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Main goals

⇒ Give an overview of the computation of momenta and charges
in a Carrollian theory

⇒ See and recall the differences with the relativistic ascendant of
the theory

⇒ Talk about electric/magnetic dualities
⇒ Apply those results in the RT background
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Highlights

1 Set up

2 Conserved charges

3 Application in Robinson-Trautman

4 Comments and outlook
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Geometry

Carroll structure
M = R × S is a d + 1-dim manifold with two fundamental
quantities
⇒ a degenerate metric

dl2 = aij(t, x)dx idx j .

⇒ a field of observers ν = 1
Ω∂t .

The field of observers admits a dual form, the clock form
µ = Ωdt − b with an Ehresmann connection b = bidx

i .

Relativistic ascendant [Ciambelli, Marteau, Petropoulos, Petkou, Siampos 18]

Take the c → 0 limit of a manifold in Randers-Papapetrou gauge

ds2 = −c2(Ωdt2 − bidx
i )2 + aijdx

idx j .

Assume: all the c-dependence is explicit.
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The scalar field

Our guideline
In all these considerations we want to build theories invariant under
Carrollian diffeomorphisms

t ′ = t ′(t, x) and x′ = x′(x).

Set up
The relativistic action is

S = −
∫

M
dt ddx

√
−g

(
1
2
gµν∂µΦ∂νΦ+ V (Φ)

)
.

We extract the c-dependence assuming

V (Φ) =
1
c2Ve(Φ) + Vm(Φ)+O(c2).
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Electric v Magnetic theories

We are left with
S =

1
c2Se + Sm+O(c2)

with Se and Sm the Carrollian actions with Lagrangian densities

Le =
1
2

(
1
Ω
∂tΦ

)2

− Ve(Φ),

Lm = −1
2
aij ∂̂iΦ∂̂jΦ− Vm(Φ),

Important remark
Both Lagrangian densities are Carroll covariant thus are genuine
Carrollian field theories in themselves.
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The conformal scalar field [see also Baiguera, Oling Sybesma, Sogaard 22]

Potential

The field ϕ is now weight w = d−1
2 and we take a potential

V (Φ) =
d − 1
8d

Rϕ2.

This is conformal (as Tµ
ν). And

V (Φ) =
1
c2Ve(Φ) + Vm(Φ) + c2Vnd(Φ)

with

Ve(Φ) =
d − 1
8d

(
2
Ω
∂tθ +

1 + d

d
θ2 + ξijξ

ij

)
Φ2,

Vm(Φ) =
d − 1
8d

(
r̂ − 2∇̂iφ

i − 2φiφi

)
Φ2,

Vnd(Φ) =
d − 1
8d

ϖijϖ
ijΦ2.
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Electric and Magnetic theories

Se =

∫
dt ddx

√
aΩ

(
1
2

(
1
Ω

D̂tΦ

)2

− d − 1
8d

ξijξ
ijΦ2

)
,

Sm =

∫
dt ddx

√
aΩ

(
−1

2
D̂iΦD̂ iΦ− d − 1

8d
R̂Φ2

)
,

as well as a third one Snd = −
∫

dt ddx
√
aΩd−1

8d ϖijϖ
ijΦ2, which

has no kinetic term for Φ.

EoM

1
Ω

D̂t
1
Ω

D̂tΦ+
d − 1
4d

ξijξ
ijΦ = 0 electric,

− D̂i D̂
iΦ+

d − 1
4d

R̂Φ = 0 magnetic,
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Momentas

Building momenta [Ciambelli, Marteau 19 & Petkou, Petropoulos, Rivera-Betancour, Siampos

22]

From and action S one can define an energy–stress tensor Πij , an
energy flux Πi and an energy density Π, defined as:

Πij =
2√
aΩ

δSC

δaij
Πi =

1√
aΩ

δSC

δbi
,

Π = − 1√
a

(
δSC

δΩ
+

bi
Ω

δSC

δbi

)
satisfying the equations

1
Ω

D̂tΠ+ D̂iΠ
i +Πijξij = 0,

D̂iΠ
i
j + 2Πiϖij +

(
1
Ω

D̂tδ
i
j + ξij

)
Pi = 0.
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Relevant momenta for the following

Πi
e = 0

Πi
m = − 1

Ω
D̂tΦD̂ iΦ+

d − 1
4d

(
D̂ i 1

Ω
D̂tΦ

2 − D̂j

(
ξijΦ2))

P i
e = Πi

m

P i
m = Πi

nd =
d − 1
4d

D̂j

(
ϖjiΦ2)
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Construction of conserved charges [Ciambelli Marteau 18] [Petkou, Petropoulos,

Rivera-Betancour, Siampos 22]

The current → a scalar component κ + a Carrollian-vector set of
components K i .
The divergence takes the form

K =

(
1
Ω
∂t + θ

)
κ+

(
∇̂i + φi

)
K i .

The charge associated with the current (κ,KKK ) is then

QK =

∫
S

ddx
√
a
(
κ+ biK

i
)
,

we obtain the following time evolution:

dQK

dt
=

∫
S

ddx
√
aΩK −

∫
∂S

⋆KKKΩ,

where ⋆KKK is the S -Hodge dual of Kidx i .
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Electric v Magnetic conservation

Take ξ a Carrollian diffeomorphism (here ξi = ξi (x)),

ξ = ξt∂t+ξi∂i =

(
ξt − ξi

bi
Ω

)
∂t+ξi

(
∂i +

bi
Ω
∂t

)
= ξ t̂

1
Ω
∂t+ξi ∂̂i

This gives
κ = ξiPi − ξ t̂Π, K i = ξjΠ i

j − ξ t̂Πi .

And the divergence reads

K = −Πi
((

∂̂i − φi

)
ξ t̂ − 2ξjϖji

)
.
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Electric

Qe =
∫
S ddx

√
a
(
κe + biK

i
e
)

κe = ξiΠmi − ξ t̂Πe, K i
e = ξjΠi

ej ,

And Πi
e = 0 =⇒ K = 0 =⇒ all charges are conserved.

Magnetic

Qm =
∫
S ddx

√
a
(
κm + biK

i
m
)

with

κm = ξiΠndi − ξ t̂Πm, K i
m = ξjΠi

mj − ξ t̂Πi
m

Charges are conserved for configurations s.t. Πi
m = 0 =⇒ depends

on the background.
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Set up

Take Robinson-Trautman in d = 4. The null boundary is a
Carrollian manifold M = R× S , where S is equipped with a
conformally flat d = 2 metric:

dℓ2 =
2
P2 dζdζ̄

Carrollian data

Ω = 1 bi = 0 υ = ∂t , µ = −dt θ = −2∂t lnP,
φi = 0, ϖij = 0, ξij = 0, R̂ = 4P2∂ζ̄∂ζ lnP.
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Conformal Killing fiels [Ciambelli, Leigh, Marteau, Petropoulos 19]

Vanishing shear

If ξij = 0 → aij(t, x) = B−2(t, x)ãij(x).

Algebras

So Carrollian algebra = Confalbegra(ãij(x)) ⊕ supertranslations.

When ãij(x) is conformally flat, recover ccar(d + 1) so BMS in
d = 1 and d = 2.
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Conformal Killing fiels [Ciambelli, Leigh, Marteau, Petropoulos 19]

The conformal Killing fields of M are

ξT ,Y = (T −MY (C ))
1
P
∂t + Y i∂i ,

where

C (t, ζ, ζ̄) =

∫ t

dτP(τ, ζ, ζ̄),

and MY is an operator acting on scalar functions f (t, ζ, ζ̄) as:

MY (f ) = Y k∂k f −
f

2
∂kY

k .

Remark
Recover the BMS algebra thus an infinite number of Killings and
charges (not all conserved !).
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Electric scalar field in RT

The electric equation of motion (1) reads as follows in the
three-dimensional Carrollian spacetime under consideration:

∂t
1
P
∂t

Φ√
P

= 0.

Its general solution is given in terms of two arbitrary functions
f (ζ, ζ̄) and g(ζ, ζ̄):

Φ =
√
P (Cf + g) .

The charges is

QeT ,Y = −i
∫

S
dζ ∧ dζ̄

(
Y i

(
1
4
∂i (fg)− f ∂ig

)
− Tf 2

2

)
− 1

4

∫
∂S

⋆YYYCf 2P2.
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Magnetic scalar field in RT

The magnetic equation (1) is

4∂ζ∂ζ̄Φ = Φ∂ζ∂ζ̄ lnP.

Conservation → two cases to consider
⇒ Πi

m = 0

⇒
(
∂̂i − φi

)
ξ t̂ − 2ξjϖji = 0

Vanishing energy flux

Conformally stationary scalars of the form Φ =
√
Pg(ζ, ζ̄), where

g(ζ, ζ̄) is further determined by solving the magnetic equation of
motion.
Magnetic charges non-zero and conserved for all ξ.
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Vanishing of extra condition
This implies

T = SP +MY (C ),

where S = S(t) → huge restriction on the allowed ξ.
Only 1 charge conserved

QmS = −S

∫
S

dζdζ̄
P2 Πm.

→ total energy, but Πm = 1
2d D̂i

(
ΦD̂ iΦ

)
on shell so this only

charge vanishes.
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Some conclusions

Why such a spliting ?

Carrollian (conformal) isometry → invariance of aij(x , t) and
= 1

Ω∂t , but not that of µ = Ωdt − b.
Time (supported by ν) and space (associated with µ) directions
behave differently and this ultimately reveals in the conservation
properties of electric versus magnetic dynamics.

On the charges

Not all Carrollian (conformal) Killing vectors give rise to a
conserved quantity. Much more isometries than conserved
quantities !
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End

Thanks for your attention !
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