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The templates for GW150914 : state-of-the-art in 2015
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The templates for GW150914 : state-of-the-art in 2015
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The templates for GW150914 : state-of-the-art in 2023
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Features: • An observer can fix a radiation gauge up to a residual BMS transformation that (s)he cannot fix.


• BMS supertranslations:  “vacuum transition”


• In linear theory without matter: trivial  integration


• Generalized BMS group uncorrelated with memory for localized sources

δTC = T(xA)
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The asymptotic structure of  for  in a nutshellℐ+ Λ > 0
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The asymptotic structure of  for  in a nutshellℐ+ Λ > 0

The residual gauge transformations consist in 4 functions of  (“integration constants” after gauge fixing) xa
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The asymptotic structure of  for  in a nutshellℐ+ Λ > 0
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3

ds2 = − dτ2 + τ2(g(0)
ab (xc) + … + τ−3Tab(xc) + …)dxadxb

Starobinsky / Fefferman-Graham gauge :

Ta
a = 0, Da
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We can further gauge fix the boundary metric : 

g(0)
ab dxadxb = H2du + qAB(u, xC)dxAdxB

The residual gauge transformations consist in 4 functions of  (“integration constants” after gauge fixing) xa

det(qAB) = det(q̊AB)

The residual gauge transformations are spanned by 3 functions of . 

They form the -BMS algebroid whose structure constants depend upon the phase space field 

xA = (θ, ϕ)
Λ qAB .

In the presence of radiation, an observer located close to  cannot gauge fix the diffeomorphism group 
any further. The -BMS symmetries reflect the freedom at setting up a detector at  in asymptotically de 
Sitter. The same symmetries appear in Bondi gauge fixing as long as the boundary metric is gauged fixed.

ℐ+

Λ ℐ+
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The asymptotic structure of  for  in a nutshellℐ+ Λ > 0

ξu = U(u, xA)
ξA = YA(u, xA) + O(r−1)

“3d” presentation of the -BMS generators :Λ

Algebroid :

[(U, YA), (U′￼, Y′￼A)] = (U′￼′￼, Y′￼′￼A)
U′￼′￼ = YA∂AU′￼+

1
2

UDAY′￼A − ( ↔ )

Y′￼′￼A = YB∂BY′￼A − H2UqAB∂BU′￼− ( ↔ )
[GC, Fiorucci, Ruzziconi, 2019]


∂uU = −
1
2

DAYA

∂uYA = − H2qAB∂BU

In the flat limit, the algebra reduces to the generalized BMS algebra diff(S2) + vect(S2)

When , the -BMS algebroid becomes the -BMS algebra that contains the  
algebra of exact symmetries of de Sitter.

qAB(u, xA) = q̊AB(xA) Λ Λ SO(4,1)
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[Barnich, Troessaert, 2010]

[Campiglia, Laddha, 2015]



Two boundary condition at ℐ+

Note: The topology at  is  minus 2 points : .ℐ+ S3 ℝ × S2
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No radiation at  : ℐ+
− qAB(u, xA) = qAB(xA) |u=ui

No radiation at  : ℐ+
+ qAB(u, xA) = qAB(xA) |uf
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Note: The topology at  is  minus 2 points : .ℐ+ S3 ℝ × S2

What is the metric  for a localized event below the Hubble scale?

Is there a -BMS group transition after the passage of the gravitational wave strain?

qAB(u, xA)
Λ
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What is the metric  for a localized event below the Hubble scale?

Is there a -BMS group transition after the passage of the gravitational wave strain?

qAB(u, xA)
Λ

The -specific displacement memory effect in General Relativity in a nutshellΛ > 0

∂uqAB = H2CAB1 sec

qAB |u2
− qAB |u1

= H2 ∫
u2

u1

duCAB

This flux-balance law is specific to de Sitter. 


Expect qualitative differences from the flat case !
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A Carrollian thought
For , the 5 boundaries ( ) transform under a single BMS group. [GC, Gralla, Wei, 2023]

 

The BMS group can be described from a Carrollian structure consisting of 

Λ = 0 i0, i−, i+, ℐ+, ℐ−

 : non-invertible metric of signature (0,+,+) of coordinates 

 : vector degenerate direction 


γab xa = (u, xA)
na naγab = 0

which is left invariant under the transformations  . [Duval, Gibbons, 
Horvathy, 2014]. Carroll structures describe the entire boundary of flat spacetimes [Figueroa-O’Farrill, Have, 
Prohazka, Salzer, 2021]

ℒξγab = 2α(u, xA)γab, ℒξna = − α(u, xA)na



A Carrollian thought
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For , the 5 boundaries ( ) transform under a single BMS group. [GC, Gralla, Wei, 2023]

 

The BMS group can be described from a Carrollian structure consisting of 

Λ = 0 i0, i−, i+, ℐ+, ℐ−

 : non-invertible metric of signature (0,+,+) of coordinates 

 : vector degenerate direction 


γab xa = (u, xA)
na naγab = 0

which is left invariant under the transformations  . [Duval, Gibbons, 
Horvathy, 2014]. Carroll structures describe the entire boundary of flat spacetimes [Figueroa-O’Farrill, Have, 
Prohazka, Salzer, 2021]

ℒξγab = 2α(u, xA)γab, ℒξna = − α(u, xA)na

g(0)
ab dxadxb = H2du + qAB(u, xC)dxAdxB

For ,  is not described by a Carrollian structure. The flat Carrollian structure arises as the  limit :Λ > 0 ℐ+ H ↦ 0

This limit “from a spacelike structure” is distinct from the  “from a timelike structure” limit.c ↦ 0
[GC, Fiorucci, Ruzziconi, 2021] 


[Campoleoni, Delfante, Pekar, Petropoulos, Rivera-Betancour, Vilatte, 2023]



Linear spin 2 field on de Sitter
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Solved in the cosmology literature using a time-Fourier analysis. 


However, this is very unsuitable to describe individual localized sources. 


Instead, a multipolar decomposition is appropriate, as for  in the multipolar PN/PM formalism.


Starting point: de Sitter in the Poincaré patch





Perturbations  are described using good variables: ,        ,    ,   


and a good gauge “Generalized harmonic gauge” : .

Λ = 0

ḡαβdxαdxβ = a2(−dη2 + d ⃗x2), a(η) = −
1

Hη

hαβ χμν = a−2(hμν −
1
2

ημνhα
α) ̂χ = χ00 + χii χ0i χij

∂αχαμ +
1
η

(2χ0μ + δ0
μ χα

α) = 0 [de Vega, Ramirez, Sanchez, 98]

η = −
1
H

e−Ht



Linear spin 2 field on de Sitter
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Scalar and vectors modes are similar to flat space.


Tensor mode depends upon the de Sitter potential. There is propagation inside the lightcone.


□ = − ∂2
η + ∂2

i

Result:



Linear spin 2 field on de Sitter
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Scalar and vectors modes are similar to flat space.


Tensor mode depends upon the de Sitter potential. There is propagation inside the lightcone.


Tensor Green function known [Ford, Parker, 77] [Weylen, 78] 

□ = − ∂2
η + ∂2

i



The stress-energy tensor is conserved. This is equivalent to 

We will express the solution in terms of multipole moments of 
the stress-energy tensor
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The stress-energy tensor is conserved. This is equivalent to 
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Consistent quadrupolar truncation
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The conservation equations imply 

Solution in terms of SO(3) irreducible tensors (dipoles , , odd parity quadrupoles , even parity quadrupole  ):Pi|kk Q(p)
i Jij, Kij Q(p)

ij

where



Consistent quadrupolar truncation
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The conservation equations imply 

Solution in terms of SO(3) irreducible tensors (dipoles , , odd parity quadrupoles , even parity quadrupole  ):Pi|kk Q(p)
i Jij, Kij Q(p)

ij

where
Our analysis differs from


[Ashtekar, Bonga, Kesavan, 2015][Chu, 2016]

[Date,Hoque,2016][Hoque,Virmani,2018]



Solving in the quadrupolar truncation
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Bounded by the coordinate dimension of the source d

The solution is expressed in terms of retarded time . We assume that the physical size of the source is smaller than the Hubble scale 
at retarded time: . This implies:

ηret = η − ρ
a(ηret)d ≪ H−1

Close to , , thereforeℐ+ −η/ρ ≪ 1

We assume that the source is slowly varying:

This implies that the quadrupolar radiation is dominant.



Solution in harmonic gauge

- Scalar, vector and tensor mode are obtained in closed form in harmonic gauge


- We keep all monopoles, dipoles and quadrupoles


- Remarkably, the non-local tensorial terms reduce in the quadrupolar truncation to instantaneous terms and 
terms at the cosmological horizon


- The flat limit  matches the known linear perturbation at quadrupolar order. H ↦ 0
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Solution in harmonic gauge

Harmonic gauge still admit residual gauge transformations. 

A canonical harmonic gauge exists which is gauge invariant. 

The linear solution is expressed in terms of canonical multipole moments .

In the case  the flat limit of the solution is in canonical harmonic gauge. 

Otherwise a change of coordinates is required. 

The Thorne 1980 metric is recovered in the flat limit and using the simplification with the identification of multipoles

(ML(u), SL(u))
Q(p) = 0 = Q(p)

i = Q(p)
ij = Pi|kk
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- Scalar, vector and tensor mode are obtained in closed form in harmonic gauge


- We keep all monopoles, dipoles and quadrupoles


- Remarkably, the non-local tensorial terms reduce in the quadrupolar truncation to instantaneous terms and 
terms at the cosmological horizon


- The flat limit  matches the known linear perturbation at quadrupolar order. H ↦ 0



Solution in Bondi gauge
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Solution in -BMS gaugeΛ
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Solution in -BMS gaugeΛ

- The metric is obtained in closed form. There is no . The expansion stops in the  expansion.


- We keep all monopoles, dipoles and quadrupoles


- The flat limit  exactly matches the known linear perturbation at quadrupolar order. [Blanchet, GC, Faye, 
Oliveri, Seraj, 2020] . The canonical multipole moments are matched as 

log r 1/r

H ↦ 0
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Solution in -BMS gaugeΛ

- The metric is obtained in closed form. There is no . The expansion stops in the  expansion.


- We keep all monopoles, dipoles and quadrupoles


- The flat limit  exactly matches the known linear perturbation at quadrupolar order. [Blanchet, GC, Faye, 
Oliveri, Seraj, 2020] . The canonical multipole moments are matched as 

log r 1/r

H ↦ 0

The boundary metric is given by (all quantities are evaluated at  ) η = − H−1e−Hu

where
31



Summary of the linear analysis

Q(ρ+p)
ij (η) ≡ ∫ d3xa3(η)(T00 + Tkk)xixj Kij(η) ≡

4
3 ∫ d3xa3(η)ϵkl(iTj)kxl

We defined the even parity and odd parity quadrupolar 
moments of the stress-energy tensor as

We evaluate them at  : . They correspond to a retarded field.ℐ+ η = − H−1e−Hu

The boundary metric at  of the linear perturbation is given by ℐ+

g(0)
ab dxadxb = H2du2 + qABdxAdxB

where
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This application of the multipolar methods to the linear spin 2 field in de Sitter proves 
that Dirichlet boundary conditions at  (and therefore conformal symmetry) are 
fundamentally incompatible with the propagating spin 2 degree of freedom! 


This disproves the dS/CFT conjecture [Strominger, 2001]

ℐ+

33
See also [Ashtekar, Bonga, Kesavan, 2015] [Bunster, Perez, Bonga, 2023]



Memory effects : even sector

where

In the absence of a detail model for the source, let us assume a step function :

Using the -BMS generator                                                                     , we can set  at either  or . 


The difference between the two non-radiative regions is gauge invariant: this is the memory effect.

Λ qAB = q̊AB u2 u1
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Memory effects : odd sector

where

There is no -BMS transition.


 at both  and  .


The presence of an odd parity quadrupole at early times 

implies that  at  .

Λ

qAB ≠ q̊AB u = u1 u = u2

qAB ≠ q̊AB ℐ+
−
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Conclusion

• The linear spin 2 field emitted from a source below Hubble scale was solved 
consistently in the quadrupolar truncation.


• The solution was obtained in closed form both in harmonic gauge and in Bondi 
gauge.


• It leads to a varying boundary metric which disproves the dS/CFT conjecture


• The varying boundary metric displays a displacement memory effect specific to 
de Sitter. 


• The even parity sector can be understood as a -BMS transition.Λ
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