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INTRODUCTION AND MOTIVATION

» Relativistic fluid, hydrodynamic frame invariance is a crucial property.

Fluid/gravity correspondence, reconstruction of Einstein’s spaces with A # 0
M. Haack & A. Yarom 08’; S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi & S.R. Wadia
08’; S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla & A. Sharma 08’; M. M. Caldarelli, R. G. Leigh, A.
C. Petkou, P. M. Petropoulos, V. Pozzoli & KS 12’; A. Mukhopadhyay, A. C. Petkou, P. M. Petropoulos, V. Pozzoli &
K.S. 13

» Carrollian group is a contraction of the Poincare group, where ¢ — 0
Lévy-Leblond 65°, Sen Gupta 66’

» Conformal Carroll group & BMS group
C. Duval, G. W. Gibbons & P. A. Horvithy 14’

» Carrollian dynamics emerges in asymptotically flat spacetimes
L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos & KS "18; Penna *18; A. Bagchi, S. Chakrabortty, D.
Grumiller, B. Radhakrishnan, M. Riegler & A. Sinha *21

» Carroll symmetry can be used in inflationary cosmology £ + P =0
J, de Boer, J. Hartong, N. A. Obers, W. Sybesma, S. Vandoren 21’



FOCAL POINTS

In this talk we will focus on:

O Y I )

Revisit of the relativistic hydrodynamics.

Galilean fluids using covariance and as a non-relativistic limit ¢ — oco.
Carroll fluids using covariance and as a non-relativistic limit ¢ — 0.
Aristotelian structures.

Conclusions and Outlook



PLAN OF THE TALK

REVISIT OF THE RELATIVISTIC HYDRODYNAMICS



ENERGY-MOMENTUM TENSOR AND MATTER CURRENT

Without external forces the fluid equations are:
VuT*Y =0, V. J"=0, pu=0,1,...,d

and are accompanied by a metric g,v.

They are decomposed along a velocity field u* with u,u* = —c* as
1 v
™ = #u“uv +pg™t T+ S (g Futgt),
c ¢
JH — pouH +jH

where the viscous tensor ™" & the heat current ¢** (non-perfect e-m) obey

1 y
uqn =0, u'tyy =0, u'Tyw=—qgv—cuy, &= C—ZTWM”M
and also |
u'ju =0, po= fcfzuufu
The entropy current equals to
1
st = 7 (pu" —T"uy — uoJ") + R"

Let us now derive the e-m tensor and the matter current




ENERGY-MOMENTUM AND MATTER CONSERVATION

Let’s start from the action

S = Jd‘”lxs/—gﬁ
the energy—momentum tensor and the current can be defined as usual
Y _ 2 688 o= 185
V—8 dgu~ V—8 8By

Demanding invariance under diffeomorphisms x* — x* — &"
5:8 = Jd‘”lx\/—g Seguy T = —ZJdde\/—g Vo T
— J d+1x /7 E’ Tu\/) ‘z—.vvauv) — 0

implying the conservation of 7" . Similarly, J* is conserved under B, — By + 0 A
If & is a Killing vector we can also define the conserved current

VH(ENTHV) =0

and also for a conformal Killing vector provided that 7,,* =0



WEYL INVARIANCE

The system may be invariant under Weyl transformations
ds* = Q7%ds*,  u* — Qu*
defining a Weyl connection

1 %) .
AHZE (apfguu> , ap=u"Vyu,, O©=V,u"

The Weyl covariant derivative is metric compatible

ngpv — 0) DKf: [aK+WAK)f) [DKyD?\]f: WFK?\f, Fn = 0cAx—0rA«

The fluid dynamics is Weyl invariant provided that
VT =D, VJ" =Dy J"

where T and J* have conformal weights d — 1 and T, = 0.

This leads to ¢ = d p + T and conformal weights

weight | observables
d+1 & p

d qu> Po
d—1 Tyvs




ZERMELO COORDINATES

In a d + 1 dimensional pseudo-Riemannian manifold we can write it in the form
ds* = —*Q2dr* + ay(dx' — w'dr)(dx' — w/dr)

with (Q, w', a;;) functions of (z,x).

These coordinates are well adapted for the Galilean limit ¢ — oo, since
t'=1(1), x'=x'(,x)
reduce to

no__

, W (Jijwj +ji) y a,_-',- = ay ]7”(,‘ Jﬁllj

where

J= af’ F ax'i i ax'i

a0 T T o
An example is the d 4 1 vector u"

0 (1] / —1j
u =Ju, u =J 7u

Galilean diffeomorphisms are generated by & = &'(£)d, + &'(z,x)0;



RANDERS—PAPAPETROU COORDINATES

In a d + 1 dimensional pseudo-Riemannian manifold we can write it in the form
ds* = —c*(Qdt — bidx')* + azdx'dx’
with (Q, b;, a;;) functions of (¢, x).
These coordinates are well adapted for the Carrollian limit ¢ — 0, since
t'=1(,x), x =x'(x)

reduce to
Q Q L ) o
Q = = by = (b,- + 7];-) I, d =T

An example is the d + 1 vector u"

’ Uuo 1i i
uy=—, u =J;u
7 )

Carrollian diffeomorphisms are generated by & = &'(t,x)9, + &'(x)0;



REVISIT OF THE RELATIVISTIC HYDRODYNAMICS
GALILEAN FLUID DYNAMICS
CARROLIAN FLUID DYNAMICS

ARISTOTELIAN FLUID DYNAMICS



GALILEAN COVARIANCE

Let us consider the manifold M = R x S with coordinates (z,x) and the cometric
0 =d"0:0;, i=1,...,d

along with the clock form and its dual/field of observers
N 1 ;
o = Qdr, e = (2+)

where we choose a” and w' to be functions of (f,x), where we choose Q = Q(r).
» The clock form is exact, torsionless Newton—Cartan manifold.
> Invariance of ds*, ©' and ¢; under Galilean diffs: ¢’ = ¢'(¢) ,x’ = x' (1, x).

» We also introduce the positive-definite (degenerate) metric
ds® = ay(t,x)dx'dx’
and the corresponding metric compatible torsionless connection

il
i a
Viag =0, ¥ = > (0jam + Oray — dia)



GALILEAN STRUCTURES

We can define Galilean tensors from objects transforming as connections
as follows | . | , | o )
a AV — Ea,a = 50 (LA(I + 0sa )

Laaij + 0a;)

1 1 1
66;/\/—\/‘ + Ea,(l/\/ = E (

‘We also define the connection

w 1 1
i (e(iWn + Earazz)

as well as the Galilean shear and expansion

W 1 1 1 W W 1 i
& i = 5 (@[,’W}] + Ea,a,-,-) — Ea,«je y 0" = 6 (a,ln\/E+ @,‘W)

Finally, we also introduce a time, metric-compatible covariant derivative

1 Do 1 ; 1 DV 1
5?—6(6[+Wal)(p, - -

Qd  Q

(a,Vi—i-LwV") +,?wllvj



GALILEAN DIFFEOMORPHISMS-I

Let us consider the action functional of Q, w’ and a”
S = JdtQJddx Vat

and define the Galilean momenta (energy, current and stress-tensor)

50 Q%

qo | (55 wi65>, _ 1 8 2 58

T Qva T Qvasy’ YT T QVa ddi
leading to the variation
1 ii Wi Wi
58 = —JdtQJddx\/E (Eﬂi,saf + PO+ (IT + 6P,~> § an)
We would like to compute &S under Galilean diffeomorphisms

=810+ &(1,x)0, = £Q é(a, F W)+ (8 — W0 = Eley + £



GALILEAN DIFFEOMORPHISMS-II

The Galilean diffeomorphisms x* — x* — & act infinitesimally on Q, w' and a” as
L0 =0 — L8, Low' =0 —£,8", Led' =2(VV) +9"7E)
Also on the clock form 07 and on the field of observers e

R N 1 A oA . R
e0' == (38 +£,8) 0", Leer= -5 (a £+ L) o 6 (3.&"+£uE) 0

Employing the above we find the energy and momentum equations
A. Petkou, P. Petropoulos, D. Rivera-Betancour, KS 22

lﬁ w wij i Iﬁ wj J
<6d*+9 )ﬂJrﬂU? —*ﬁ,”» <6d7+6 )Pt+PJ§> i+©ﬂlj—0

where TT' is not determined through the variation; results as a boundary term.

Similarly invariance under gauge transformations leads to the continuity equation

1D ; 1 88 : 1 os 58S
= i I: = T =<5 N/ -
<Qd 0" )p+©N O, °P=/ZsE Qf( og,)




ISOMETRIES AND THE (NON)-CONSERVATION

Killing fields of the Galilean type satisfy

N N N i 1 D&t

Led"=0, £:0=0 = Vg 49g=0 — £ o
Q dr

whereas the field of observers e; is not apriori invariant.

An example a; = 8, Q = 1 & w' = constant with Galilean algebra gal(d + 1)

Duval 09°

E=T0,+ (Q/X +Vi+X) = Leey=— (V' +w0Q)ai £0

Assuming an isometry, we have on-shell vanishing scalar (continuity equation)

K= <ég+9w) K+ ViK', k=8P — &M, K =&m;—¢&m,

Using the energy & momentum on-shell conservation C = % (6,5,? + LWE,?) #0
Comments:
» Even in flat space K = P; (Vi + kaki) # 0, is not associated with a bnr term.

» The above construction extends for conformal isometries

Led' =Nd", £:0"=p0", 2u+A=0



GALILEAN HYDRO AS A NON-RELATIVISTIC LIMIT

The energy—momentum tensor admits a large-c expansion (Zermelo frame)
QT =g, =TT+ O (/2)
c_QTO; =g = AP+ T + O (Y2) R
T,-j = praij + Tj = ﬂ,j + O (1/62) .
Inserting the above into the conservation equations V7" = 0 leads to
OV, T =VP+E+0O(1/2) =0
VuTH = M+ O (1/2) =0,
where

lﬁ w wij i _ 16 w wj J
E= (6&+9 >n+ﬂ,-,-ﬁ> +VIT, M= (EEJFG )P,—i—P,‘? A+ VT

including the constraint on the current P;, bnr term from diffeomorphism perspective.
Comments on the limit ¢ — oo:
» Continuity equation emerges by adding ¢’p in €, (é% + GW) p+ViP =0
» The conservation equations V,, 7" = 0 are on-shell Galilean boost invariant.
» The (non)-conservation conditions emerges as a limit through V. (T*V&,) =0
| 4

The limit is richer in comparison with invariance under Galilean diffs.



MORE ABSTRACT EQUATIONS - GALILEAN

Let us expand the energy—momentum tensor as
QT =&, =c’p+ T+ O (1/2)
QT = g = *Pi + PP+ T + O (1/2)
T = praij + Toj = Czﬁ,jj +1T; + O (1/2)

yielding the equations

S0 ) T+ Ty + VIl =0

L0 1 0") p+ A" +ViP =0
ViP =0

LB ) P+ PR+ VT =0

LD 1 9v) By 4 PR", + VT, = 0.

Comments:
» The degrees of freedom are multiplied.
» These equations can be derived using diffs by incorporating additional fields.
» Again the conservation laws are no conservation laws, except if

% (a,a%m?) -0 and % (atz,uﬁwaf) -



REVISIT OF THE RELATIVISTIC HYDRODYNAMICS
GALILEAN FLUID DYNAMICS
CARROLIAN FLUID DYNAMICS

ARISTOTELIAN FLUID DYNAMICS



CARROLIAN COVARIANCE

Let us again define a manifold M = R X § with coordinates (7, X) equipped with
ds* = agdx'dy, i=1,...,d
the field of observers e; and the clock form o (dual Ehresmann connection)

1

g5 0 = Qdr — bidy'

e =

where Q, b; and a;; are functions of (z,x). Properties:

» Invariance of e;, ds® and 6 under Carrollian diffs: ' = #'(£,x), x’ = x’(x).

» Additional transformations
1 L ji

» Defining a new partial derivative



CARROLIAN STRUCTURES

We can define a torsionless and metric-compatible spatial connection
il

i a A A A
@,-ajk =0, = > (a,»azk + Okayj — aza/-k)

and the Carrollian vorticity and acceleration through

2

A A 1
[a,-, aj] = ﬁa),-ja,, @ = a[,«bﬂ + b[i(p/-] , Pi= a (0:b; + 0:Q)

In addition, we also define the metric-compatible temporal connection

1 i 1 i i i
D/® =0,0, 5b,v = 6afv +95V, = =—=0.a;

as well as the Carrollian expansion

0 :aij?ij = éa,ln\/a



CARROLLIAN DIFFEOMORPHISMS-I

Let us consider the action functional of Q, w' and a”

§= Jd"“xQ\/aL
and define the Carrollian momenta (energy, current and stress-tensor)
1 oS 5§
M=———=(Q—= +bi—
0va < 50+ 51;,-)
1 8S i 2 oS
YT OVa bbb’ " Q+/a day

We would like to compute the variation
5:S = szd"xQ\/a Gn"f'éaa,j F TS — é (ﬂ + b,-ﬂ") 541) .

under Carrollian diffeomorphisms

bl‘ Al iA
at) :Etﬁat"‘aai

t i L r_ iﬁ i . Yi
&E=8(,x)0, + & (x)0; = (a £Q> 0+ & <6,+Q



CARROLLIAN DIFFEOMORPHISMS-I1I
The Carrollian diffeomorphisms act infinitesimally on Q, b; and a;; as
LelnQ = éa,a@ @& Lebi = by (éa,a@ (ij,j> - ((6,- — ) E— 2a"a>j,-)
Leay =2V (& ay + 2619,
also on the field of observers e; and on the clock form o

~ 1 I ci 1 I ci T A 7 c i
—Lze; = <§0/S + q),a> e, £;v9/ = <50/&/ + q),t) o' — <(O, — (p,) & — 2&’6),,) dx

Employing the above we find the energy and momentum equations

A. Petkou, P. Petropoulos, D. Rivera-Betancour, KS ’22; L. Ciambelli, C. Marteau "19

1 S
(65, + 6) M+ (Vi+2) T +T79; =0,
) ) 1
(@j + (,Oj) ﬂji + Zﬂ’mj,- + Tl = — <56T + 9) P;

where P; is not defined throughout the variation — resulting from a boundary term.

Similarly invariance under gauge transformations: (9, + 6) p + (@, + @) N =0



ISOMETRIES AND THE (NON)-CONSERVATION

Killing fields of the Carrollian type satisfy
k 5 L, i
Liaj=0, Lgey=0 — @(,‘a aj)k-i-f,?,‘j:o, 56,& + @& =0

whereas the clock form @ is not invariant.

An example a’ = 67, = 1 and b; = constant with Carroll algebra cave(d + 1)
g = (Q,-f'x" + Xf') 0+ (T—Bu')d, = 8:0 = (B,- + Q/‘b,-) dx' #0
Assuming an isometry, we have on-shell vanishing scalar (continuity equation)
(éa, + e) K+ (Vit @)K =0, w=¢gpP—&N, K =g —&m
Using the energy & momentum on-shell conservation we find
K =TT ((6,- —) & — 2&’@_,1)
Comments:

> Even in flat space K = TT' (B; + Q/b;) # 0, is not associated with a bnr term.

» The above construction extends for conformal isometries

Leaj=MNaj, Legey=pe;, 2u+A=0



CARROLLIAN HYDRO AS A NON-RELATIVISTIC LIMIT

Energy—momentum tensor admits a small-c expansion (Randers—Papapetrou frame)
éToo .: Sr.: T + (@) (62) y
5T =q¢=T"+ FP+0O (c4) ,
TV =pd’ +1/ =TIV + O (cz) .

Inserting the above into the conservation equations V,,T*” = 0, leads to

GVuT* =E+0(c) =0,
VuT" = L5 ((§Di+0) T +T79/) + G + O (c*) =0,
where

E=— (éﬁt + e) M — (Vi +2¢,) TI' =179y,

. . 1 :
G = (Vi+ @) T+ 2o, + T, + (ﬁﬁt + 9) P+ Py,

including the constraint on the current TT, which is a bnr term from diff perspective.
Comments on ¢ — 0:
» The conservation equations V T"" = 0 are on-shell Carrollian boost invariant.
» The (non)-conservation conditions emerges as a limit V, (T*V&y) = 0.

» The limit is richer in comparison with invariance under Carrollian diffs.



MORE ABSTRACT EQUATIONS - CARROLLIAN

Let us expand the energy—momentum tensor as
éToo =& = %fﬂ‘l»@(cz),
—5T' =di=5+T+P +0(),
TV =pad’ + 7/ =5 + 117+ 0 ()

yielding the additional equations
1 = i
—(ﬁﬁ,—O— )ﬂ—(@i—i-Z(p,-)ﬂ —ﬂ-’%:o,
- - . 1 }
(Vi+ @) T + 2@ + Ty + (515, + e) M, + 119, =0,

1 I
(ﬁbr+e) T+ 1194 =0.

Comments:
1. The degrees of freedom are multiplied.
2. These equations can be derived using diffs by incorporating additional fields.

3. Again the conservation equations do not imply conservation, except if

M (@— ) &' —26@y) =0 and 11 ((B— ) &/ —20/@;) =0



HYDRODYNAMIC FRAME INVARIANCE

In the relativistic case the frame transformations (local Lorentz) are given through
q5p;

2 ki
ﬁqi = il s — it — M
V1—c2B% \ V1 — B2 ’

8 (ph + ) = Iczéféz (B (" + ) + B (ph* + %)) — 715&2&, (4" +di*) .
—¢ — 22

de = -2

Leaving 7, invariant.

In the Carrollian case we find
s:n+0(<r2) s p:a)+(9(cz) s qi:Q'+cz7T'+O(z:4) s Tijszif+O(<rz> N
with transformations
on = —28p;0°, 50 =0,, &n =5B; (Eij — M+ @) + BiQi) ;5 (3’7 - am"f) = 5B, (Q‘a’k + Q’a"") .

Leaving TT, P;, TT" and TT¥ invariant.
In the Galilean case the hydrodynamic invariance is broken in the massive case. The
velocity field and the fluid density are physical and observable quantities.



COMMENTS

Electric and magnetic: C.Duval. G. W. Gibbons, P. A. Horvithy & P. M. Zhang *14

> Using the Hamiltonian approach M. Henneaux & P. Salgado-Rebolledo *21

» The magnetic Carrollian scalar field has a non-vanishing energy flux TT,, # 0
D. Rivera-Betancour & M. Vilatte *22 (see Mathieu’s talk)
See also: S. Baiguera, G. Oling, W. Sybesma & B. T. Sggaard *22

Chern—Simons action and the Cotton tensor:

Scs:%JTr(wAdw+§wAwAw) ,

Its metric variation yields the Cotton tensor

gPAH 1
C‘“V = va <Rv)\ — ZRgv)\>

having C’y # 0, in the limit of ¢ — 0 in the Randers—Papapetrou frame.

Specific example: The Robinson-Trautman case for k — 0:
L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos & KS 18

ds* = —kK*di* + [%d(:di, P=P070)

where )
Ciodx' = é (9:KdT —;:Kdl) #0, K =2P0.9;InP



REVISIT OF THE RELATIVISTIC HYDRODYNAMICS
GALILEAN FLUID DYNAMICS
CARROLIAN FLUID DYNAMICS

ARISTOTELIAN FLUID DYNAMICS



ARISTOTELIAN COVARIANCE

Let us again define a manifold M = R X § with coordinates (¢, x) equipped with
R. Penrose 68’

de* = a;(t,x)dx' dx’
along with the field of observers e; and the clock form o'
1
Q

The Aristotelian diffeomorphisms act as

3, 0 =0Qdt

e =

We can define a temporal and a spatial metric-compatible covariant derivatives

il

— (0jan + Oray — diajk)

day, V= 5

= b
YU_ZQ

as well as the expansion and the acceleration form

Gzéa,ln\/a, (pi:aian.



ARISTOTELIAN DIFFEOMORPHISMS

Take the action S = J'dd“x Q+/aL and define the Aristotelian momenta

18 ;2 &S

= vasa’ T ajase

Varying the action
8:8 = — Jdl_Q Jddxﬁ (%n[j5gay + T16¢ In Q)

with respect to Aristotelian diffeomorphisms & = &'(1)9, + £/(x)0; = Q&' 50, + £/,
leads to the energy and momentum equations

I ’ : , 1
(ﬁat " 9) MMy = — (Vi+20) 1T, (Vi + @) TV AT = — (ﬁa’ - 6) "

where TT' and P; are not determined through the variation — boundary terms.
Comments on Aristotelian fluids:
» Introduced by J. de Boer, J. Hartong, N. Obers, W. Sybesma & S. Vandoren 17

» ”Self-dual” resulting from Galilean or Carrollian with w' = 0 or b; = 0.
L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos & KS "18



ISOMETRIES AND THE (NON)-CONSERVATION

Similarly, invariance under gauge transformation leads to

1 i
(561+6>p+(vi+<pf)N =0

Killing fields of the Aristotelian type satisty
A 1. - ;
Leaj=0, Lep=0 — V(iakaj)k—FE,t'Yij =0, ﬁatét-i-(PiE. =0
Assuming an isometry, we have on-shell vanishing scalar (continuity equation)
1 i i 7 i i i
K= (56,+6> K+ (Vi+ @)K, «k=&P,—&T, K =& —&n

Using energy & momentum on-shell conservation — IC = 0 (no-extra constraints).



CONCLUSION & OUTLOOK

We studied Galilean & Carrollian hydrodynamics on arbitrary backgrounds:
Our approach was based on covariance and diffeomorphism invariance.
Killing vectors do not guarantee an on-shell conservation.

In agreement with the ¢ — oo and ¢ — 0 limits of V(T &Y) =0
Limiting procedure is richer, further variables and equations.

Compatible with diffeomorphism invariance, conjugate to new momenta.

vyVvyVvyvVvYyYyy

Richer structure is needed, connection with flat holography — flux balance Eqs.
See Romain’s talk

Hydrodynamic frame invariance:
> Relativistic fluid: Important property in reconstructing Einstein’s spaces A # 0
Bulk diffs: bnr diffs, Weyl transformations and local Lorentz transformations.

» Similarly for the Carrollian fluid for reconstructing Ricci-flat spaces A = 0
Bulk diffs: bnr diffs, Weyl transformations and Local Carroll transformations.
A. Campoleoni, L. Ciambelli, C. Marteau, P. M. Petropoulos, KS 18’;
L. Ciambelli, C. Marteau, P. M. Petropoulos & R. Ruzziconi 20’; A. Campoleoni, L. Ciambelli,, A. Delfante, C. Marteau, P. M.
Petropoulos, R. Ruzziconi 22

We also studied Aristotelian fluids, a limiting case of Galilean and Carrollian:
P Our approach was based again on covariance and diffeomorphism invariance.

> Killings guarantee an on-shell conservation.
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