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What is it good for?

• The main motivation to study
Carrollian physics comes from
flat space holography
[Bagchi et al., ’16; Pasterski et al., ’17; Donnay et al., ’22]

• Black hole membrane paradigm
[Price & Thorne, ’86; Penna, ’18; Donnay & Marteau., ’19]

• Magic angles in superconducting
twisted bilayer graphene
[Bagchi et al., ’22]

• Other motivations include the
Carroll/fracton duality
[Figueroa-O’Farrill et al., ’23]



Plan

1 Carrollian geometry from
expansions

2 c → 0 limit of relativistic fluids

3 Carrollian fluids and the boost
Goldstone



Carrollian geometry
A neat way to get a Carrollian geometry is to c2 expand a
Lorentzian geometry: [Hansen et al., ’21]

• Write metric and inverse as (PUL parameterisation)
gµν = −c2TµTν +Πµν , gµν = − 1

c2
V µV ν +Πµν

where TµV µ = −1, V µΠµν = TµΠ
µν = 0

• Expand PUL variables in powers of c2

Tµ = τµ +O(c2) , V µ = vµ +O(c2) ,

Πµν = hµν +O(c2) , Πµν = hµν +O(c2)

• Local Lorentz boosts turn into Carrollian boosts with
parameter λµ (note: vµλµ = 0)

δCτµ = λµ , δChµν = 2λρhρ(µvν)



The connection

• ∇̂ Levi–Civita connection with Christoffel symbols written in
terms of the PUL variables as

Γ̂ρ
µν = − 1

c2
V ρKµν + C̃ρ

µν +ΠρλTνKµλ +O(c2)

where Kµν = −1/2£V Πµν

• Carrollian adapted “affine” connection ∇̃ with

Γ̃ρ
µν = C̃ρ

µν

∣∣
c=0

, ∇̃µvν = ∇̃µhνρ = 0 , δC Γ̃
ρ
µν 6= 0

NB: Actual affine connection requires the Ehresmann connection
(“strong Carrollian geometries”) ! fractons?



Revisiting the c → 0 limit of relativistic fluids

Relativistic fluid has Uµ satisfying UµUνgµν = −c2. In PUL
variables:

Uµ = −V µ − c2uµ (cf. also [de Boer et al., ’23])

for some uµ = θµ +O(c2).
• Since δV µ = c2hµνλν +O(c4)

⇒ δCθ
µ = −hµνλν

• EMT given by

Tµ
ν =

Ê + P̂
c2

UµUν + P̂δµν = (E + P)vµτ̂ν + Pδµν +O(c2)

with
τ̂µ = τµ + hµνθν , δC τ̂µ = 0



Broken boosts in Nature

• Thermal states break boost symmetry spontaneously due to
preferred rest frame aligned with thermal vector βµ = uµ/T

[Alberte+Nicolis, ’20; Komargodski et al., ’21]

• Relativistic fluids: boost Goldstone normally absorbed in fluid
velocity (except for framids) [Nicolis et al., ’15]

www�
Not the case for Carrollian fluids



The Carroll boost Goldstone

The Carroll boost Goldstone transforms as

δCθ
µ = −hµνλν

NB: Only spatial part of of θµ is physical, so we endow with a
timelike Stueckelberg symmetry

δSθ
µ = χvµ

• We can use θµ to build the C and S invariant objects

τ̂µ = τµ + hµνθν , ĥµν = hµν + vµvν(θ2 + 2τρθ
ρ) + 2v (µθν)

⇒ The fields (τ̂µ, vµ, hµν , ĥµν) form an Aristotelian structure



Currents & conservation laws
General variation of free energy S[τµ, hµν , θµ]

δS =

ˆ
dd+1x e

(
− Tµ δτµ +

1

2
T µν δhµν − Kµ δθµ

)
• Energy current
• Momentum-stress tensor
• Goldstone equation of motion

The Ward identities for timelike Stueckelberg transformations and
Carrollian boosts are

vµKµ = 0 , T νhνµ = Kµ

The diffeo. WI is e−1∂µ(eTµ
ρ) + Tµ∂ρτµ − 1

2
T µν∂ρhµν = 0

where Tµ
ν = −τνTµ + T µρhρν (NB: δC,STµ

ν = Kνhµρλρ − χvµKν)



Hydrostatic partition function for Carrollian fluids

Given a background Carrollian KVF kµ, can build gauge inv. scalars

T = T0/τ̂µkµ , ~u2 = hµνuµuν

where uµ = kµ/τ̂ρkρ. NB: no temperature unless boosts broken

• Hydrostatic partition function given by

S =

ˆ
dd+1x e P(T ,~u2)

⇒ Ideal EMT and Goldstone equation of motion given by

Tµ
(0)ν = Pδµν + muµ~uν − (sT + m~u2)(uµτ̂ν + θµ~uν) ,

K(0)µ = (sT + m~u2)~uµ = (E + P)~uµ

• Two solutions to K(0)µ = 0: either ~uµ = 0 or E + P = 0



Summary and outlook

What we have achieved

• The Carroll boost Goldstone plays a crucial rôle in Carrollian
fluids

• The c → 0 limit of relativistic fluids gives rise to one branch of
the Carrollian fluid

• First order hydro from Aristotelian fluids & dissipative modes

What lies ahead

• Relation to the membrane paradigm?

• “Strong Carrollian fluids” and fractons?

• Relation to flat space holography?



Thank you for your attention



Extra slide: fluid equations of motion

�

Relativistic equations of motion

∇̂µTµ
ν = 0

turn into

vµ∂µE = (E + P)K ,

hλµ∂µP = −(E + P)(hλµvντνµ − hλµθνKµν − Khλσhσρθ
ρ)

− hλµhµρvν∇̃ν((E + P)θρ)

where τµν = (dτ)µν and Kµν = −1/2 £vhµν

• If in coordinates xµ = (t, x i) such that Carrollian structure of
“Randers–Papapetrou form”

vµ∂µ = − 1

Ω
∂t , hµνdxµdxν = aijdx idx j , τµdxµ = Ωdt − bidx i

recover∗ Carrollian fluids of [Ciambelli et al., ’18; Petkou et al., ’22; Bagchi et al., ’23]



Extra slide: the Carroll algebra

The Poincaré algebra iso(d , 1) = 〈Pm, Lmn〉 has brackets

[Lmn, Lpq] = ηnpLmq − ηmpLnq − ηnqLmp + ηmqLnp

[Lmn,Pp ] = ηmpPn − ηnpPm

where ηmn = (−c2, 1, . . . , 1). Setting Ba = L0a and H = P0, we
get

[Lab , Lcd ]= δacLbd − δbcLad + δbdLac − δadLbc

[Lab ,Bc ] = δacBb − δbcBa

[Lab ,Pc ]= δacPb − δbcPa

[Pa,Bb ] = δabH
[Ba,Bb ] = −c2Lab

[H,Ba] = c2Pa

The Carroll algebra is the c → 0 limit of this (with Ba → Ca)

[Pa,Cb ] = δabH , [Lab ,Pc ] = δacPb − δbcPa ,

[Lab ,Cc ] = δacCb − δbcCa ,

[Lab , Lcd ] = δacLbd − δbcLad + δbdLac − δadLbc .

[Lévy-Leblond, ’65; Gupta, ’66]


