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Poem by ChatGPT on “Carrollian physics”

Carrollian black holes, dark and deep,
With symmetries that cannot be beat,
As they mirror the Poincaré set,
In the limit, where light is not yet.

This world of madness, is not just fun,
But has applications, one by one,
From condensed matter, to cosmology,
It’s a source of knowledge, a revelatory key.

So let us explore, this world unknown,
And be swept away, by its whims and tone,
For in the land of Carrollian physics,
We may find a truth, that’s truly cryptic.
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Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics

I Correlations functions
I Decay channels
I Density of states

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré

I Symmetries of null hypersurfaces horizons, flat space asymptotics

I Symmetries of tensionless strings
I Fractons & cosmology

Following history from SR to GR: natural to gauge Carroll algebra
I Gravity actions (but with Carroll boost invariance)

I Carrollian Einstein equations
I Vacuum plus linearized solutions
I Solitonic (black hole-like) solutions

Carrollian symmetries key in numerous recent developments
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I Symmetries of null hypersurfaces horizons, flat space asymptotics

I Symmetries of tensionless strings
I Fractons & cosmology

Following history from SR to GR: natural to gauge Carroll algebra
I Gravity actions (but with Carroll boost invariance)

I Carrollian Einstein equations
I Vacuum plus linearized solutions
I Solitonic (black hole-like) solutions

Carrollian symmetries key in numerous recent developments

Daniel Grumiller — Carroll black holes Motivation for Carrollian physics 6/38



Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics
I Correlations functions
I Decay channels
I Density of states

SBH = SCardy

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré
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Carrollian symmetries arise in various contexts
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The Red Queen offers advice to

Alice, who finds herself running

intensely, but not actually moving

forward: “Now, here, you see,” says
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Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics
I Correlations functions
I Decay channels
I Density of states

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré
I Symmetries of null hypersurfaces horizons, flat space asymptotics

I Symmetries of tensionless strings
I Fractons & cosmology

Following history from SR to GR: natural to gauge Carroll algebra
I Gravity actions (but with Carroll boost invariance)
I Carrollian Einstein equations
I Vacuum plus linearized solutions
I Solitonic (black hole-like) solutions

google “carroll black hole” images; 17th result is song ‘Black Hole’ by Mackin Carroll

Carrollian symmetries key in numerous recent developments
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Landscape of applications of Carrollian physics

slide provided by Arjun Bagchi in Edinburgh 2023
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Formally: take c→ 0 limit of Poincaré symmetries
Analogous to Galilean limit but with reversed roles of space and time

I Unchanged: translations H = ∂t, Pi = ∂i, rotations Jij = xi∂j − xj∂i

I Changed: boosts

Bi = c2t ∂i − xi ∂t
c→0→ Bi = −xi ∂t

Carrollian algebra like Poincaré, except for boosts:
I Hamiltonian commutes with Carrollian boosts Hamiltonian in center of Carroll algebra

[Bi, H] = 0

I Carrollian boosts commute with each other no “Thomas precession”

[Bi, Bj ] = 0

I Spatial translations do not commute with Carrollian boosts Heisenberg

[Bi, Pj ] = δij H

I Angular rotations do not commute with Carrollian boosts vector trafo

[Bk, Jij ] = δk[iBj]
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I Hamiltonian commutes with Carrollian boosts Hamiltonian in center of Carroll algebra

[Bi, H] = 0

I Carrollian boosts commute with each other no “Thomas precession”

[Bi, Bj ] = 0

I Spatial translations do not commute with Carrollian boosts Heisenberg

[Bi, Pj ] = δij H

boosts and translations generate subalgebra of Carroll algebra

I Angular rotations do not commute with Carrollian boosts vector trafo

[Bk, Jij ] = δk[iBj]
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Carrollian limit of Minkowski metric

I Metric degenerates to spatial metric:

ds2 = ηµν dxµ dxν = −c2 dt2+δij dxi dxj
c→0→ ds2 = δij dxi dxj

I Inverse metric degenerates to temporal bi-vector:

−c2ηµν =

(
1 0
0 −c2δij

)
c→0→ vµvν with vµ = δµt

I Carroll spacetimes require specification of Carrol metric hµν with
signature (0,+,+, . . . ,+) and time-like Carroll vector vµ with

hµν v
ν = 0

I Carroll symmetries preserve this Carroll structure

Lξhµν = 0 = Lξvµ

Carroll symmetries generated by vector ξµ through Lie derivative
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I Carroll spacetimes require specification of Carrol metric hµν with
signature (0,+,+, . . . ,+) and time-like Carroll vector vµ with

hµν v
ν = 0

could envisage generalization to metrics with signature (0, . . . , 0,−, . . . ,−,+ . . . ,+)
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Carroll gravity in Cartan-like variables

I Since metric degenerate: convenient to use instead Cartan variables

I For simplicity, show this in 1+1 dimensions; data:
temporal einbein τ , spatial einbein e, Carroll boost connection ω

I trafos under Carroll boosts:

δλτ = −λe δλe = 0 δλω = dλ

I curvature: R = dω

I intrinsic torsion: K = de

I torsion: T = dτ + ω ∧ e
I simplest action: Carroll–Jackiw–Teitelboim model

ICJT ∼
∫ (

X R+XH T +XP K − τ ∧ eΛX
)

DG, Hartong, Prohazka, Salzer ’20; Gomis, Hidalgo, Salgado-Rebolledo ’20

I on-shell: (intrinsic) torsion vanishes; constant curvature
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additionally, we have the orthonomality relations

vµeµ = 0 = eµτµ eµeµ = 1
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I trafos under Carroll boosts:

δλτ = −λe δλe = 0 δλω = dλ

I curvature: R = dω

I intrinsic torsion: K = de
the word “intrinsic” means independence from the Carroll boost connection ω
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I Since metric degenerate: convenient to use instead Cartan variables
I For simplicity, show this in 1+1 dimensions; data:

temporal einbein τ , spatial einbein e, Carroll boost connection ω
I trafos under Carroll boosts:

δλτ = −λe δλe = 0 δλω = dλ
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I intrinsic torsion: K = de
I torsion: T = dτ + ω ∧ e
I simplest action: Carroll–Jackiw–Teitelboim model

ICJT ∼
∫ (

X R+XH T +XP K − τ ∧ eΛX
)

DG, Hartong, Prohazka, Salzer ’20; Gomis, Hidalgo, Salgado-Rebolledo ’20

X: dilaton field
XH: boost invariant auxiliary scalar
XP: boost non-invariant auxiliary scalar
Λ: model parameter (comparable to cosmological constant)
τ ∧ e: volume form

I on-shell: (intrinsic) torsion vanishes; constant curvature
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Carroll gravity in Cartan-like variables

I Since metric degenerate: convenient to use instead Cartan variables
I For simplicity, show this in 1+1 dimensions; data:
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ICJT ∼
∫ (

X R+XH T +XP K − τ ∧ eΛX
)

DG, Hartong, Prohazka, Salzer ’20; Gomis, Hidalgo, Salgado-Rebolledo ’20
X: dilaton field
XH: boost invariant auxiliary scalar
XP: boost non-invariant auxiliary scalar
Λ: model parameter (comparable to cosmological constant)
τ ∧ e: volume form
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Generic Carroll dilaton gravity in two dimensions
DG, Hartong, Prohazka, Salzer ’20

I Most general bulk action:

ICDG =
k

2π

∫ (
X R+XH T +XP K + τ ∧ eV(X, XH)

)
for connoisseurs:
models above equivalent to Poisson-sigma model (PSM) with Poisson tensor

P IJCarroll =

 0 0 XH

0 0 V(X, XH)
−XH −V(X, XH) 0


to be contrasted with Poisson tensor of Lorentzian dilaton gravity

P IJLorentz =

 0 −X+ X−

X+ 0 V(X, X+X−)
−X− −V(X, X+X−) 0



I Non-trivial model input: choice of potential V(X, XH)
I Transformation under Carroll boosts:
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δλω = dλ δλτ = −e λ δλe = 0

I Two additional gauge symmetries:

δλtX = 0 δλtXH = 0 δλtXP = V λt
δλrX = −λr δλrXH = −V λr δλrXP = 0

δλtω = −(∂XV) eλt δλtτ = dλt − (∂HV) eλt δλte = 0

δλrω = (∂XV) τλr δλrτ = (∂HV) τλr δλte = dλr

I On-shell they generate diffeomorphisms, λI = AI µ ξ
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Equations of motion

Variation of the bulk action

ICDG =
k

2π

∫ (
X R+XH T +XP K + τ ∧ eV(X, XH)

)
yields the equations of motion

δX Carroll curvature: R = dω = −∂XV(X, XH) τ ∧ e
δXH Carroll torsion: T = dτ + ω ∧ e = −∂HV(X, XH) τ ∧ e
δXP No intrinsic torsion: K = de = 0

δω Carroll metric: dX +XH e = 0

δτ Carroll Casimir: dXH + V(X, XH) e = 0

δe Auxiliary field: dXP − V(X, XH) τ −XH ω = 0

Trivial solution sector: constant dilaton vacua, XH = 0 ⇒ X = const. ⇒
V(X, 0) = 0 ⇒ XP = const.
moreover: constant curvature, vanishing torsion; boring solutions!
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Generic solutions (“linear dilaton vacua”)
Florian Ecker et al. 2308.10947

Solution algorithm inspired by Lorentzian 2d dilaton gravity (see DG,
Kummer, Vassilevich ’02)
I Assume XH 6= 0 and write e = −dX/XH for simplicity assume here V = V (X)

I Insert into Carroll Casimir equation

1

2
d(X2

H)− V (X) dX = 0

and solve it for XH as function of dilaton X (w(X) :=
∫ X

V (y) dy)

XH = ±
√

2(w(X)−M) dM = 0

I constant of motion M corresponds to mass of the state
I solve absence of intrinsic torsion by e = dr (“radial coordinate”)
I remaining equations yield dilaton, timelike vector field, and metric

dr = −dX

XH

v =
1

XH

∂t ds2 = dr2
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Example: Carroll–Jackiw–Teitelboim model

I pick V (X) = 1
`2
X with Carroll-AdS radius ` > 0

I apply algorithm and find

X =
1

2
er/` +M`2 e−r/` ω = −X

`2
dt

XH =
1

2`
er/` −M`e−r/` τ = XH dt

XP = 0 e = dr .

or in metric variables

v =
2` e−r/`

1− 2M`2 e−2r/`
∂t ds2 = dr2

I three qualitatively different classes of solutions:

1. M < 0: reminiscent of global AdS2 in JT
2. M = 0: reminiscent of Poincaré patch AdS2 in JT
3. M > 0: reminiscent of black hole sector of JT
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Example: Carroll–Jackiw–Teitelboim model

I pick V (X) = 1
`2
X with Carroll-AdS radius ` > 0

I apply algorithm and find

X =
1

2
er/` +M`2 e−r/` ω = −X

`2
dt

XH =
1

2`
er/` −M`e−r/` τ = XH dt

XP = 0 e = dr .

or in metric variables

v =
2` e−r/`

1− 2M`2 e−2r/`
∂t ds2 = dr2

I three qualitatively different classes of solutions:
1. M < 0: reminiscent of global AdS2 in JT
2. M = 0: reminiscent of Poincaré patch AdS2 in JT
3. M > 0: reminiscent of black hole sector of JT

key feature: locus with XH = 0 part of solution?

XH = 0
X

XH

M = 0

M = 1

M = −1
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Outline

Motivation for Carrollian physics

Carrollian symmetries

Carroll gravity

Carroll thermal properties

Carroll extremal surfaces

Carroll black holes

Example and lift to higher dimensions

Generalizations
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Carroll energy

I codimension-2 charge variation for generic PSM:

δQ[λ] =
k

2π
λI δX

I

I charge associated with unit time-translations ξ = ∂t:

δQ[λI = AI t] =
k

2π
δM

with the (conserved) mass defined through the Casimir

M = w(X)− 1

2
X2

H dM = 0

I define Carroll energy as charge associated with unit time translations

E =
k

2π
M
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Carroll temperature

I demand disk topology (with center at XH = 0)

2π
!

=

∫
M

dω −
∫
∂M

ω

where ω is the Carroll boost connection

I equality above yields

2π
!

= β ∂Xw(X)
∣∣
Xmin

where Xmin is minimal value of dilaton

I Interpreting β = T−1 as inverse Carroll temperature yields

T =
w′(Xmin)

2π

formally identical to Hawking temperature in Lorentzian case
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Carroll entropy

I Wald-like derivation yields

S = kXmin

concurrent with the Lorentzian result for the Wald entropy (“dilaton
evaluated at the horizon”)

I variation of mass yields

δE =
k

2π

(
w′(X) δX −XH δXH

)
I evaluation at minimal value of dilaton (where XH = 0) establishes

first law
δE = T δS

I dimensional subtlety: to get dimensionless entropy need radius and
time to have same dimensions ⇒ need velocity as conversion factor!

I e.g. view Carrollian theories as limits of Carrollian expansions where
speed of light still present
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Lorentzian extremal surfaces

I classify co-dimension-2 surfaces according to their null expansions

I Lorentzian 2d dilaton gravity: amounts to classification of signs of X±

ds2 = 2 dv
(

dX +X+X− dv
)

Extremal surfaces are boost invariant loci!
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I classify co-dimension-2 surfaces according to their null expansions
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(
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signs X+ > 0 X+ < 0 X+ = 0
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marginally anti-trapped

normal
anti-normal

anti-trapped

trapped

extremal

Extremal surfaces are boost invariant loci!

Daniel Grumiller — Carroll black holes Carroll extremal surfaces 22/38



Lorentzian extremal surfaces

I classify co-dimension-2 surfaces according to their null expansions

I Lorentzian 2d dilaton gravity: amounts to classification of signs of X±

ds2 = 2 dv
(

dX +X+X− dv
)

I action of Lorentzian boosts on X±:

δλX = 0 δλX
± = ∓λX±

I same result evaluated at extremal surface:

δλX|ext = 0 δλX
±|ext = 0

Extremal surfaces are boost invariant loci!
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Carroll extremal surfaces

I search for loci that are Carroll boost invariant

I recall action of Carroll boosts on various scalar fields:

δλX = 0 = δλXH δλXP = λXH

I suggests definition of CES
XH = 0

I Carrollian classification of co-dimension-2 surfaces simple

signs XH > 0 XH < 0 XH = 0

normal anti-normal extremal

anti-normal

normal

extremal

normal

anti-normal

extremal
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Proposal for Carroll black hole definition in 2d

no horizons
?
= no black holes

If this was true there would be no black holes in

I Carroll gravity

I higher spin gravity

I quantum gravity

Carroll black holes are defined to have all of these properties:

1. (exact) solution to some Carroll gravity

2. Carroll thermal state (finite temperature and entropy)

3. must have (isolated) CES
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Selected list of 2d Carroll dilaton gravity models V = V (X)− 1
2 X

2
H U(X)

Model U(X) V (X)

1. Carroll–Schwarzschild − 1
2X −λ2

2. Carroll–Jackiw–Teitelboim 0 ΛX
3. Carroll–Witten BH − 1

X −2b2X
4. Carroll–CGHS 0 λ

5. Carroll–Schwarzschild–Tangherlini − D−3
(D−2)X −λ2X(D−4)/(D−2)

6. All above: Carroll ab-family − a
X BXa+b

7. Carroll–Liouville gravity a beαX

8. Carroll–Reissner–Nordström − 1
2X −λ2 + Q2

X
9. Carroll–Schwarzschild-(A)dS − 1

2X −λ2 + ΛX
10. Carroll–Katanaev–Volovich α βX2 − Λ

11. Carroll–Achúcarro–Ortiz 0 Q2

X −
J

4X3 − ΛX

12. Carroll 2D type 0A string BH − 1
X −2b2X + b2q2

8π
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Carroll–Schwarzschild black hole
2d Carroll dilaton gravity perspective

I CSBH given by 2d Carroll dilaton gravity with potentials

U(X) = − 1

2X
V (X) =

λ2

4
yielding the solutions

XH = −
√

4X − 4M
√
X τ = − XH

2
√
X

dt e = dr

I in second order variables we get (X = r2, M = 2m)

v = − 1√
1− 2m

r

∂t h =
dr2

1− 2m
r

Carrollian curvature scalar singular at origin, R = −4m/r3

I Carroll thermodynamics yields

E =
km

π
T =

1

8πm
S = 4km2
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Carroll–Schwarzschild black hole
PSM target space perspective

XH = 0
X

XH

M > 0

M = 0

M < 0
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Carroll–Schwarzschild black hole
Map of perspectives (orange = Lorentzian, yellow = Carrollian)

GR in D dim., g
(D)
MN

2d dil. grav., gµν , X

2d dil. grav., ω, ea, X, Xa

JT, ω, ea, X, Xa

PSM, AI , XI PSM, AI , XI

Mag. Carr., g
(D)
MN , vM , φMN

Mag. Carr. 2d dil. grav.
gµν , vµ, X, XP, ρ

Mag. Carr. 2d dil. grav.
hij , π

ij , X, πX , N , N i

Carr. 2d dil. grav.
ω, τ , e, X, XH, XP

CJT, ω, τ , e, X, XH, XP

c→ 0
& introduce aux. fields

spher. red.: choose
U ,V

spher. red.: choose
U ,V

reformulate in terms
of zweibein, spin
connection, and

aux. fields

restrict to
U = 0, V ∝ X

restrict to
U = 0, V ∝ X

most general
deformation
V(X,XaXa)

c→ 0
& introduce aux. fields

ADM split
& magn c→ 0

solve torsion constr.
change to ADM

variables

PSM target space
diffeomorphism

c→ 0
contract algebra

so
lv

e
to

rs
io

n
co

n
st

r.

diff. def.
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Carroll–Schwarzschild black hole
4d Carroll gravity perspective

ρ = 1

ρ < 1 ρ > 1
wormhole coordinates

r =
m

2

(
ρ +

1

ρ
+ 2

)

yield Carrollian structure (note ρ→ 1)

v = −
ρ + 1

ρ− 1
∂t

h = 4m
2

(
(ρ + 1)2

4ρ2

)2 (
dρ

2
+ ρ

2
dΩ

2
)

I magnetic c→ 0 limit of Schwarzschild metric

ds2 = −c2
(

1− 2m

r

)
dt2 +

dr2

1− 2m
r

+ r2 d2Ω

yields Carrollian structure

v = − 1√
1− 2m

r

∂t hµν dxµ dxν =
dr2

1− 2m
r

+ r2 dΩ2
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4d Carroll gravity perspective on CES

I CES can exist in any dimension

I codimension-2 surfaces that are extremal

I for 4d Carroll–Schwarzschild they satisfy

eM∂M r2 = 0 ⇒
(

1− 2m

r

)
r = 0 ⇒ rCES = 2m

I CES precisely at throat of the wormhole!

ρ = 1

ρ < 1 ρ > 1
wormhole coordinates

r =
m

2

(
ρ+

1

ρ
+ 2
)

yield CES at

rCES = 2m ⇒ ρCES = 1
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4d Carroll perspective on Carroll thermodynamics

I Bekenstein–Hawking results for Schwarzschild:

SBH =
4πc3m2

~G
TBH =

~c
8πm

EBH =
c4

G
m

I magnetic limit: keep fixed GM = G/c4 and m while expanding in c

S =
4πm2

~cGM
T =

~c
8πm

E =
1

GM
m.

I maps precisely to 2d Carroll dilaton gravity results

k =
π

~cGM
X = r2 Xmin = 4m2 w(X) = ~c

√
X

I units make sense: S dimensionless; E, T in Joule
I topological derivation of temperature reproduced by 4d calculation
I note the Smarr-type relation

E = 2TS

I of course, the first law holds: δE = T δS
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Charged Carroll black holes

I adding a Maxwell field A to 2d Carroll gravity straightforward

L = Y dA+X dω+XH

(
dτ + ω ∧ e

)
+XP de+ V(X, XH, Y ) τ ∧ e

requires new target space coordinate Y

I example: Carroll–Reissner–Nordström

VCRN(X, XH, Y ) =
λ2

4
+
X2

H

4X
− Y 2

4X

on-shell recover Coulomb potential

A =
qe
r

dt

I have up to two CES

r± = m±
√
m2 − q2e

I obtain BPS-like bound
|qe| ≤ m

Daniel Grumiller — Carroll black holes Generalizations 35/38



Charged Carroll black holes

I adding a Maxwell field A to 2d Carroll gravity straightforward

L = Y dA+X dω+XH

(
dτ + ω ∧ e

)
+XP de+ V(X, XH, Y ) τ ∧ e

requires new target space coordinate Y
I example: Carroll–Reissner–Nordström

VCRN(X, XH, Y ) =
λ2

4
+
X2

H

4X
− Y 2

4X

on-shell recover Coulomb potential

A =
qe
r

dt

I have up to two CES

r± = m±
√
m2 − q2e

I obtain BPS-like bound
|qe| ≤ m

Daniel Grumiller — Carroll black holes Generalizations 35/38



Charged Carroll black holes

I adding a Maxwell field A to 2d Carroll gravity straightforward

L = Y dA+X dω+XH

(
dτ + ω ∧ e

)
+XP de+ V(X, XH, Y ) τ ∧ e

requires new target space coordinate Y
I example: Carroll–Reissner–Nordström

VCRN(X, XH, Y ) =
λ2

4
+
X2

H

4X
− Y 2

4X

on-shell recover Coulomb potential

A =
qe
r

dt

I have up to two CES

r± = m±
√
m2 − q2e

I obtain BPS-like bound
|qe| ≤ m

Daniel Grumiller — Carroll black holes Generalizations 35/38



Charged Carroll black holes

I adding a Maxwell field A to 2d Carroll gravity straightforward

L = Y dA+X dω+XH

(
dτ + ω ∧ e

)
+XP de+ V(X, XH, Y ) τ ∧ e

requires new target space coordinate Y
I example: Carroll–Reissner–Nordström

VCRN(X, XH, Y ) =
λ2

4
+
X2

H

4X
− Y 2

4X

on-shell recover Coulomb potential

A =
qe
r

dt

I have up to two CES

r± = m±
√
m2 − q2e

I obtain BPS-like bound
|qe| ≤ m

Daniel Grumiller — Carroll black holes Generalizations 35/38



Rotating Carroll black holes
Carroll limit of spherically reduced BTZ black hole (a.k.a. Carroll–Achúcarro–Ortiz)

I Kaluza–Klein reduction of AdS3 Einstein gravity

ds2 = gαβ(xγ) dxα dxβ +X2(xγ)
(

dϕ+Aα(xγ) dxα
)2

leads to Achúcarro–Ortiz model (2d dilaton gravity) with potential

VAO(X, Y ) =
X

`2
− Y 2

X3

I after Carroll limit yields 2d charged Carroll solutions

ds2 = dr2 =
dX2

X2
H

v =
1

XH

∂t XH = ±
√
X2 − J2

X2
− 2M

with gauge field A = J
X2 dt and Y = J = const.

I have again two CES

X2
± = M ±

√
M2 − J2

and BPS-bound |J | ≤M
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Other generalizations and applications

I mathematics of Carroll black holes
I Carrollian structure singularities (v →∞, v → 0)
I topologies of Carroll manifolds
I Carrollian singularity theorems?
I sharper/alternative definitions of CES and Carroll black holes?
I second and third law?

I rotating and/or supersymmetric Carroll black holes
I adding matter
I fracton gravity
I Carroll cosmologies and CES

ChatGPT concludes:

Carroll black holes may still hold many mysteries,

but their fascinating properties and potential

implications for our understanding of the universe

make them an exciting and promising avenue for

future research in the field of astrophysics.

I conclude:

Carroll black holes are fun — feel free to join the adventure
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Other generalizations and applications

I mathematics of Carroll black holes
I rotating and/or supersymmetric Carroll black holes
I adding matter

I electric vs. magnetic matter couplings
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