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In gravity, every subsystem is an open system



Outline

We are witnessing a shift of perspective (at this conference but alsoelsewhere) from global aspects of quantum gravity to a more localdescription of gravitational subsystems.
I will pick three results of the programme thus far.

1 Immirzi parameter, radiative phase space on the lightcone
2 Quantisation of area from deformation of boundary symmetries.
3 Metriplectic geometry for gravitational subsystems

*ww, Gravitational SL(2, R) Algebra on the Light Cone, JHEP 57 (2021), arXiv:2104.05803.*ww, Fock representation of gravitational boundary modes and the discreteness of the area spectrum,Ann. Henri Poincare 18 (2017), 3695, arXiv:1706.00479.*Viktoria Kabel and ww, Metriplectic geometry for gravitational subsystems, (2022), arXiv:2206.00029.
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Immirzi parameter, boundary symmetries on thelightcone



Gravity in terms of differential forms

To understand how gravity couples to boundaries, it is useful to workwith differential forms rather than tensors since there is a natural notionof projection onto the boundary, namely the pull-back
φ∗ : T ∗M → T ∗(∂M), which does not require a metric.
Tetrad defines the metric

gab = ηαβe
α
ae

β
b.

so(1, 3) connection and covariant derivative
∇aV

α = ∂aV
α +Aα

βaV
β .

The commutator of two covariant derivatives defines the curvature,
[∇a,∇b]V

α = Fα
βab [A]V β .
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Immirzi Parameter

There are two scalars that we can form out of the curvature tensor:
R[A, e] = Fαβ

ab [A]e a
α e β

b ,

R∗[A, e] =
1

2
εαβµνFαβab[A]e a

µ e b
ν ≈ 0.

Therefore, in the first-order formalism, there are two coupling constants atlinear order in the curvature,
S =

1

16πG

∫
M

d4v
[
R− 1

γ
R∗
]
+ boundary terms.

G is Newton’s constant, γ is the Immirzi parameter.
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Back to self-dual variables

Using the isomorphism between spinors and tensors, the action splitsinto self-dual and anti-selfdual parts
S =

1

16πG

∫
M

d4v
[
R− 1

γ
R∗
]
=

=

[
i

8πγG
(γ + i)

∫
M

ΣAB ∧ FAB

]
+ cc.

SL(2,C) Spinor indices A,B,C, . . . and A′, B′, C′, . . .

Self-dual and anti-self-dual parts, e.g. of Plebański form
eα ∧ eβ =: Σαβ ≡ ΣAA′BB′ = −ϵ̄A′B′ΣAB − ϵA′B′Σ̄AB

Field equations
∇∧ ΣAB = 0, FAB = ΨABCDΣCD = Ψ(ABCD)Σ

CD.
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Basic setup: Hamiltonian GR in finite regions

Spacetime region bounded by null surface:
■ Compact spacetime regionM.
■ Bounded by spacelike disksM0,M1 andnull surfaceN.
■ Null surface boundaryN embedded intoabstract bundle (ruled surface)

P (π,C) ≃ R×C.
■ Null generators π−1(z).

M

N

z

Pπ
−

1
(z

)

S2

2
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Symmetries of the null boundary
Metrical structures at the boundary:

■ Signature (0 + +)metric:
φ∗

Ngab = qab = 2m(am̄b).
■ Null vectors: la : qabl

b = 0 ⇔ π∗l
a = 0.

Abelian symmetries:
■ ma −→ eiφma

■ la −→ eλla

Associate spinors:
■ Penrose null flag ℓA : la ≃ i ℓAℓ̄A

′

■ Conjugate spinor-valued two-form
ηA ∈ Ω2(N : SA).

■ Area density ε = i ηAℓ
A ∈ Ω2(N : R)

■ Abelian symmetries:(
ℓA

ηA

)
−→

(
e+

1
2
(λ+iφ)ℓA

e−
1
2
(λ+iφ)ηA

)

M

N

z

Pπ
−

1
(z

)

S2

2
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Bulk plus boundary action

Bulk plus boundary action:
S =

i

8πγG
(γ + i)

[ ∫
M

ΣAB ∧ FAB +

∫
N

ηA ∧
(
D − 1

2
κ
)
ℓA
]
+ cc.

Boundary conditions alongN: δ[κa, l
a,ma]/∼ = 0

■ vertical diffeomorphisms [φ∗κa, la, φ∗ma] ∼ [κa, φ∗la,ma]

■ dilations [κa, la,ma] ∼ [κa +∇af, ef la,ma]

■ complexified conformal transformations λ = µ+ iν:
[κa, la,ma] ∼

[
κa − 1

γ
∇aν, eµla, eµ+iνma

]
■ shifts [κa, la,ma] ∼ [κa+ζ̄ma + ζm̄a, la,ma]

The equivalence class g = [κa, l
a,ma]/∼ characterises two degrees offreedom per point.
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Phase space on partial Cauchy surfaces

Covariant pre-symplectic potential for the partial Cauchy surfaces:
ΘΣ =

i

8πγG
(γ + i)

[
−
∮
C

ηAdℓ
A +

∫
Σ

ΣAB ∧ dAAB

]
+ cc.

Phase space of bulk and boundary degrees of freedom:
Pphys = (Pbulk × Pbndry)//gauge

Poisson brackets at the two-dimensional corner{
πA(z), ℓ

B(z′)
}
C
= δBAδ(2)(z, z′).

Canonical (spinor-valued) momentum
πA =

i

8πG

γ + i

γ
ηA.

11 / 28



First results: Area operator and discrete spectra
■ The cross-sectional oriented area is

Area[C] = −8πG
iγ

γ + i

∮
C

d2xπAℓ
A.

■ For the area to be real-valued (charge neutral), we have to satisfy thereality conditions,
K − γL = 0.

■ Generators of complexified U(1)C transformations
L = − 1

2i
πAℓ

A + cc. (generator of U(1) transformations),

K = −1

2
πAℓ

A + cc. (dilatations of the light like direction).
■ Boundary modes: creation and annihilation operators (half densities)

aA =
1√
2

[√
d2Ω δAA′

ℓ̄A′ − i√
d2Ω

πA
]
,

bA =
1√
2

[√
d2Ω ℓA +

i√
d2Ω

δAA′
π̄A′

]
.
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Fock quantisation of the area at the boundary
■ Boundary Fock vacuum in the continuum

∀z ∈ C : aA(z)
∣∣{d2Ω, nα}, 0

〉
= 0,

bA(z)
∣∣{d2Ω, nα}, 0

〉
= 0.

■ Boundary operators in terms of harmonic oscillators:
L̂(z) =

1

2

[
a†
A(z)a

A(z)− b†A(z)b
A(z)

]
,

K̂(z) =
1

2i

[
aA(z)b

A(z)− hc.
]
,[

K̂(z)− γL̂(z)
]
Ψphys = 0.

■ K̂ is a squeeze operator, L̂ is difference of number operators.
■ Area is quantised on physical states

̂Areaε[C]Ψphys = 4πγℏG/c3
∮
C

[
a†
Aa

A − b†Ab
A]Ψphys.
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SL(2,R) variables and radiative modes



Null surface geometry

Signature (0++)metric.
qab = δije

i
ae

j
b, i, j = 1, 2.

Parametrisation of the dyad
ei = ΩSi

j e
j
(o).

Choice of time:
∂b
U∇b∂

a
U = −1

2
(Ω−2 d

dU
Ω2)∂a

U

M

N

z

Pπ
−

1
(z

)

S2

2
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Radiative modes from Holst action [ww2021]
Kinematical phase space for radiation: Pkin = Pabelian × T ∗SL(2,R).

ΘN =
1

8πG

∫
N

d2vo ∧
[
pKdK̃ +

1

γ
Ω2

dΦ̃ + Π̃i
j

[
SdS−1]j

i

]
+ corner term.

Abelian variables:
U(1) connection: Φ̃, area: Ω2 d2vo, lapse: K̃ := d̃U, expansion: pK .

Upon imposing 2nd-class constraints: Dirac bracket for radiative modes{
Si

m(x), Sj
n(y)

}∗
= −4πGΘ(Ux, Uy) δ

(2)(x⃗, y⃗)Ω−1(x)Ω−1(y)

×
[
e−2 i (∆(x)−∆(y))[XS(x)

]i
m

[
X̄S(y)

]j
n
+ cc.

]
.

Gauge symmetries:
1 U(1) gauge symmetry with U(1) holonomy h(x) = e−i∆(x)

2 vertical diffeomorphisms along null generators
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Metriplectic geometry for gravitational subsystems



Subsystems as evolving regions in space

To understand the time evolution of a gravitational subsystem,two choices must be made.
■ Choice of time: A choice must be made for

how to extend the boundary of the partial
Cauchy surface Σ into a worldtubeN.

■ A choice must be made how to treat the
flux of gravitational radiation across the
worldtube of the boundary. Flux drives the
time-dependence of the system.

■ Metriplectic geometry is a novel algebraic
framework to tackle these issues.

Σ

Σflux

vs.

N

2

N.B.: In spacetime dimensions d < 4, there are no gravitational waves, and we can
forget about the second issue. The Hamiltonian will be automatically conserved.
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In Hamiltonian systems, energy is conserved

Symplectic potential and volume-form on phase space
Θ = p dq, Ω = dp ∧ dq.

Hamilton equations
Ω
(
δ,

d

dt

)
= δp q̇ − ṗ δq =

= δp
∂H

∂p
+

∂H

∂q
δq = δH.

The Hamiltonian is conserved under its own flow
d

dt
H = Ω

( d

dt
,
d

dt

)
= 0.

If we insist that there is a Hamiltonian that drives the evolution in a finiteregion, the standard approach is too restrictive to account for dissipation.
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Three possible viewpoints
1 There is no problem: Open systems interact with their environment.There is no Hamiltonian that would measure the gravitational energyin a finite region.
2 Treat the system as explicitly time-dependent.

- Time dependence induced by the choice of (outer) boundary conditions.- Hamiltonian field equations modified (contact geometry).
d

dt
Ft =

{
H,Ft

}
+

∂

∂t
Ft.

- By fixing the outgoing flux, radiative data no longer free (highly non-localconstraints).
- Conjecture: Resulting phase space (on which this Hamiltonian operates)is the phase space of edge modes alone. Seems too restrictive, less useful.

3 Metriplectic geometry
- New algebraic approach. New bracket. But many properties of Poissonmanifolds lost.- Noether charges generate evolution for generic vector fields.- Takes into account dissipation.
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Metriplectic geometrywork with Viktoria Kabel



Metriplectic geometry

Even dimensional manifoldP, equipped with a pre-symplectic two-form
Ω(·, ·) ∈ Ω2(P) and a signature (p, q, r)metric tensor G(·, ·).
A vector field XF is a (right) Hamiltonian vector field of some (gaugeinvariant) functional F : P → R on (P,Ω, G) iff

∀δ ∈ TP : δ[F ] = Ω(δ,XF )−G(δ,XF ).

The Leibniz bracket between two such functionals is given by
(F,G) = XF [G].

The metric on phase space encodes dissipation
d

dt
H = (H,H) = −G(XH ,XH).

*Morrison; Kaufman (1982-); Grmela, GÃ¶ttinger (1997); Guha (2002); Holm, Stanley (2003);...
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Metriplectic geometry and extended phase space
Following Freidel, Ciambelli, Leigh, we work on an extendedpre-symplectic phase space.
A point on the extended pre-symplectic phase space is labelled by aEinstein metric gab and choice of coordinate functions xµ.
Maurer –Cartan form for diffeomorphisms

X
a =

[ ∂

∂xµ

]a
dxµ.

Extended pre-symplectic current
δ[L] ≈ d[ϑ(δ)],

ϑext = ϑ−ϑ(LX) +X⌟L = ϑ−dqX.

Noether charge and Noether charge aspect
QX =

∮
∂Σ

qX =

∫
Σ

(
ϑ(LX)−X⌟L

)
.

*L. Freidel, A canonical bracket for open gravitational system, (2021), arXiv:2111.14747.*L. Ciambelli, R. Leigh, Pin-Chun Pai, Embeddings and Integrable Charges for Extended Corner Symmetry,Phys. Rev. Lett. 128 (2022), arXiv:2111.13181.
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Field dependent vector fields

The coordinate functions xµ : U ⊂ M → R4 are now part of phase space.
Variations of coordinate functions will only contribute a corner term tothe extended pre-symlpleictc two-form.
Vector fields that are determined by their component functions ξµ(x)become field dependent vector fields.

ξa = ξµ(x)∂a
µ,

δ[ξa] = [X(δ), ξ]a.
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Metriplectic structure

Extended pre-symplectic structure on the covariant phase space [Freidel;Ciambelli, Leigh]
Ωext(δ1, δ2) = Ω(δ1, δ2) +Q[X(δ1),X(δ2)] +

∮
∂Σ

X(δ[1)⌟ϑ(δ2])

Super metric on phase space [Viktoria Kabel, ww]
G(δ1, δ2) = −

∮
∂Σ

X(δ(1)⌟ϑ(δ2))

Leibniz bracket on extended phase space,
δ[F ] = Ωext(δ,XF )−G(δ,XF ),

(F,G) = XF [G].
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Noether charge and Hamiltonian vector fields

On the extended phase space, the Lie derivativeLξ is a Hamiltonianvector field with respect to the Leibniz structure.
The corresponding generator is the Noether charge,

δ[Qξ] = Ωext(δ,Lξ)−G(δ,Lξ).

Leibniz bracket captures dissipation
(Qξ, Qξ) = −

∮
∂Σ

ξ⌟ϑ(Lξ).

But violates Jacobi identity and skew-symmetry of Poisson bracket
(A, (B,C)) + (B, (C,A)) + (C, (A,B)) ̸= 0,

(A,B) ̸= (B,A).
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Summary



Summary

We discussed three results:
1 Immirzi parameter mixes U(1) frame rotations and dilations on thenull cone. Provides a geometric explanation for LQG discreteness of
geometry.

2 In gravity, local subsystems are open systems. Characterised the fullradiative data for γ ̸= 0 in finite regions.
3 New bracket: Leibniz bracket consists of skew-symmetric-symmetric(symplectic) and symmetric (metric) part. Symmetric part is a cornerterm that describes dissipation.
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