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One-sentence summary

At null infinity, 3d Einstein—-Maxwell ~ 4d vacuum gravity
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Asymptotic symmetries

« Powerful tool to study classical general relativity, and a gateway to the quantum theory

e For asymptotically-flat spacetimes, their relationship to radiation is well-understood
[Ashtekar, Blanchet, Bondi, Damour, Geroch, Metzner, Newman, Penrose, Sachs, Thorne, Trautman, ...]

e Lots of recent exciting developments

Carrollian physics [Bagchi, Ecker, Grumiller, Hartong, Obers, Pérez, Prohazka, ... ]
celestial/Carrollian holography [Donnay, Herfray, Petropoulos, Puhm, Raclariu, Strominger, .. .]
classical and quantum soft theorems [Campiglia, He, Laddha, Lysov, Mitra, Sen, ...]
covariant phase space [Barnich, Ciambelli, Freidel, Pranzetti, Speranza, Speziale, Wieland, ... ]
dual charges [Godazgar, Godazgar, Long, Oliveri, Pope, .. .|

extensions to (A)dS [Compeére, Fiorucci, Pool, Ruzziconi, Skenderis, Taylor, Zwikel, . . .]
extensions to FLRW [Bonga, Enriquez-Rojo, Heckelbacher, Oliveri, Prabhu, Schroeder, .. .]
horizon tomography [Ashtekar, Khera, Kolanowski, Lewandowski, ... ]

log terms [Chrusciel, Mac Callum, Fuentealba, Henneaux, Singleton, Troessaert, Valiente Kroon, .. .]
new memory effects [Flanagan, Grant, Nichols, Oblak, Pasterski, Seraj, ... ]

inclusion of matter [Bonga, Grant, Majumdar, Mao, Oblak, Prabhu, .. .|

W14 00 and twistors [Adamo, Costello, Mason, Paquette, Penrose, Sharma, . ..]
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3d Maxwell theory

* Propagates a single photon, has gauge transfos., soft theorems, memories, aspt. symmetries
« Can be made massive by adding a U(1) Chern—Simons term [Deser, Jackiw, Templeton]

* Related to condensed matter, and QED3 is a model for chiral symmetry breaking

e Super-renormalizable in the UV but therefore badly IR divergent

e Dual to a scalar: same puzzle as 4d [Campiglia, Coito, Mizera] [Campiglia, Freidel, Hopfmiiller, Soni]

3d Einstein—Maxwell
* Sits nicely between complexity (4d) and triviality (vacuum 3d)

* We will follow [Barnich, Lambert, Mao], but relax their boundary conditions
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Geometry
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with mass M (u, ¢) and angular momentum P(u, ¢)

* Adding matter will source G, = Ty, and bring physics into the metric = but which matter?
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Maxwell field
* Motivated by the radiative solutions of 3d Maxwell theory, we consider the gauge A, = 0 and
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02
P, = % + O(r*3/2) T = 0 O( 73/2)
¢ B J Q y
D= —+0(r ") Tus = £2 4 001
VT °= U

* The flux of angular momentum from T, depends on both Cand Q (as in 4d) [Ashtekar, Bongal
» Ay plays the role of g, in 4d, and contains the simplest form of news available

| 4d 3d
Einstein | Cup, @
Maxwell C"a C
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* We solve G, = T}, and V#F),,, = 0 following the Bondi hierarchy
- hypersurface equations determine the metric and A, in terms of (M, P, A¢)
- evolution equations constrain (M, P,Q',A'Q) but not (C,G)
* In particular we have
- 3d Bondi mass loss M = —C?2
- momentum evolution P = M’ + QQ’ + CC' —3C'C
- time-independent electric charge Q = 0
¢ At the end of the day
- freedataon It = (C,G) arbitrary functions of (u,$) < strange, why 2 functions?!
- freedataon It = (M,P,Q, Ag) subject to co-many evolution equations VA F,,4 = 0
« Symplectic structure on Z+ is Q = §C5C + 6GOQ = [Ashtekar-Streubel] + 7
 There seems to be extra (gauge?) data on ZT

* u-dependent data also appears in 4d when we relax the boundary metric (\[ Uo, Bo, .. )
[Barnich, Troessaert] [Compere, Fiorucci, Ruzziconi] [MG, Zwikel] [MG, Goeller, Zwikel]
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Turning on A # 0 to compare with 4d vacuum gravity

« Still use Bondi gauge instead of Fefferman—Graham [Pérez, Riquelme, Tempo, Troncoso]
e This reveals that

3d 4d

VMFI»L Gab'lead =0 = AC"‘b = (a“

¢’|Iead =0 = AC=0 - 8“ In \/g)qub

In(r) terms have to vanish

2+ terms have to vanish

VAFuglay =0 = AZ=AATT 4 Gablypy =0 = go=Agl +...
I+ data (C,G)|,_, I+ data Capl,_,
T+ data (45,49,G)|, Tt data (qabs Bab) |0
infinite Z+ data (M, P,Q, AZ)|, _, infinite Z* data (M, Pa,g%,)|,_,

finite Z* data (M, P,Q)|, .,

finite Z© data (M, Pa)|A;é0

» This also suggests an analogy with the W /multipolar structure of 4d gravity
[Freidel, Pranzetti, Raclariu] [Blanchet, Compére, Faye, Oliveri, Seraj]
e Let us set A =0 again
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Asymptotic symmetries

Asymptotic Killing vectors
* Asymptotic symmetries need to preserve the gauge and the fall-offs
* Requiring £Legrr = Legre = Leggpy = 0 gives

€ = f(u6) & =r(Uf — (€9)) £ = g(u,d) — f / T Dar

« Preserving the fall-offs requires f = ¢’ and g = 0
* Requiring £¢ Ay 4 0re = 0 gives

7

> BA
8:a(u,¢)+f’/ L dF
T
* As expected, these parameters span bmsz g u(1) = (0iff(S*) ¢ vec(S1)) & u(1) [BLM]
* Note that o has an arbitrary time-dependency

Transformation laws

* With £ and € we know how any quantity transforms, in particular
0¢,eG = (fBu + g0y +g')G —§dQ+a

* a(u, @) is related to G(u, ¢), but with an arbitrary u it will be hard to build conserved charges!
* One option used later will be to set

G=0 = oa(u¢) =a(s)+ugQ
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¢ Recall that the Noether charge arises from the Lagrangian as

6L = EOM + do[d] deL=d(¢-L) Je = 0[0¢] — & - L~ dke
* Using the potential 6 and the Noether charge k¢, the charge at Itis
$H = lim (akg" — kY- g[uer])
e The bare charge is finite and given by

- 5(fM+g7>+aQ) + £(C8C + GoQ)

* Non-integrable because of news and extra mode G, almost exactly as in 4d vacuum gravity
e A prescription for the charge bracket is needed, so let us investigate a few

Barnich—Troessaert bracket
* Relies on a split between integrable and flux piece
 Writing §H = §H¢ + ¢ (6] we have
{H€1 ) H52 }BT = 552 H§1 +Ee, [551] = H[£1,§2] + K€1,€2
* The asymptotic charges represent the symmetry algebra up to a field-dependent 2-cocycle
Key o = F195 — f2g)" — (f195 — f291)Q" + 2(frca — fac1)Q
* Under a change of split §H¢ + Z¢[0] = 6(H¢ + S¢) + E¢[6] — 8S¢ the cocycle is modified :(
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* What if we use the Noether charge H¢ = k¢ as a prescription for the integrable part?

» One can then show with covariant phase space methods that K¢, ¢, = 55“572"]L|I+

* Since the cocycle is predicted, we move it to the l.h.s. of the BT bracket to define

{H§17H§2}N = {Hfl’Hﬁz}BT - Egugg]L|z+ = Hie, )

The Noether bracket represents the charge algebra with vanishing cocycle

* Unfortunately this k¢ is not conserved in any “natural” vacuum (e.g. absence of news)
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He = fM + gP + (2a0 + ug'Q)Q Ze[0] = fCsC

* H¢ is conserved in the absence of news. Its evolution gives a purely radiative flux Hg = F¢ [C]
e The fluxes furthermore represent the symmetry algebra [Donnay, Nguyen, Ruzziconi]

{Fe,, Fey } = 08¢, Fe, = Flg, ¢,) + Ou(terms in C)
¢ The algebra of the WZ charges under the BT bracket give again a field-dependent cocycle

Kei o = 1195 — f2g)" + (f195 — f291)Q7

The field-dependency of K seems robust, but what about the split ambiguity?
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¢ Since the parameters (f, g, «) are integration constants, one can freely redefine them
 If we insist on keeping G # 0, one can remove its flux contribution by setting o = & — fG
FQ=(...)+adQ+ f(C6C + GsQ)
=(...)+asQ + fcsc
e This can be used to remove “spurious flux”, but not the physical flux [MG, Goeller, Zwikel]
* This leads once again to the field-dependent K¢, ¢, above
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Integrating the Lorentz force law

e For 2 nearby particles with same mass, charge, and relative 3-velocity dv = va — v1, we get
. v Vo
S0t = FH,6v v = Uy Oy + vrOr + —0g
'

¢ The net difference in angular velocities following a burst of electromagnetic radiation is then

AC

\/77

« At the difference with the 4d case, this is not related to a large U(1) gauge transformation

Avg = +06r™h
* The IR triangle [Strominger et al.] does not close because of radiative / Coulombic missmatch

Memory
effects

Soft Asymptotic
theorems symmetries
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euxapioTw!
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Zero-mode solutions

Zero-mode solutions cannot have both (Q, P) # 0
* Turning off the modes of A and keeping only Q, the EOM V#F,, = 0 leads to QP =0
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Zero-mode solutions

Zero-mode solutions cannot have both (Q, P) # 0

* Turning off the modes of A and keeping only @, the EOM V#F, 4 = 0 leads to QP =0
* Instead, we can try to start from the charged BTZ [Martinez, Teitelboim, Zanelli]

Apdat = $(lnr) (dt — Pd¢)
2(1 — P2/(?)
2
ds? = (NT%2 + p2N§> dt? — N7 1dr? 4 2p2 Ny dt de + p>dep?
7'2 2
N, =7 + M+ Q“(Inr)
Ny=—-———" (M + Q3
0=y (M)
p?=ri+ _ (M +Q*(Inr))
1— P2/p2

* Taking the flat limit £ — oo yields
ds? = N, dt? — N7 'dr? — 2PN, dtd¢ + (r? + P2N,.)d¢?
* Mapping to Bondi gauge removes the angular momentum! (finite BMSgs transformation)

ds? = N, du? — 2dudr + r?d¢?
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