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INTRODUCTION AND MOTIVATION

▶ Relativistic fluid, hydrodynamic frame invariance is a crucial property.

▶ Fluid/gravity correspondence, reconstruction of Einstein’s spaces with Λ ̸= 0
M. Haack & A. Yarom 08’; S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi & S.R. Wadia

08’; S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla & A. Sharma 08’; M. M. Caldarelli, R. G. Leigh, A.

C. Petkou, P. M. Petropoulos, V. Pozzoli & KS 12’; A. Mukhopadhyay, A. C. Petkou, P. M. Petropoulos, V. Pozzoli &

K.S. 13’

▶ Carrollian group is a contraction of the Poincare group, where c → 0
Lévy-Leblond 65’, Sen Gupta 66’

▶ Conformal Carroll group & BMS group
C. Duval, G. W. Gibbons & P. A. Horváthy 14’

▶ Carrollian dynamics emerges in asymptotically flat spacetimes
L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos & KS ’18; Penna ’18; A. Bagchi, S. Chakrabortty, D.

Grumiller, B. Radhakrishnan, M. Riegler & A. Sinha ’21

▶ Carroll symmetry can be used in inflationary cosmology E + P = 0
J, de Boer, J. Hartong, N. A. Obers, W. Sybesma, S. Vandoren 21’



FOCAL POINTS

In this talk we will focus on:

1. Revisit of the relativistic hydrodynamics.

2. Galilean fluids using covariance and as a non-relativistic limit c → ∞.

3. Carroll fluids using covariance and as a non-relativistic limit c → 0.

4. Aristotelian structures.

5. Conclusions and Outlook
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ENERGY–MOMENTUM TENSOR AND MATTER CURRENT

Without external forces the fluid equations are:

∇µTµν = 0 , ∇µJµ = 0 , µ = 0, 1, . . . , d

and are accompanied by a metric gµν.

They are decomposed along a velocity field uµ with uµuµ = −c2 as

Tµν =
ε + p

c2 uµuν + pgµν + τµν +
1
c2 (u

µqν + uνqµ) ,

Jµ = ρ0uµ + jµ

where the viscous tensor τµν & the heat current qµ (non-perfect e-m) obey

uµqµ = 0 , uµτµν = 0 , uµTµν = −qν − εuν , ε =
1
c2 Tµνuµuν

and also
uµjµ = 0 , ρ0 = −

1
c2 uµJµ

The entropy current equals to

Sµ =
1
T
(puµ − Tµνuν − µ0Jµ) + Rµ

Let us now derive the e-m tensor and the matter current



ENERGY–MOMENTUM AND MATTER CONSERVATION

Let’s start from the action
S =

∫
dd+1x

√
−gL

the energy–momentum tensor and the current can be defined as usual

Tµν =
2√
−g

δS
δgµν

, Jµ =
1√
−g

δS
δBµ

Demanding invariance under diffeomorphisms xµ → xµ − ξµ

δξS =

∫
dd+1x

√
−g δξgµνTµν = −2

∫
dd+1x

√
−g∇µξνTµν

= −2
∫

dd+1x
√
−g (∇µ(ξνTµν) − ξν∇µTµν) = 0

implying the conservation of Tµν. Similarly, Jµ is conserved under Bµ → Bµ + ∂µΛ

If ξµ is a Killing vector we can also define the conserved current

∇µ(ξνTµν) = 0

and also for a conformal Killing vector provided that Tµ
µ = 0



WEYL INVARIANCE

The system may be invariant under Weyl transformations

ds2 → Ω−2ds2 , uµ → Ωuµ

defining a Weyl connection

Aµ =
1
c2

(
aµ −

Θ

d
uµ

)
, aµ = uν∇νuµ , Θ = ∇µuµ

The Weyl covariant derivative is metric compatible

Dρgµν = 0 , Dκ f = (∂κ+wAκ) f , [Dκ,Dλ] f = w Fκλ f , Fκλ = ∂κAλ−∂λAκ

The fluid dynamics is Weyl invariant provided that

∇µTµν = DµTµν , ∇µJµ = DµJµ

where Tµν and Jµ have conformal weights d − 1 and Tµ
µ = 0.

This leads to ε = d p + τµµ and conformal weights

weight observables
d + 1 ε, p

d qµ, ρ0

d − 1 τµν, jµ



ZERMELO COORDINATES

In a d + 1 dimensional pseudo-Riemannian manifold we can write it in the form

ds2 = −c2Ω2dt2 + aij(dxi − widt)(dxj − wjdt) ,

with (Ω,wi, aij) functions of (t, x).
These coordinates are well adapted for the Galilean limit c → ∞, since

t ′ = t ′(t) , x ′ = x ′(t, x)

reduce to

Ω ′ =
Ω

J
, w ′i =

1
J

(
Ji

jwj + ji
)
, a ′

ij = akl J−1k
i J−1l

j

where

J =
∂t ′

∂t
, ji =

∂x ′i

∂t
, Ji

j =
∂x ′i

∂xj

An example is the d + 1 vector uµ

u ′0 = J u0 , u ′
i = J−1j

i uj

Galilean diffeomorphisms are generated by ξ = ξt(t)∂t + ξi(t, x)∂i



RANDERS–PAPAPETROU COORDINATES

In a d + 1 dimensional pseudo-Riemannian manifold we can write it in the form

ds2 = −c2(Ωdt − bidxi)2 + aijdxidxj

with (Ω, bi, aij) functions of (t, x).
These coordinates are well adapted for the Carrollian limit c → 0, since

t ′ = t ′(t, x) , x ′ = x ′(x)

reduce to

Ω′ =
Ω

J
, b′

k =

(
bi +

Ω

J
ji

)
J−1i

k , a′ij = Ji
kJj

lakl

An example is the d + 1 vector uµ

u ′
0 =

u0

J
, u ′i = Ji

j uj

Carrollian diffeomorphisms are generated by ξ = ξt(t, x)∂t + ξi(x)∂i



PLAN OF THE TALK

REVISIT OF THE RELATIVISTIC HYDRODYNAMICS

GALILEAN FLUID DYNAMICS

CARROLIAN FLUID DYNAMICS

ARISTOTELIAN FLUID DYNAMICS



GALILEAN COVARIANCE

Let us consider the manifold M = R× S with coordinates (t, x) and the cometric

∂2
a = aij∂i∂j , i = 1, . . . , d

along with the clock form and its dual/field of observers

θt̂ = Ωdt , êt =
1
Ω

(
∂t + wi∂i

)
where we choose aij and wi to be functions of (t, x), where we choose Ω = Ω(t).

▶ The clock form is exact, torsionless Newton–Cartan manifold.

▶ Invariance of ds2, θt̂ and êt under Galilean diffs: t ′ = t ′(t) , x ′ = x ′(t, x).
▶ We also introduce the positive-definite (degenerate) metric

ds2 = aij(t, x)dxidxj

and the corresponding metric compatible torsionless connection

∇̂iajk = 0 , γi
jk =

ail

2
(∂jalk + ∂kalj − ∂lajk)



GALILEAN STRUCTURES

We can define Galilean tensors from objects transforming as connections

A ′i =
1
J

(
Ji

jAj + ji
)

as follows
1
Ω

∇̂(kAl) −
1

2Ω
∂takl = −

1
2Ω

(
LAaij + ∂taij

)
1
Ω

∇̂(kAl) +
1

2Ω
∂takl =

1
2Ω

(LAaij + ∂taij)

We also define the connection

γ̂w
ij =

1
Ω

(
∇̂(iwj) +

1
2
∂taij

)
as well as the Galilean shear and expansion

ξw
ij =

1
Ω

(
∇̂(iwj) +

1
2
∂taij

)
−

1
d

aijθ
w , θw =

1
Ω

(
∂t ln

√
a + ∇̂iwi

)
Finally, we also introduce a time, metric-compatible covariant derivative

1
Ω

D̂Φ

dt
=

1
Ω

(∂t + wi∂i)Φ ,
1
Ω

D̂V i

dt
=

1
Ω

(
∂tV i + LwV i

)
+ γ̂wi

jV
j



GALILEAN DIFFEOMORPHISMS-I

Let us consider the action functional of Ω,wi and aij

S =

∫
dtΩ

∫
ddx

√
aL

and define the Galilean momenta (energy, current and stress-tensor)

Π = −
1

Ω
√

a

(
Ω

δS
δΩ

−
wi

Ω

δS

δ wi

Ω

)
, Pi = −

1
Ω
√

a
δS

δ wi

Ω

, Πij = −
2

Ω
√

a
δS
δaij

leading to the variation

δS = −

∫
dt Ω

∫
ddx

√
a
(

1
2
Πijδaij + Piδ

wi

Ω
+

(
Π +

wi

Ω
Pi

)
δ lnΩ

)
We would like to compute δS under Galilean diffeomorphisms

ξ = ξt(t)∂t + ξi(t, x)∂i = ξtΩ
1
Ω

(∂t + wi∂i) + (ξi − ξtwi)∂i = ξt̂ êt + ξı̂∂i



GALILEAN DIFFEOMORPHISMS-II

The Galilean diffeomorphisms xµ → xµ − ξµ act infinitesimally on Ω,wi and aij as

LξΩ = −∂tξ
t̂ − Lwξ

t̂, Lξwi = −∂tξ
ı̂ − Lwξ

ı̂ , Lξaij = 2
(
∇̂(iξȷ̂) + γ̂wijξt̂

)
Also on the clock form θt̂ and on the field of observers êt

Lξθ
t̂ =

1
Ω

(
∂tξ

t̂ + Lwξ
t̂
)
θt̂ , Lξêt = −

1
Ω

(
∂tξ

t̂ + Lwξ
t̂
)

êt −
1
Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)
∂i

Employing the above we find the energy and momentum equations
A. Petkou, P. Petropoulos, D. Rivera-Betancour, KS ’22(

1
Ω

D̂
dt

+ θw
)
Π + Πijγ̂

wij = −∇̂iΠ
i ,

(
1
Ω

D̂
dt

+ θw
)

Pi + Pjγ̂
wj

i + ∇̂jΠij = 0

where Πi is not determined through the variation; results as a boundary term.

Similarly invariance under gauge transformations leads to the continuity equation(
1
Ω

D̂
dt

+ θw
)
ρ + ∇̂iN i = 0 , ρ =

1√
a
δS
δB

, N i =
1

Ω
√

a

(
−wi δS

δB
+

δS
δBi

)



ISOMETRIES AND THE (NON)-CONSERVATION

Killing fields of the Galilean type satisfy

Lξaij = 0 , Lξθ
t̂ = 0 =⇒ ∇̂(iξȷ̂) + γ̂wijξt̂ = 0,

1
Ω

D̂ξt̂

dt
= 0

whereas the field of observers êt is not apriori invariant.

An example aij = δij,Ω = 1 & wi = constant with Galilean algebra gal(d + 1)
Duval 09’

ξ = T∂t +
(
Ωi

jxi + V jt + Xj
)
∂j =⇒ Lξêt = −

(
V i + wjΩj

i
)
∂i ̸= 0

Assuming an isometry, we have on-shell vanishing scalar (continuity equation)

K =

(
1
Ω

D̂
dt

+ θw
)
κ + ∇̂iKi , κ = ξı̂Pi − ξt̂Π , Ki = ξȷ̂Πij − ξt̂Πi

Using the energy & momentum on-shell conservation K = Pi
Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)
̸= 0

Comments:
▶ Even in flat space K = Pi

(
V i + wkΩ i

k

)
̸= 0, is not associated with a bnr term.

▶ The above construction extends for conformal isometries

Lξaij = λ aij , Lξθ
t̂ = µθt̂ , 2µ + λ = 0



GALILEAN HYDRO AS A NON-RELATIVISTIC LIMIT

The energy–momentum tensor admits a large-c expansion (Zermelo frame)
Ω2T00 = εr = Π +O (1/c2) ,

cΩT0
i = qri = c2Pi + Πi +O (1/c2) ,

Tij = praij + τrij = Πij +O (1/c2) .

Inserting the above into the conservation equations ∇µTµν = 0 leads to{
cΩ∇µTµ0 = c2∇̂iPi + E +O (1/c2) = 0
∇µTµ

i = Mi +O (1/c2) = 0,

where

E =

(
1
Ω

D̂
dt

+ θw
)
Π+Πijγ̂

wij + ∇̂iΠ
i , Mi =

(
1
Ω

D̂
dt

+ θw
)

Pi + Pjγ̂
wj

i + ∇̂jΠij

including the constraint on the current Pi, bnr term from diffeomorphism perspective.

Comments on the limit c → ∞:
▶ Continuity equation emerges by adding c2ρ in εr:

(
1
Ω

D̂
dt + θw

)
ρ + ∇̂iPi = 0

▶ The conservation equations ∇µTµν = 0 are on-shell Galilean boost invariant.
▶ The (non)-conservation conditions emerges as a limit through ∇µ(Tµνξν) = 0
▶ The limit is richer in comparison with invariance under Galilean diffs.



MORE ABSTRACT EQUATIONS - GALILEAN

Let us expand the energy–momentum tensor as
Ω2T00 = εr = c2ρ + Π +O (1/c2)

cΩT0
i = qri = c4P̃i + c2Pi + Πi +O (1/c2)

Tij = praij + τrij = c2Π̃ij + Πij +O (1/c2)

yielding the equations

(
1
Ω

D̂
dt + θw

)
Π + Πijγ̂

wij + ∇̂iΠ
i = 0(

1
Ω

D̂
dt + θw

)
ρ + Π̃ijγ̂

wij + ∇̂iPi = 0

∇̂jP̃j = 0(
1
Ω

D̂
dt + θw

)
Pi + Pjγ̂

wj
i + ∇̂jΠij = 0(

1
Ω

D̂
dt + θw

)
P̃i + P̃jγ̂

wj
i + ∇̂jΠ̃ij = 0.

Comments:
▶ The degrees of freedom are multiplied.
▶ These equations can be derived using diffs by incorporating additional fields.
▶ Again the conservation laws are no conservation laws, except if

Pi

Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)
= 0 and

P̃i

Ω

(
∂tξ

ı̂ + Lwξ
ı̂
)
= 0
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CARROLIAN COVARIANCE

Let us again define a manifold M = R× S with coordinates (t, x) equipped with

ds2 = aijdxidxj, i = 1, . . . , d

the field of observers êt and the clock form θt̂ (dual Ehresmann connection)

êt =
1
Ω

∂t , θt̂ = Ωdt − bidxi

where Ω, bi and aij are functions of (t, x). Properties:

▶ Invariance of êt, ds2 and θt̂ under Carrollian diffs: t ′ = t ′(t, x) , x ′ = x ′(x).
▶ Additional transformations

∂′
t =

1
J
∂t , ∂′

i = J−1j
i

(
∂j −

jj

J
∂t

)
▶ Defining a new partial derivative

∂̂i = ∂i +
bi

Ω
∂t , ∂̂′

i = J−1j
i∂̂j



CARROLIAN STRUCTURES

We can define a torsionless and metric-compatible spatial connection

∇̂iajk = 0 , γ̂i
jk =

ail

2
(
∂̂jalk + ∂̂kalj − ∂̂lajk

)
and the Carrollian vorticity and acceleration through[

∂̂i, ∂̂j
]
=

2
Ω

ϖij∂t , ϖij = ∂[ibj] + b[iφj] , φi =
1
Ω

(∂tbi + ∂iΩ)

In addition, we also define the metric-compatible temporal connection

D̂tΦ = ∂tΦ ,
1
Ω

D̂tV i =
1
Ω

∂tV i + γ̂i
jV j, γ̂ij =

1
2Ω

∂taij

as well as the Carrollian expansion

θ = aijγ̂ij =
1
Ω

∂t ln
√

a



CARROLLIAN DIFFEOMORPHISMS-I

Let us consider the action functional of Ω,wi and aij

S =

∫
dd+1xΩ

√
aL

and define the Carrollian momenta (energy, current and stress-tensor)

Π = −
1

Ω
√

a

(
Ω

δS
δΩ

+ bi
δS
δbi

)
Πi =

1
Ω
√

a
δS
δbi

, Πij =
2

Ω
√

a
δS
δaij

We would like to compute the variation

δξS =

∫
dt ddxΩ

√
a
(

1
2
Πijδξaij + Πiδξbi −

1
Ω

(
Π + biΠ

i
)
δξΩ

)
.

under Carrollian diffeomorphisms

ξ = ξt(t, x)∂t + ξi(x)∂i =

(
ξt − ξi bi

Ω

)
∂t + ξi

(
∂i +

bi

Ω
∂t

)
= ξt̂ 1

Ω
∂t + ξi∂̂i



CARROLLIAN DIFFEOMORPHISMS-II

The Carrollian diffeomorphisms act infinitesimally on Ω, bi and aij as

Lξ lnΩ =
1
Ω

∂tξ
t̂ +φiξ

i, Lξbi = bi

(
1
Ω

∂tξ
t̂ +φjξ

j
)
−
((

∂̂i −φi
)
ξt̂ − 2ξjϖji

)
Lξaij = 2∇̂(iξ

kaj)k + 2ξt̂γ̂ij

also on the field of observers êt and on the clock form θt̂

−Lξêt =

(
1
Ω

∂tξ
t̂ +φiξ

i
)

êt , Lξθ
t̂ =

(
1
Ω

∂tξ
t̂ +φiξ

i
)
θt̂ −

((
∂̂i −φi

)
ξt̂ − 2ξjϖji

)
dxi

Employing the above we find the energy and momentum equations
A. Petkou, P. Petropoulos, D. Rivera-Betancour, KS ’22; L. Ciambelli, C. Marteau ’19(

1
Ω

∂t + θ

)
Π +

(
∇̂i + 2φi

)
Πi + Πijγ̂ij = 0 ,

(
∇̂j +φj

)
Π

j
i + 2Πjϖji + Πφi = −

(
1
Ω

∂t + θ

)
Pi

where Pi is not defined throughout the variation – resulting from a boundary term.

Similarly invariance under gauge transformations:
( 1
Ω
∂t + θ

)
ρ +

(
∇̂i +φi

)
N i = 0



ISOMETRIES AND THE (NON)-CONSERVATION

Killing fields of the Carrollian type satisfy

Lξaij = 0, Lξêt = 0 =⇒ ∇̂(iξ
kaj)k + ξt̂γ̂ij = 0,

1
Ω

∂tξ
t̂ +φiξ

i = 0

whereas the clock form θt̂ is not invariant.

An example aij = δij,Ω = 1 and bi = constant with Carroll algebra carr(d + 1)

ξ =
(
Ωi

jxi + Xj
)
∂j + (T − Bixi)∂t =⇒ δξθ

t̂ =
(

Bi +Ωi
jbj

)
dxi ̸= 0

Assuming an isometry, we have on-shell vanishing scalar (continuity equation)(
1
Ω

∂t + θ

)
κ +

(
∇̂i +φi

)
Ki = 0 , κ = ξiPi − ξt̂Π , Ki = ξjΠj

i − ξt̂Πi

Using the energy & momentum on-shell conservation we find

K = −Πi
((

∂̂i −φi
)
ξt̂ − 2ξjϖji

)
Comments:

▶ Even in flat space K = Πi (Bi +Ωi
jbj
)
̸= 0, is not associated with a bnr term.

▶ The above construction extends for conformal isometries

Lξaij = λ aij , Lξêt = µ êt , 2µ + λ = 0



CARROLLIAN HYDRO AS A NON-RELATIVISTIC LIMIT

Energy–momentum tensor admits a small-c expansion (Randers–Papapetrou frame)
1

Ω2 T00 = εr = Π +O
(
c2) ,

− c
Ω

T0
i = qi

r = Πi + c2Pi +O
(
c4) ,

T ij = praij + τ
ij
r = Πij +O

(
c2) .

Inserting the above into the conservation equations ∇µTµν = 0, leads to{
c
Ω
∇µTµ

0 = E +O
(
c2) = 0,

∇µTµi = 1
c2

(( 1
Ω

D̂t + θ
)
Πi + Πjγ̂j

i) + G i +O
(
c2) = 0,

where

E = −

(
1
Ω

D̂t + θ

)
Π −

(
∇̂i + 2φi

)
Πi − Πijγ̂ij,

Gj =
(
∇̂i +φi

)
Πi

j + 2Πiϖij + Πφj +

(
1
Ω

D̂t + θ

)
Pj + Piγ̂ij,

including the constraint on the current Πi, which is a bnr term from diff perspective.
Comments on c → 0:

▶ The conservation equations ∇µTµν = 0 are on-shell Carrollian boost invariant.
▶ The (non)-conservation conditions emerges as a limit ∇µ(Tµνξν) = 0.
▶ The limit is richer in comparison with invariance under Carrollian diffs.



MORE ABSTRACT EQUATIONS - CARROLLIAN

Let us expand the energy–momentum tensor as
1

Ω2 T00 = εr =
Π̃
c2 + Π +O

(
c2) ,

− c
Ω

T0
i = qi

r =
Π̃i

c2 + Πi + c2Pi +O
(
c4) ,

T ij = praij + τ
ij
r = Π̃ij

c2 + Πij +O
(
c2)

yielding the additional equations

−

(
1
Ω

D̂t + θ

)
Π̃ −

(
∇̂i + 2φi

)
Π̃i − Π̃ijγ̂ij = 0 ,

(
∇̂i +φi

)
Π̃i

j + 2Π̃iϖij + Π̃φj +

(
1
Ω

D̂t + θ

)
Πj + Πiγ̂ij = 0 ,(

1
Ω

D̂t + θ

)
Π̃j + Π̃iγ̂ij = 0 .

Comments:

1. The degrees of freedom are multiplied.

2. These equations can be derived using diffs by incorporating additional fields.

3. Again the conservation equations do not imply conservation, except if

Πi
((

∂̂i −φi
)
ξt̂ − 2ξjϖji

)
= 0 and Π̃i

((
∂̂i −φi

)
ξt̂ − 2ξjϖji

)
= 0



HYDRODYNAMIC FRAME INVARIANCE

In the relativistic case the frame transformations (local Lorentz) are given through

δε = −2
qiδβi√

1 − c2βββ2
,

δqi
=

c2δβk√
1 − c2βββ2

(
qkβi√

1 − c2βββ2
− whki

− τ
ki
)

,

δ
(

phij
+ τ

ij
)

=
c2δβk

1 − c2βββ2

(
β

i
(

phjk
+ τ

jk
)
+ β

j
(

phik
+ τ

ik
))

−
δβk√

1 − c2βββ2

(
qihjk

+ qjhik
)
.

Leaving Tµν invariant.

In the Carrollian case we find

ε = η + O
(

c2
)

, p = ϖ + O
(

c2
)

, qi
= Qi

+ c2
π

i
+ O

(
c4
)

, τ
ij
= −Ξ

ij
+ O

(
c2
)

,

with transformations

δη = −2δβiQ
i
, δQi

= 0, , δπ
i
= δβj

(
Ξ

ij
− (η + ϖ)aij

+ β
iQj
)

, δ
(
Ξ

ij
− ϖaij

)
= δβk

(
Qiajk

+ Qjaik
)
.

Leaving Π,Pi, Π
i and Πij invariant.

In the Galilean case the hydrodynamic invariance is broken in the massive case. The
velocity field and the fluid density are physical and observable quantities.



COMMENTS

Electric and magnetic: C. Duval, G. W. Gibbons, P. A. Horváthy & P. M. Zhang ’14

▶ Using the Hamiltonian approach M. Henneaux & P. Salgado-Rebolledo ’21

▶ The magnetic Carrollian scalar field has a non-vanishing energy flux Πi
m ̸= 0

D. Rivera-Betancour & M. Vilatte ’22 (see Mathieu’s talk)

See also: S. Baiguera, G. Oling, W. Sybesma & B. T. Søgaard ’22

Chern–Simons action and the Cotton tensor:

SCS =
1

2wCS

∫
Tr
(
ω∧ dω +

2
3
ω∧ω∧ω

)
,

Its metric variation yields the Cotton tensor

Cµ
ν =

ερλµ
√

g
∇ρ

(
Rνλ −

1
4

Rgνλ

)
having Ci

0 ̸= 0, in the limit of c → 0 in the Randers–Papapetrou frame.

Specific example: The Robinson–Trautman case for k → 0:
L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos & KS ’18

ds2 = −k2dt2 +
2
P2 dζdζ̄ , P = P(t, ζ, ζ̄)

where
Ci0 dxi =

i
2
(
∂ζKdζ − ∂ζ̄Kdζ̄

)
̸= 0 , K = 2P2∂ζ∂ζ̄ ln P
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ARISTOTELIAN COVARIANCE

Let us again define a manifold M = R× S with coordinates (t, x) equipped with
R. Penrose 68’

dℓ2 = aij(t, x)dxi dxj

along with the field of observers êt and the clock form θt̂

êt =
1
Ω

∂t , θt̂ = Ωdt

The Aristotelian diffeomorphisms act as

t ′ = t ′(t) , x ′ = x ′(x)

We can define a temporal and a spatial metric-compatible covariant derivatives

γij =
1

2Ω
∂taij , γi

jk =
ail

2
(∂jalk + ∂kalj − ∂lajk)

as well as the expansion and the acceleration form

θ =
1
Ω

∂t ln
√

a , φi = ∂i lnΩ.



ARISTOTELIAN DIFFEOMORPHISMS

Take the action S =
∫

dd+1xΩ
√

aL and define the Aristotelian momenta

Π = −
1√
a
δS
δΩ

, Πij =
2

Ω
√

a
δS
δaij

Varying the action

δξS = −

∫
dt Ω

∫
ddx

√
a
(

1
2
Πijδξaij + Πδξ lnΩ

)
with respect to Aristotelian diffeomorphisms ξ = ξt(t)∂t + ξi(x)∂i = Ωξt 1

Ω
∂t + ξi∂i

leads to the energy and momentum equations(
1
Ω

∂t + θ

)
Π+Πijγij = −(∇i + 2φi)Π

i , (∇j +φj)Π
j
i+Πφi = −

(
1
Ω

∂t + θ

)
Pi

where Πi and Pi are not determined through the variation – boundary terms.

Comments on Aristotelian fluids:

▶ Introduced by J. de Boer, J. Hartong, N. Obers, W. Sybesma & S. Vandoren 17’

▶ ”Self-dual” resulting from Galilean or Carrollian with wi = 0 or bi = 0.
L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos & KS ’18



ISOMETRIES AND THE (NON)-CONSERVATION

Similarly, invariance under gauge transformation leads to(
1
Ω

∂t + θ

)
ρ + (∇i +φi)N i = 0

Killing fields of the Aristotelian type satisfy

Lξaij = 0 , Lξµ = 0 =⇒ ∇(iξ
kaj)k + ξt̂γij = 0,

1
Ω

∂tξ
t̂ +φiξ

i = 0

Assuming an isometry, we have on-shell vanishing scalar (continuity equation)

K =

(
1
Ω

∂t + θ

)
κ + (∇i +φi)Ki , κ = ξiPi − ξt̂Π, Ki = ξjΠ i

j − ξt̂Πi

Using energy & momentum on-shell conservation – K = 0 (no-extra constraints).



CONCLUSION & OUTLOOK

We studied Galilean & Carrollian hydrodynamics on arbitrary backgrounds:
▶ Our approach was based on covariance and diffeomorphism invariance.
▶ Killing vectors do not guarantee an on-shell conservation.
▶ In agreement with the c → ∞ and c → 0 limits of ∇µ(Tµ

νξ
ν) = 0

▶ Limiting procedure is richer, further variables and equations.
▶ Compatible with diffeomorphism invariance, conjugate to new momenta.
▶ Richer structure is needed, connection with flat holography – flux balance Eqs.

See Romain’s talk
Hydrodynamic frame invariance:

▶ Relativistic fluid: Important property in reconstructing Einstein’s spaces Λ ̸= 0
Bulk diffs: bnr diffs, Weyl transformations and local Lorentz transformations.

▶ Similarly for the Carrollian fluid for reconstructing Ricci-flat spaces Λ = 0
Bulk diffs: bnr diffs, Weyl transformations and Local Carroll transformations.

A. Campoleoni, L. Ciambelli, C. Marteau, P. M. Petropoulos, KS 18’;

L. Ciambelli, C. Marteau, P. M. Petropoulos & R. Ruzziconi 20’; A. Campoleoni, L. Ciambelli,, A. Delfante, C. Marteau, P. M.

Petropoulos, R. Ruzziconi 22’

We also studied Aristotelian fluids, a limiting case of Galilean and Carrollian:
▶ Our approach was based again on covariance and diffeomorphism invariance.
▶ Killings guarantee an on-shell conservation.
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