}]=\mathbb{K}, \quad[\mathbb{K}, \mathbb{D}]=\mathbb{D}, \quad[\mathbb{D}, \mathbb{D}]=0}
\end{gathered}
$$

Spin 1 as a prelude

- Light-cone gauge: Set the lower minus components to zero

$$
A_{-}=-A^{+}=-\frac{A^{0}+A^{3}}{\sqrt{2}}=0
$$

- Maxwell equations: $\partial_{\mu} F^{\mu \nu}=0$ a) Constraint

$$
(\nu=+): \quad \partial_{-}^{2} \boldsymbol{A}^{-}+\partial_{i} \partial_{-} \boldsymbol{A}^{i}=0 \quad \Rightarrow \quad \boldsymbol{A}^{-}=-\frac{\partial_{i} \boldsymbol{A}^{i}}{\partial_{-}}+\alpha\left(x^{+}, x^{i}\right) x^{-}+\beta\left(x^{+}, x^{i}\right)
$$

b) Trivial equation

$$
(\nu=-): \quad \text { relates } \alpha \text { and } \beta \Rightarrow \text { only one arbitrary constant }
$$

A further choice: set the constants to zero $\quad \rightarrow$ more on this later
c) Dynamical equation $(\nu=i)$

$$
\left(2 \partial_{-} \partial_{+}-\partial_{i} \partial^{i}\right) A^{j}=\square_{I c} A^{j}=0 \Rightarrow \text { two propagating modes of the photon }
$$

The "inverse derivative" operator [Mandelstam '83, Leibbrandt '83]

$$
\partial_{-} f\left(x^{-}\right)=g\left(x^{-}\right) \Rightarrow f\left(x^{-}\right)=\frac{1}{\partial_{-}} g\left(x^{-}\right)=-\int \epsilon\left(x^{-}-y^{-}\right) g\left(y^{-}\right) d y^{-}+\text {"constant" }
$$

Electromagnetism in light-cone formalism

- Complexify the x^{i}

$$
\begin{array}{ll}
x=\frac{x^{1}+i x^{2}}{\sqrt{2}}, & \bar{x}=\frac{x^{1}-i x^{2}}{\sqrt{2}} \quad \partial_{i} \rightarrow(\partial, \bar{\partial}) \\
A^{i} \rightarrow(A, \bar{A}): & \pm 1 \text { helicity states of the photon }
\end{array}
$$

- Light-cone action for electromagnetism

$$
\begin{aligned}
& \mathcal{S}=\frac{1}{2} \int d^{4} x \bar{A} \square_{I C} A=\int d^{4} x \bar{A}\left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A \\
& \rightarrow \quad I_{2} \text { formalism of electromagnetism }
\end{aligned}
$$

Electromagnetism in light-cone formalism

- Complexify the x^{i}

$$
\begin{array}{ll}
x=\frac{x^{1}+i x^{2}}{\sqrt{2}}, & \bar{x}=\frac{x^{1}-i x^{2}}{\sqrt{2}} \quad \partial_{i} \rightarrow(\partial, \bar{\partial}) \\
A^{i} \rightarrow(A, \bar{A}): & \pm 1 \text { helicity states of the photon }
\end{array}
$$

- Light-cone action for electromagnetism

$$
\begin{aligned}
& \mathcal{S}=\frac{1}{2} \int d^{4} x \bar{A} \square_{I C} A=\int d^{4} x \bar{A}\left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A \\
& \rightarrow \quad \text { Ic2 formalism of electromagnetism }
\end{aligned}
$$

- Hamiltonian and Poisson brackets (recall: x^{+}is time)

$$
\pi=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} A\right)}=-\partial_{-} \bar{A}, \quad \bar{\pi}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} \bar{A}\right)}=-\partial_{-} A
$$

$(\pi, \bar{\pi})$ not independent variables \Rightarrow Half the d.o.f than in the $3+1$ formalism

- Poisson brackets

$$
[A(x), \bar{A}(y)]=\epsilon\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y), \quad[A(x), A(y)]=[\bar{A}(x), \bar{A}(y)]=0
$$

Two paths to light-cone action for interacting theories

1) Gauge-fixing a covariant action

- Spin 1: Maxwell or Yang-Mills action

$$
A_{-}=0
$$

- Spin 2: Einstein-Hilbert or Fierz-Pauli action

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, \quad h_{-\mu}=0
$$

- Higher spins: Fronsdal action Spin 3: symmetric rank-3 tensor $\phi_{\mu \nu \rho}$

$$
\phi_{-\mu \nu}-\frac{1}{4} \eta_{\mu \nu} \phi_{\sigma-}^{\sigma}=0
$$

Spin λ : symmetric rank- λ tensor

$$
\phi_{-\mu_{1} \mu_{2} \ldots \mu_{\lambda-1}}-\frac{1}{4} \eta_{\left(\mu_{1} \mu_{2}\right.} \phi_{\left.\mu_{3} \ldots \mu_{\lambda-1}\right) \sigma-}^{\sigma}=0
$$

2) Light-cone deformation procedure
\rightarrow Deform the free LC action and derive interaction vertices from closure of Poincaré algebra
\rightarrow Gauge constraints may be solved to eliminate off-shell modes from the theory
Many successes: Higher spins, Quintic action for LC gravity, Super Yang-Mills, Supergravity, etc.
[Ananth, Akshay, Brink, Hesse, Kim, Kovacs, Majumdar, Mali, Ramond, Shah, ...]

The Bengtsson-Bengtsson-Brink (BBB) action

A higher spin action in the light-cone gauge with cubic interaction vertices

- for even spins,

$$
S[\phi, \bar{\phi}]=\int d^{4} x\left(\frac{1}{2} \bar{\phi} \square \phi+\alpha \sum_{n=0}^{\lambda}(-1)^{n}\binom{\lambda}{n} \bar{\phi}\left(\partial_{-}\right)^{(\lambda-1)}\left[\frac{\bar{\partial}^{\lambda-n}}{\left.\left.\partial_{-}^{\lambda-n} \phi \frac{\bar{\partial}^{\lambda}}{\partial_{-}^{\lambda}} \phi\right]+c . c .\right) ~}\right.\right.
$$

The Bengtsson-Bengtsson-Brink (BBB) action

A higher spin action in the light-cone gauge with cubic interaction vertices

- for even spins,

$$
S[\phi, \bar{\phi}]=\int d^{4} x\left(\frac{1}{2} \bar{\phi} \square \phi+\alpha \sum_{n=0}^{\lambda}(-1)^{n}\binom{\lambda}{n} \bar{\phi}\left(\partial_{-}\right)^{(\lambda-1)}\left[\frac{\bar{\partial}^{\lambda-n}}{\left.\left.\partial_{-}^{\lambda-n} \phi \frac{\bar{\partial}^{\lambda}}{\partial_{-}^{\lambda}} \phi\right]+c . c .\right) ~}\right.\right.
$$

- for odd spins, closure of Poincaré algbera for odd spins demands a structure constant

$$
S\left[\phi^{a}, \bar{\phi}^{a}\right]=\int d^{4} x\left(\frac{1}{2} \bar{\phi}^{a} \square \phi^{a}+\alpha f^{a b c} \sum_{n=0}^{\lambda}(-1)^{n}\binom{\lambda}{n} \bar{\phi}^{a}\left(\partial_{-}\right)^{(\lambda-1)}\left[\frac{\bar{\partial}^{\lambda-n}}{\partial_{-}^{\lambda-n}} \phi^{b} \frac{\bar{\partial}^{\lambda}}{\partial_{-}^{\lambda}} \phi^{c}\right]+\text { c.c. }\right)
$$

The Bengtsson-Bengtsson-Brink (BBB) action

A higher spin action in the light-cone gauge with cubic interaction vertices

- for even spins,

$$
S[\phi, \bar{\phi}]=\int d^{4} x\left(\frac{1}{2} \bar{\phi} \square \phi+\alpha \sum_{n=0}^{\lambda}(-1)^{n}\binom{\lambda}{n} \bar{\phi}\left(\partial_{-}\right)^{(\lambda-1)}\left[\frac{\bar{\partial}^{\lambda-n}}{\left.\left.\partial_{-}^{\lambda-n} \phi \frac{\bar{\partial}^{\lambda}}{\partial_{-}^{\lambda}} \phi\right]+c . c .\right) ~}\right.\right.
$$

- for odd spins, closure of Poincaré algbera for odd spins demands a structure constant

$$
S\left[\phi^{a}, \bar{\phi}^{a}\right]=\int d^{4} x\left(\frac{1}{2} \bar{\phi}^{a} \square \phi^{a}+\alpha f^{a b c} \sum_{n=0}^{\lambda}(-1)^{n}\binom{\lambda}{n} \bar{\phi}^{a}\left(\partial_{-}\right)^{(\lambda-1)}\left[\frac{\bar{\partial}^{\lambda-n}}{\partial_{-}^{\lambda-n}} \phi^{b} \frac{\bar{\partial}^{\lambda}}{\partial_{-}^{\lambda}} \phi^{c}\right]+\text { c.c. }\right)
$$

Some nice features:

- Involves physical degrees of freedom only: No ghosts, auxiliary fields
- Perturbative approach: symmetries are non-linearly realized on physical fields
- Action written in a helicity basis:

$$
h[\phi]=\lambda \quad h[\bar{\phi}]=-\lambda
$$

Closely related to on-shell physics, scattering amplitudes, (anti) self-dual sectors, etc.
[Ananth, Akshay, Brink, Kovacs, Pant, Pandey, Parikh , Theisen ...]

Canonical realization of light-cone Poincaré algebra

Poisson brackets

$$
[\phi(x), \bar{\phi}(y)]=\epsilon\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y), \quad[\phi(x), \phi(y)]=[\bar{\phi}(x), \bar{\phi}(y)]=0
$$

Poincaré generators in terms of the fields ϕ and $\bar{\phi}$

$$
\begin{aligned}
& H=P_{+}=\int d^{3} x \partial_{-} \bar{\phi} \frac{\partial \bar{\partial}}{\partial_{-}} \phi+\text { cubic terms }, \\
& J^{-}=\int d^{3} x \partial_{-} \bar{\phi}\left(x \frac{\partial \bar{\partial}}{\partial_{-}} \phi+x^{-} \partial \phi-\lambda \frac{\partial}{\partial_{-}} \phi\right)+\text { cubic terms }, \\
& P=\int d^{3} x \partial_{-} \bar{\phi} \partial \phi, \quad P_{-}=d^{3} x \partial_{-} \bar{\phi} \partial_{-} \phi, \quad \cdots \\
& J=i \int d^{3} x \partial_{-} \bar{\phi}(x \bar{\partial}-\bar{x} \partial-\lambda) \phi,, \quad \cdots
\end{aligned}
$$

which satisfy

\[

\]

Canonical realization of light-cone Poincaré algebra

Poisson brackets

$$
[\phi(x), \bar{\phi}(y)]=\epsilon\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y), \quad[\phi(x), \phi(y)]=[\bar{\phi}(x), \bar{\phi}(y)]=0
$$

Poincaré generators in terms of the fields ϕ and $\bar{\phi}$

$$
\begin{aligned}
& H=P_{+}=\int d^{3} x \partial_{-} \bar{\phi} \frac{\partial \bar{\partial}}{\partial_{-}} \phi+\text { cubic terms }, \\
& J^{-}=\int d^{3} x \partial_{-} \bar{\phi}\left(x \frac{\partial \bar{\partial}}{\partial_{-}} \phi+x^{-} \partial \phi-\lambda \frac{\partial}{\partial_{-}} \phi\right)+\text { cubic terms }, \\
& P=\int d^{3} x \partial_{-} \bar{\phi} \partial \phi, \quad P_{-}=d^{3} x \partial_{-} \bar{\phi} \partial_{-} \phi, \quad \cdots \\
& J=i \int d^{3} x \partial_{-} \bar{\phi}(x \bar{\partial}-\bar{x} \partial-\lambda) \phi,, \quad \cdots
\end{aligned}
$$

which satisfy

\[

\]

What are the residual gauge symmetries of the BBB action?

The spin 3 case

- BBB action for spin 3:

$$
\begin{gathered}
S\left[\phi^{a}, \bar{\phi}^{a}\right]=S^{\text {free }}+S^{(\alpha)}, \quad S^{\text {free }}=\int d^{4} x \frac{1}{2} \bar{\phi}^{a} \square \phi^{a} \\
S^{(\alpha)}=\alpha f^{a b c} \int d^{4} x \bar{\phi}^{a} \partial_{-}^{2}\left[\frac{\bar{\partial}^{3}}{\partial_{-}^{3}} \phi^{b} \phi^{c}-3 \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} \phi^{b} \frac{\bar{\partial}}{\partial_{-}} \phi^{c}+3 \frac{\bar{\partial}}{\partial_{-}} \phi^{b} \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} \phi^{c}-\phi^{b} \frac{\bar{\partial}^{3}}{\partial_{-}^{3}} \phi^{c}\right]+\text { c.c. }
\end{gathered}
$$

- Gauge symmetry $\phi_{\mu \nu \rho}=\partial_{(\mu} \varepsilon_{\nu \rho)}$

Ansatz: $\quad \phi^{a}=\partial \varepsilon^{a}+\ldots, \quad \partial_{-} \varepsilon^{a}=0, \quad \varepsilon^{a} \rightarrow$ spin-2 parameter

The spin 3 case

- BBB action for spin 3:

$$
\begin{gathered}
S\left[\phi^{a}, \bar{\phi}^{a}\right]=S^{f r e e}+S^{(\alpha)}, \quad S^{\text {free }}=\int d^{4} x \frac{1}{2} \bar{\phi}^{a} \square \phi^{a} \\
S^{(\alpha)}=\alpha f^{a b c} \int d^{4} x \bar{\phi}^{a} \partial_{-}^{2}\left[\frac{\bar{\partial}^{3}}{\partial_{-}^{3}} \phi^{b} \phi^{c}-3 \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} \phi^{b} \frac{\bar{\partial}}{\partial_{-}} \phi^{c}+3 \frac{\bar{\partial}}{\partial_{-}} \phi^{b} \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} \phi^{c}-\phi^{b} \frac{\bar{\partial}^{3}}{\partial_{-}^{3}} \phi^{c}\right]+\text { c.c. }
\end{gathered}
$$

- Gauge symmetry $\phi_{\mu \nu \rho}=\partial_{(\mu} \varepsilon_{\nu \rho)}$

$$
\text { Ansatz: } \quad \phi^{a}=\partial \varepsilon^{a}+\ldots, \quad \partial_{-} \varepsilon^{a}=0, \quad \varepsilon^{a} \rightarrow \text { spin-2 parameter }
$$

Are these symmetries of the free action, $S^{\text {free? }}$
Yes, if

- $\partial_{+} \epsilon^{a}=0 \Rightarrow \epsilon^{a}\left(x^{+}, x, \bar{x}\right)=K^{a}(x, \bar{x})$
- At large x^{-}, field ϕ^{a} decays as $1 / x^{-}$or faster
- $\partial \bar{\partial} \epsilon^{a}=0 \Rightarrow K^{a}(x, \bar{x})=K^{a}(x)+\bar{K}^{a}(\bar{x}) \quad \rightarrow$ Is this suprising?

Revisitng elcetromagnetism in $/ c_{2}$ formalism

Light-cone action for electromagnetism

$$
\mathcal{S}=\frac{1}{2} \int d^{4} x \bar{A} \square_{l C} A=\int d^{4} x \bar{A}\left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A
$$

Residual gauge symmetries:

$$
A \rightarrow A+\partial \epsilon, \quad \bar{A} \rightarrow \bar{A}+\bar{\partial} \epsilon
$$

and

$$
\partial_{-} \epsilon=0, \quad \partial_{+} \epsilon=0, \quad \partial \bar{\partial} \epsilon=0
$$

To recover all the residual gauge transformations, a boundary mode (zero mode in x^{-}) is needed Modified light-cone action

$$
\mathcal{S}[A, \bar{A}, \Phi]=\int d x^{+}\left\{\int_{\Sigma} d^{3} x \bar{A}\left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A-\int_{\partial \Sigma} d x d \bar{x} \dot{\Phi} \triangle \Phi\right\}
$$

Phase space extended to include the boundary d.o.f. $\Phi \rightarrow$ a.k.a. $/ c_{4}$ formalism
Amounts to relaxing the boundary conditons at large x^{-}

Complete set of residual gauge symmetries

- Proper: $\delta_{\epsilon} A=\partial \epsilon, \delta_{\epsilon} \Phi=0$ with $\Delta \epsilon=0$
- Improper: $\delta_{\epsilon} A=0 \delta_{\epsilon} \Phi=\epsilon$ with $\Delta \epsilon \neq 0$

Revisitng elcetromagnetism in $/ c_{2}$ formalism

Light-cone action for electromagnetism

$$
\mathcal{S}=\frac{1}{2} \int d^{4} x \bar{A} \square_{l C} A=\int d^{4} x \bar{A}\left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A
$$

Residual gauge symmetries:

$$
A \rightarrow A+\partial \epsilon, \quad \bar{A} \rightarrow \bar{A}+\bar{\partial} \epsilon
$$

and

$$
\partial_{-} \epsilon=0, \quad \partial_{+} \epsilon=0, \quad \partial \bar{\partial} \epsilon=0
$$

To recover all the residual gauge transformations, a boundary mode (zero mode in x^{-}) is needed Modified light-cone action

$$
\mathcal{S}[A, \bar{A}, \Phi]=\int d x^{+}\left\{\int_{\Sigma} d^{3} x \bar{A}\left(\partial_{+} \partial_{-}-\partial \bar{\partial}\right) A-\int_{\partial \Sigma} d x d \bar{x} \dot{\Phi} \triangle \Phi\right\}
$$

Phase space extended to include the boundary d.o.f. $\Phi \rightarrow$ a.k.a. $/ c_{4}$ formalism
Amounts to relaxing the boundary conditons at large x^{-}

Complete set of residual gauge symmetries

- Proper: $\delta_{\epsilon} A=\partial \epsilon, \delta_{\epsilon} \Phi=0$ with $\Delta \epsilon=0$
- Improper: $\delta_{\epsilon} A=0 \delta_{\epsilon} \Phi=\epsilon$ with $\Delta \epsilon \neq 0$

Residual gauge symmetries for arbitrary spins

- Spin 3 :

$$
\delta_{K} \phi^{a}=\partial K^{a}(x), \quad \delta_{\bar{K}} \bar{\phi}^{a}=\bar{\partial} \bar{K}^{a}(\bar{x})
$$

- For even spins:

$$
\delta_{K} \phi^{(\lambda)}=\partial K^{(\lambda-1)}, \quad \delta_{\bar{K}} \bar{\phi}^{(-\lambda)}=\bar{\partial} \bar{K}^{(-\lambda+1)}
$$

with

$$
K^{(\lambda)}=K^{(\lambda)}(x), \quad \bar{K}^{(-\lambda)}=\bar{K}^{(-\lambda)}(\bar{x}), \quad \text { for all } \lambda
$$

- For odd spins:

$$
\delta_{K} \phi^{a(\lambda)}=\partial K^{a(\lambda-1)}, \quad \delta_{\bar{K}} \bar{\phi}^{a(-\lambda)}=\bar{\partial} \bar{K}^{a(-\lambda+1)}, \quad \text { same for } K^{a}, \bar{K}^{a}
$$

\rightarrow Two infinite towers of residual gauge symmetries for higher spin fields

Residual gauge symmetries for arbitrary spins

- Spin 3:

$$
\delta_{K} \phi^{a}=\partial K^{a}(x), \quad \delta_{\bar{K}} \bar{\phi}^{a}=\bar{\partial} \bar{K}^{a}(\bar{x})
$$

- For even spins:

$$
\delta_{K} \phi^{(\lambda)}=\partial K^{(\lambda-1)}, \quad \delta_{\bar{K}} \bar{\phi}^{(-\lambda)}=\bar{\partial} \bar{K}^{(-\lambda+1)}
$$

with

$$
K^{(\lambda)}=K^{(\lambda)}(x), \quad \bar{K}^{(-\lambda)}=\bar{K}^{(-\lambda)}(\bar{x}), \quad \text { for all } \lambda
$$

- For odd spins:

$$
\delta_{K} \phi^{a(\lambda)}=\partial K^{a(\lambda-1)}, \quad \delta_{\bar{K}} \bar{\phi}^{a(-\lambda)}=\bar{\partial} \bar{K}^{a(-\lambda+1)}, \quad \text { same for } K^{a}, \bar{K}^{a}
$$

\rightarrow Two infinite towers of residual gauge symmetries for higher spin fields

- Going to the cubic order

$$
S^{(\alpha)}=\alpha f^{a b c} \int d^{4} \times \bar{\phi}^{a} \partial_{-}^{2}\left[\frac{\bar{\partial}^{3}}{\partial_{-}^{3}} \phi^{b} \phi^{c}-3 \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} \phi^{b} \frac{\bar{\partial}}{\partial_{-}} \phi^{c}+3 \frac{\bar{\partial}}{\partial_{-}} \phi^{b} \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} \phi^{c}-\phi^{b} \frac{\bar{\partial}^{3}}{\partial_{-}^{3}} \phi^{c}\right]+\text { c.c. }
$$

Spin 3 residual gauge invariance

$$
\delta_{K, \bar{K}} \phi^{a}=\partial K^{a}(x)-2 \alpha f^{a b c} \frac{\bar{\partial}^{2}}{\partial_{-}} \phi^{b} K^{c}(x)+2 \alpha f^{a b c} \frac{1}{\partial_{-}^{3}}\left(\partial_{-}^{2} \partial^{2} \phi^{b} \bar{K}^{c}(\bar{x})\right)
$$

and $\delta_{K, \bar{K}} \bar{\phi}^{a}=\left(\delta_{K, \bar{K}} \phi^{a}\right)^{*}$
But the algebra doesn't seem to close!

Why call them superrotations?

HS supertranslations and superrotations at null infinity (r, u, z, \bar{z})
[Campoleoni-Francia-Heissenberg]
Bondi-like gauge:

$$
\phi_{r \mu \nu}=0, \quad \gamma^{i j} \phi_{i j \mu}=0, \quad \phi_{i j k} \sim \mathcal{O}\left(r^{2}\right), \quad \ldots
$$

Large gauge transformations:

$$
\delta \phi_{i j k}=\partial_{(i} \varepsilon_{j k)}, \quad \varepsilon_{i j} \sim r^{2} \partial_{i} \partial_{j} F+r \partial_{i} \rho_{j}+K_{i j}
$$

HS superrotation parameter satisfies similar conditions as the LC K parameter

$$
K^{z z}=K(z), \quad K^{\bar{z} \bar{z}}=\bar{K}(\bar{z}), \quad K^{z \bar{z}}=0
$$

Why call them superrotations?

HS supertranslations and superrotations at null infinity (r, u, z, \bar{z})
[Campoleoni-Francia-Heissenberg]
Bondi-like gauge:

$$
\phi_{r \mu \nu}=0, \quad \gamma^{i j} \phi_{i j \mu}=0, \quad \phi_{i j k} \sim \mathcal{O}\left(r^{2}\right), \quad \ldots
$$

Large gauge transformations:

$$
\delta \phi_{i j k}=\partial_{(i} \varepsilon_{j k)}, \quad \varepsilon_{i j} \sim r^{2} \partial_{i} \partial_{j} F+r \partial_{i} \rho_{j}+K_{i j}
$$

HS superrotation parameter satisfies similar conditions as the LC K parameter

$$
K^{z z}=K(z), \quad K^{\bar{z} \bar{z}}=\bar{K}(\bar{z}), \quad K^{z \bar{z}}=0
$$

Some concluding remarks...

- Are these the same HS superrotations? Large $r \neq$ Large x^{-}
- Can we find all the HS supertranslations and superrotations by adding more boundary d.o.f.?

Why call them superrotations?

HS supertranslations and superrotations at null infinity (r, u, z, \bar{z})
[Campoleoni-Francia-Heissenberg]
Bondi-like gauge:

$$
\phi_{r \mu \nu}=0, \quad \gamma^{i j} \phi_{i j \mu}=0, \quad \phi_{i j k} \sim \mathcal{O}\left(r^{2}\right), \quad \ldots
$$

Large gauge transformations:

$$
\delta \phi_{i j k}=\partial_{(i} \varepsilon_{j k)}, \quad \varepsilon_{i j} \sim r^{2} \partial_{i} \partial_{j} F+r \partial_{i} \rho_{j}+K_{i j}
$$

HS superrotation parameter satisfies similar conditions as the LC K parameter

$$
K^{z z}=K(z), \quad K^{\bar{z} \bar{z}}=\bar{K}(\bar{z}), \quad K^{z \bar{z}}=0
$$

Some concluding remarks...

- Are these the same HS superrotations? Large $r \neq$ Large x^{-}
- Can we find all the HS supertranslations and superrotations by adding more boundary d.o.f.?
- Does the cubic action exist in that case?
- Do these symmetries truly extend to the interacting higher spin theory?

APPENDIX

Gauge-fixing the Fronsdal action

Spin 3:

$$
\phi_{-\mu \nu}-\frac{1}{4} \eta_{\mu \nu} \phi_{\sigma-}^{\sigma}=0
$$

Constraint equations yield

$$
\begin{gathered}
\phi^{++-}=\phi^{+11}=\phi^{+22}=0 \\
\phi^{-i j}=\frac{1}{\partial_{-}} \partial_{k} \phi^{k i j}, \quad \phi^{--i}=\frac{1}{\partial_{-}^{2}} \partial_{i} \partial_{k} \phi^{i j k} \\
\phi^{-i j}=\frac{1}{\partial_{-}^{3}} \partial_{i} \partial_{j} \partial_{k} \phi^{k i j}, \quad \phi^{11 i}=-\phi^{22 i}
\end{gathered}
$$

Finally

$$
\phi=\frac{\phi^{111}+i \phi^{112}}{\sqrt{2}} \quad \bar{\phi}=\frac{\phi^{111}-i \phi^{112}}{\sqrt{2}}
$$

