Boundaries, dissipation and gravitational charge

Wolfgang Wieland IQOQI
Austrian Academy of Sciences
Institute for Quantum Optics and Quantum Information (Vienna)
www.wmwieland.eu
Carrollian Workshop, Mons/Bergen, Belgium

12-09-2022

In gravity, every subsystem is an open system

We are witnessing a shift of perspective (at this conference but also elsewhere) from global aspects of quantum gravity to a more local description of gravitational subsystems.

I will pick three results of the programme thus far.
1 Immirzi parameter, radiative phase space on the lightcone
2 Quantisation of area from deformation of boundary symmetries.
3 Metriplectic geometry for gravitational subsystems
*ww, Gravitational $S L(2, \mathbb{R})$ Algebra on the Light Cone, JHEP 57 (2021), arXiv:2104.05803.
*ww, Fock representation of gravitational boundary modes and the discreteness of the area spectrum, Ann. Henri Poincare 18 (2017), 3695, arXiv: 1706.00479.
*Viktoria Kabel and ww, Metriplectic geometry for gravitational subsystems, (2022), arXiv:2206.00029.

Immirzi parameter, boundary symmetries on the lightcone

To understand how gravity couples to boundaries, it is useful to work with differential forms rather than tensors since there is a natural notion of projection onto the boundary, namely the pull-back $\varphi^{*}: T^{*} M \rightarrow T^{*}(\partial M)$, which does not require a metric.

Tetrad defines the metric

$$
g_{a b}=\eta_{\alpha \beta} e^{\alpha}{ }_{a} e^{\beta}{ }_{b} .
$$

$\mathfrak{s o}(1,3)$ connection and covariant derivative

$$
\nabla_{a} V^{\alpha}=\partial_{a} V^{\alpha}+A^{\alpha}{ }_{\beta a} V^{\beta} .
$$

The commutator of two covariant derivatives defines the curvature,

$$
\left[\nabla_{a}, \nabla_{b}\right] V^{\alpha}=F_{\beta a b}^{\alpha}[A] V^{\beta} .
$$

Immirzi Parameter

There are two scalars that we can form out of the curvature tensor:

$$
\begin{aligned}
R[A, e] & =F^{\alpha \beta}{ }_{a b}[A] e_{\alpha}{ }^{a} e_{b}{ }^{\beta}, \\
R^{*}[A, e] & =\frac{1}{2} \varepsilon^{\alpha \beta \mu \nu} F_{\alpha \beta a b}[A] e_{\mu}{ }^{a} e_{\nu}{ }^{b} \approx 0 .
\end{aligned}
$$

Therefore, in the first-order formalism, there are two coupling constants at linear order in the curvature,

$$
S=\frac{1}{16 \pi G} \int_{M} d^{4} v\left[R-\frac{1}{\gamma} R^{*}\right]+\text { boundary terms. }
$$

G is Newton's constant, γ is the Immirzi parameter.

Using the isomorphism between spinors and tensors, the action splits into self-dual and anti-selfdual parts

$$
\begin{aligned}
S & =\frac{1}{16 \pi G} \int_{M} d^{4} v\left[R-\frac{1}{\gamma} R^{*}\right]= \\
& =\left[\frac{\mathrm{i}}{8 \pi \gamma G}(\gamma+\mathrm{i}) \int_{\mathscr{M}} \Sigma_{A B} \wedge F^{A B}\right]+\mathrm{cc} .
\end{aligned}
$$

$S L(2, \mathbb{C})$ Spinor indices A, B, C, \ldots and $A^{\prime}, B^{\prime}, C^{\prime}, \ldots$
Self-dual and anti-self-dual parts, e.g. of Plebański form

$$
e_{\alpha} \wedge e_{\beta}=: \Sigma_{\alpha \beta} \equiv \Sigma_{A A^{\prime} B B^{\prime}}=-\bar{\epsilon}_{A^{\prime} B^{\prime}} \Sigma_{A B}-\epsilon_{A^{\prime} B^{\prime}} \bar{\Sigma}_{A B}
$$

Field equations

$$
\nabla \wedge \Sigma_{A B}=0, \quad F_{A B}=\Psi_{A B C D} \Sigma^{C D}=\Psi_{(A B C D)} \Sigma^{C D} .
$$

Basic setup: Hamiltonian GR in finite regions

Spacetime region bounded by null surface:

- Compact spacetime region \mathscr{M}.
- Bounded by spacelike disks M_{0}, M_{1} and null surface \mathcal{N}.
- Null surface boundary \mathcal{N} embedded into abstract bundle (ruled surface) $P(\pi, \mathscr{C}) \simeq \mathbb{R} \times \mathscr{C}$.
- Null generators $\pi^{-1}(z)$.

Symmetries of the null boundary

Metrical structures at the boundary:

■ Signature $(0++)$ metric:

$$
\varphi_{\mathcal{N}}^{*} g_{a b}=q_{a b}=2 m_{(a} \bar{m}_{b)}
$$

■ Null vectors: $l^{a}: q_{a b} l^{b}=0 \Leftrightarrow \pi_{*} l^{a}=0$.
Abelian symmetries:

- $m_{a} \longrightarrow \mathrm{e}^{\mathrm{i} \varphi} m_{a}$
- $l^{a} \longrightarrow \mathrm{e}^{\lambda} l^{a}$

Associate spinors:

- Penrose null flag $\ell^{A}: l^{a} \simeq \mathrm{i} \ell^{A} \bar{\ell}^{A^{\prime}}$
- Conjugate spinor-valued two-form $\eta_{A} \in \Omega^{2}\left(\mathcal{N}: \mathcal{S}_{A}\right)$.
- Area density $\varepsilon=\mathrm{i} \eta_{A} \ell^{A} \in \Omega^{2}(\mathcal{N}: \mathbb{R})$

- Abelian symmetries:

$$
\binom{\ell^{A}}{\eta_{A}} \longrightarrow\binom{\mathrm{e}^{+\frac{1}{2}(\lambda+\mathrm{i} \varphi)} \ell^{A}}{\mathrm{e}^{-\frac{1}{2}(\lambda+\mathrm{i} \varphi)} \eta_{A}}
$$

Bulk plus boundary action

Bulk plus boundary action:

$$
S=\frac{\mathrm{i}}{8 \pi \gamma G}(\gamma+\mathrm{i})\left[\int_{\mathscr{M}} \Sigma_{A B} \wedge F^{A B}+\int_{\mathcal{N}} \eta_{A} \wedge\left(D-\frac{1}{2} \varkappa\right) \ell^{A}\right]+\mathrm{cc} .
$$

Boundary conditions along $\mathcal{N}: \delta\left[\varkappa_{a}, l^{a}, m_{a}\right] / \sim=0$

- vertical diffeomorphisms $\left[\varphi^{*} \varkappa_{a}, l^{a}, \varphi^{*} m_{a}\right] \sim\left[\varkappa_{a}, \varphi_{*} l^{a}, m_{a}\right]$
- dilations $\left[\varkappa_{a}, l^{a}, m_{a}\right] \sim\left[\varkappa_{a}+\nabla_{a} f, \mathrm{e}^{f} l^{a}, m_{a}\right]$

■ complexified conformal transformations $\lambda=\mu+\mathrm{i} \nu$: $\left[\varkappa_{a}, l^{a}, m_{a}\right] \sim\left[\varkappa_{a}-\frac{1}{\gamma} \nabla_{a} \nu, \mathrm{e}^{\mu} l^{a}, \mathrm{e}^{\mu+\mathrm{i} \nu} m_{a}\right]$

■ shifts $\left[\varkappa_{a}, l^{a}, m_{a}\right] \sim\left[\varkappa_{a}+\bar{\zeta} m_{a}+\zeta \bar{m}_{a}, l^{a}, m_{a}\right]$
The equivalence class $g=\left[\varkappa_{a}, l^{a}, m_{a}\right] / \sim$ characterises two degrees of freedom per point.

Covariant pre-symplectic potential for the partial Cauchy surfaces:

$$
\Theta_{\Sigma}=\frac{\mathrm{i}}{8 \pi \gamma G}(\gamma+\mathrm{i})\left[-\oint_{\mathscr{C}} \eta_{A} \mathbb{d} \ell^{A}+\int_{\Sigma} \Sigma_{A B} \wedge \mathbb{d} A^{A B}\right]+\mathrm{cc} .
$$

Phase space of bulk and boundary degrees of freedom:

$$
P_{\text {phys }}=\left(P_{\text {bulk }} \times P_{\text {bndry }}\right) / / \text { gauge }
$$

Poisson brackets at the two-dimensional corner

$$
\left\{\pi_{A}(z), \ell^{B}\left(z^{\prime}\right)\right\}_{\mathscr{C}}=\delta_{A}^{B} \delta^{(2)}\left(z, z^{\prime}\right) .
$$

Canonical (spinor-valued) momentum

$$
\pi_{A}=\frac{\mathrm{i}}{8 \pi G} \frac{\gamma+\mathrm{i}}{\gamma} \eta_{A}
$$

First results: Area operator and discrete spectra

- The cross-sectional oriented area is

$$
\operatorname{Area}[\mathscr{C}]=-8 \pi G \frac{\mathrm{i} \gamma}{\gamma+\mathrm{i}} \oint_{\mathscr{C}} d^{2} x \pi_{A} \ell^{A}
$$

- For the area to be real-valued (charge neutral), we have to satisfy the reality conditions,

$$
K-\gamma L=0
$$

- Generators of complexified $U(1)_{\mathbb{C}}$ transformations

$$
\begin{aligned}
L & =-\frac{1}{2 \mathrm{i}} \pi_{A} \ell^{A}+\text { cc. } \\
& \text { (generator of } U(1) \text { transformations), } \\
K & =-\frac{1}{2} \pi_{A} \ell^{A}+\text { cc. } \\
& \text { (dilatations of the light like direction). }
\end{aligned}
$$

- Boundary modes: creation and annihilation operators (half densities)

$$
\begin{aligned}
a^{A} & =\frac{1}{\sqrt{2}}\left[\sqrt{d^{2} \Omega} \delta^{A A^{\prime}} \bar{\ell}_{A^{\prime}}-\frac{\mathrm{i}}{\sqrt{d^{2} \Omega}} \pi^{A}\right] \\
b^{A} & =\frac{1}{\sqrt{2}}\left[\sqrt{d^{2} \Omega} \ell^{A}+\frac{\mathrm{i}}{\sqrt{d^{2} \Omega}} \delta^{A A^{\prime}} \bar{\pi}_{A^{\prime}}\right] .
\end{aligned}
$$

Fock quantisation of the area at the boundary

- Boundary Fock vacuum in the continuum

$$
\begin{aligned}
\forall z \in \mathscr{C}: a^{A}(z)\left|\left\{d^{2} \Omega, n_{\alpha}\right\}, 0\right\rangle & =0, \\
b^{A}(z)\left|\left\{d^{2} \Omega, n_{\alpha}\right\}, 0\right\rangle & =0 .
\end{aligned}
$$

- Boundary operators in terms of harmonic oscillators:

$$
\begin{aligned}
& \hat{L}(z)=\frac{1}{2}\left[a_{A}^{\dagger}(z) a^{A}(z)-b_{A}^{\dagger}(z) b^{A}(z)\right], \\
& \hat{K}(z)=\frac{1}{2 \mathrm{i}}\left[a_{A}(z) b^{A}(z)-\mathrm{hc} .\right], \\
& {[\hat{K}(z)-\gamma \hat{L}(z)] \Psi_{\text {phys }}=0 .}
\end{aligned}
$$

- \hat{K} is a squeeze operator, \hat{L} is difference of number operators.
- Area is quantised on physical states

$$
\left.\widehat{\operatorname{Area}_{\boldsymbol{\varepsilon}}[\mathscr{C}}\right] \Psi_{\text {phys }}=4 \pi \gamma \hbar G / c^{3} \oint_{\mathscr{C}}\left[a_{A}^{\dagger} a^{A}-b_{A}^{\dagger} A^{A}\right] \Psi_{\text {phys }}
$$

$S L(2, \mathbb{R})$ variables and radiative modes

Null surface geometry

Signature (0++) metric.

$$
q_{a b}=\delta_{i j} e_{a}^{i} e_{b}^{j}, \quad i, j=1,2 .
$$

Parametrisation of the dyad

$$
e^{i}=\Omega S_{j}^{i} e_{(o)}^{j}
$$

Choice of time:

$$
\partial_{U}^{b} \nabla_{b} \partial_{U}^{a}=-\frac{1}{2}\left(\Omega^{-2} \frac{\mathrm{~d}}{\mathrm{~d} U} \Omega^{2}\right) \partial_{U}^{a}
$$

Radiative modes from Holst action [ww2021]

Kinematical phase space for radiation: $\mathscr{P}_{\text {kin }}=\mathscr{P}_{a b e l i a n} \times T^{*} S L(2, \mathbb{R})$.

$$
\Theta_{\mathcal{N}}=\frac{1}{8 \pi G} \int_{\mathcal{N}} d^{2} v_{o} \wedge\left[p_{K} \mathrm{~d} \widetilde{K}+\frac{1}{\gamma} \Omega^{2} d \widetilde{\Phi}+\widetilde{\Pi}_{j}{ }_{j}\left[S d S^{-1}\right]_{i}^{j}\right]+\text { corner term. }
$$

Abelian variables:
$U(1)$ connection: $\widetilde{\Phi}$, area: $\Omega^{2} d^{2} v_{o}$, lapse: $\widetilde{K}:=đ U$, expansion: p_{K}.
Upon imposing 2nd-class constraints: Dirac bracket for radiative modes

$$
\begin{aligned}
\left\{S_{m}^{i}(x), S^{j}(y)\right\}^{*}=- & 4 \pi G \Theta\left(U_{x}, U_{y}\right) \delta^{(2)}(\vec{x}, \vec{y}) \Omega^{-1}(x) \Omega^{-1}(y) \\
& \times\left[\mathrm{e}^{-2 \mathrm{i}(\Delta(x)-\Delta(y))}[X S(x)]_{m}^{i}[\bar{X} S(y)]^{j}{ }_{n}+\mathrm{cc} .\right] .
\end{aligned}
$$

Gauge symmetries:
$1 U(1)$ gauge symmetry with $U(1)$ holonomy $h(x)=\mathrm{e}^{-\mathrm{i} \Delta(x)}$
2 vertical diffeomorphisms along null generators

Metriplectic geometry for gravitational subsystems

To understand the time evolution of a gravitational subsystem, two choices must be made.

- Choice of time: A choice must be made for how to extend the boundary of the partial Cauchy surface Σ into a worldtube \mathcal{N}.
- A choice must be made how to treat the flux of gravitational radiation across the worldtube of the boundary. Flux drives the time-dependence of the system.
- Metriplectic geometry is a novel algebraic framework to tackle these issues.

vs.

N.B.: In spacetime dimensions $d<4$, there are no gravitational waves, and we can forget about the second issue. The Hamiltonian will be automatically conserved.

Symplectic potential and volume-form on phase space

$$
\Theta=p \mathrm{~d} q, \quad \Omega=\mathrm{d} p \wedge \mathrm{~d} q
$$

Hamilton equations

$$
\begin{aligned}
\Omega\left(\delta, \frac{\mathrm{d}}{\mathrm{~d} t}\right) & =\delta p \dot{q}-\dot{p} \delta q= \\
& =\delta p \frac{\partial H}{\partial p}+\frac{\partial H}{\partial q} \delta q=\delta H .
\end{aligned}
$$

The Hamiltonian is conserved under its own flow

$$
\frac{\mathrm{d}}{\mathrm{~d} t} H=\Omega\left(\frac{\mathrm{d}}{\mathrm{~d} t}, \frac{\mathrm{~d}}{\mathrm{~d} t}\right)=0
$$

If we insist that there is a Hamiltonian that drives the evolution in a finite region, the standard approach is too restrictive to account for dissipation.

1 There is no problem: Open systems interact with their environment. There is no Hamiltonian that would measure the gravitational energy in a finite region.

2 Treat the system as explicitly time-dependent.

- Time dependence induced by the choice of (outer) boundary conditions.
- Hamiltonian field equations modified (contact geometry).

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F_{t}=\left\{H, F_{t}\right\}+\frac{\partial}{\partial t} F_{t} .
$$

- By fixing the outgoing flux, radiative data no longer free (highly non-local constraints).
- Conjecture: Resulting phase space (on which this Hamiltonian operates) is the phase space of edge modes alone. Seems too restrictive, less useful.

3 Metriplectic geometry

- New algebraic approach. New bracket. But many properties of Poisson manifolds lost.
- Noether charges generate evolution for generic vector fields.
- Takes into account dissipation.

Metriplectic geometry work with Viktoria Kabel

Metriplectic geometry

Even dimensional manifold \mathscr{P}, equipped with a pre-symplectic two-form $\Omega(\cdot, \cdot) \in \Omega^{2}(\mathscr{P})$ and a signature (p, q, r) metric tensor $G(\cdot, \cdot)$.
A vector field \mathfrak{X}_{F} is a (right) Hamiltonian vector field of some (gauge invariant) functional $F: \mathscr{P} \rightarrow \mathbb{R}$ on (\mathscr{P}, Ω, G) iff

$$
\forall \delta \in T \mathscr{P}: \delta[F]=\Omega\left(\delta, \mathfrak{X}_{F}\right)-G\left(\delta, \mathfrak{X}_{F}\right) .
$$

The Leibniz bracket between two such functionals is given by

$$
(F, G)=\mathfrak{X}_{F}[G] .
$$

The metric on phase space encodes dissipation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} H=(H, H)=-G\left(\mathfrak{X}_{H}, \mathfrak{X}_{H}\right) .
$$

*Morrison; Kaufman (1982-); Grmela, GÃ \|ttinger (1997); Guha (2002); Holm, Stanley (2003);...

Metriplectic geometry and extended phase space

Following Freidel, Ciambelli, Leigh, we work on an extended pre-symplectic phase space.

A point on the extended pre-symplectic phase space is labelled by a Einstein metric $g_{a b}$ and choice of coordinate functions x^{μ}.
Maurer - Cartan form for diffeomorphisms

$$
\mathbb{X}^{a}=\left[\frac{\partial}{\partial x^{\mu}}\right]^{a} d x^{\mu} .
$$

Extended pre-symplectic current

$$
\begin{aligned}
& \delta[L] \approx \mathrm{d}[\vartheta(\delta)] \\
& \left.\vartheta_{\text {ext }}=\vartheta-\vartheta\left(\mathscr{L}_{\mathbb{X}}\right)+\mathbb{X}\right\lrcorner L=\vartheta-\mathrm{d} q_{\mathbb{X}}
\end{aligned}
$$

Noether charge and Noether charge aspect

$$
\left.Q_{X}=\oint_{\partial \Sigma} q_{X}=\int_{\Sigma}\left(\vartheta\left(\mathscr{L}_{X}\right)-\mathbb{X}\right\lrcorner L\right) .
$$

*L. Freidel, A canonical bracket for open gravitational system, (2021), arXiv:2111.14747.
*L. Ciambelli, R. Leigh, Pin-Chun Pai, Embeddings and Integrable Charges for Extended Corner Symmetry, Phys. Rev. Lett. 128 (2022), arXiv:2111.13181.

Field dependent vector fields

The coordinate functions $x^{\mu}: U \subset \mathscr{M} \rightarrow \mathbb{R}^{4}$ are now part of phase space. Variations of coordinate functions will only contribute a corner term to the extended pre-symlpleictc two-form.
Vector fields that are determined by their component functions $\xi^{\mu}(x)$ become field dependent vector fields.

$$
\begin{aligned}
\xi^{a} & =\xi^{\mu}(x) \partial_{\mu}^{a} \\
\delta\left[\xi^{a}\right] & =[\backslash(\delta), \xi]^{a} .
\end{aligned}
$$

Metriplectic structure

Extended pre-symplectic structure on the covariant phase space [Freidel; Ciambelli, Leigh]

$$
\left.\Omega_{e x t}\left(\delta_{1}, \delta_{2}\right)=\Omega\left(\delta_{1}, \delta_{2}\right)+Q_{\left[\backslash\left(\delta_{1}\right), \mathbb{X}\left(\delta_{2}\right)\right]}+\oint_{\partial \Sigma} \mathbb{X}\left(\delta_{[1}\right)\right\lrcorner \vartheta\left(\delta_{2]}\right)
$$

Super metric on phase space [Viktoria Kabel, ww]

$$
\left.G\left(\delta_{1}, \delta_{2}\right)=-\oint_{\partial \Sigma} \mathbb{X}\left(\delta_{(1)}\right)\right\lrcorner \vartheta\left(\delta_{2)}\right)
$$

Leibniz bracket on extended phase space,

$$
\begin{aligned}
\delta[F] & =\Omega_{e x t}\left(\delta, \mathfrak{X}_{F}\right)-G\left(\delta, \mathfrak{X}_{F}\right), \\
(F, G) & =\mathfrak{X}_{F}[G] .
\end{aligned}
$$

On the extended phase space, the Lie derivative \mathscr{L}_{ξ} is a Hamiltonian vector field with respect to the Leibniz structure.
The corresponding generator is the Noether charge,

$$
\delta\left[Q_{\xi}\right]=\Omega_{e x t}\left(\delta, \mathscr{L}_{\xi}\right)-G\left(\delta, \mathscr{L}_{\xi}\right) .
$$

Leibniz bracket captures dissipation

$$
\left.\left(Q_{\xi}, Q_{\xi}\right)=-\oint_{\partial \Sigma} \xi\right\lrcorner \vartheta\left(\mathscr{L}_{\xi}\right) .
$$

But violates Jacobi identity and skew-symmetry of Poisson bracket

$$
\begin{aligned}
(A,(B, C))+(B,(C, A))+ & (C,(A, B)) \neq 0, \\
& (A, B) \neq(B, A) .
\end{aligned}
$$

Summary

We discussed three results:
1 Immirzi parameter mixes $U(1)$ frame rotations and dilations on the null cone. Provides a geometric explanation for LQG discreteness of geometry.

2 In gravity, local subsystems are open systems. Characterised the full radiative data for $\gamma \neq 0$ in finite regions.

3 New bracket: Leibniz bracket consists of skew-symmetric-symmetric (symplectic) and symmetric (metric) part. Symmetric part is a corner term that describes dissipation.

