Carrollian Perspective on Celestial Holography

Romain Ruzziconi

TU Vienna Institute for Theoretical Physics

13th of September 2022

Introduction

Gravity in 4*d* asymptotically flat spacetimes Sourced Carrollian CFT Relation with celestial holography Conclusion

References

Motivations Carrollian holography Celestial holography Objectives

References

Based on:

Carrollian Perspective on Celestial Holography Laura Donnay, Adrien Fiorucci, Yannick Herfray, Romain Ruzziconi arXiv:2202.04702 Phys.Rev.Lett. (2022)

Flat Space Holography: from Null Infinity to the Celestial Sphere Laura Donnay, Adrien Fiorucci, Yannick Herfray, Romain Ruzziconi arXiv:22xx.xxxxx

References Motivations Carrollian holography Celestial holography Objectives

Motivations

• Holographic principle:

Gravity in a given spacetime region can be encoded on a lower-dimensional boundary of that region.

- Explicit realization of this principle: AdS/CFT correspondence
- Bottom-up approach: use what we know from gravity in the bulk to construct a dual theory

 \Longrightarrow Very efficient thanks to the powerful constraints implied by the conformal symmetries at the boundary

- Interesting properties of AdS/CFT:
 - Asymptotic symmetries in the bulk = global symmetries in the dual theory ⇒ The dual theory is a CFT living on the timelike boundary
 - Gravity in a box" (implemented by Dirichlet boundary conditions)
 - \implies Closed system
 - \implies Charges are conserved

 Introduction
 References

 Gravity in 4d asymptotically flat spacetime
 Motivations

 Sourced Carrollian CET
 Carrollian holography

 Relation with celestial holography
 Celestial holography

 Conclusion
 Objectives

• How general is the holographic principle? Does it extend to asymptotically flat spacetimes?

Flat space holography program

(see e.g. [Susskind '99] [Polchinski '99] [Giddings '00] [de Boer-Solodukhin '03] [Arcioni-Dappiaggi '03] [Mann-Marolf '06] for early attempts).

- Asymptotic symmetries form the Bondi-van der Burg-Metzner-Sachs (BMS) group [Bondi-van der Burg-Metzner '62] [Sachs '62]
 - \implies Broadly studied in the literature

(See e.g. [Newman-Unti '62] [Penrose '65] [Geroch '77] [Ashtekar-Streubel '81] [Barnich-Troessaert '10])

- Important obstructions to flat space holography:
 - $\textcircled{0} \ \ \mathsf{Null nature of } \mathscr{I}^+ \ \mathsf{and} \ \mathscr{I}^-$
 - ② Radiation leaking through the conformal boundary
 - \implies Open gravitational system
 - \implies The BMS charges are not conserved
- How to construct the holographic dual?

References Motivations Carrollian holography Celestial holography Objectives

Holographic nature of null infinity

• Two distinct but complementary visions of \mathscr{I}^+ :

Picture 1: Carrollian holography	Picture 2: Celestial holography		
\mathscr{I}^+ is seen as a boundary along which there is an evolution with respect to u	If is seen as a portion of Cauchy hypersurface pushed to infinity		
Describe the dynamics of the system	Describe the state of the system		
Flux-balance laws	Scattering problem between \mathscr{I}^- and \mathscr{I}^+		
Suggests a 4 <i>d</i> bulk / 3 <i>d</i> bound- ary <i>Carrollian holography</i>	Suggests a 4 <i>d</i> bulk / 2 <i>d</i> boundary <i>celestial holography</i>		
Dual: 3 <i>d</i> BMS field theory	Dual: 2 <i>d</i> Celestial CFT		

Introduction

Gravity in 4*d* asymptotically flat spacetimes Sourced Carrollian CFT Relation with celestial holography Conclusion References Motivations **Carrollian holography** Celestial holography Objectives

Carrollian Holography

• Carrollian holography:

- BMS algebra \simeq conformal Carrollian algebra [Duval-Gibbons-Horvathy '14]. \implies Dual theory: Carrollian CFT in 3*d*.
- "Carroll" refers to the $c \rightarrow 0$ limit of the Poincaré group [Lévy-Leblond '65].
 - \implies Carrollian physics naturally induced on null hypersurfaces.
- Carrollian holography follows a similar pattern than AdS/CFT correspondence: 4d bulk / 3d boundary duality.
 - \implies Naturally arises from a flat limit procedure (A \rightarrow 0).
 - \implies The flat limit in the bulk induces a Carrollian limit at the boundary.

Introduction

Gravity in 4d asymptotically flat spacetimes Sourced Carrollian CFT Relation with celestial holography Conclusion References Motivations Carrollian holography Celestial holography Objectives

Pros vs Cons of Carrollian holography

• Success of this approach:

3d gravity (e.g. entropy matching, entanglement entropy, effective action, correlation functions, Carroll anomaly ...).

[Barnich-Gomberoff-Gonzalez '12] [Barnich '12] [Bagchi-Detournay-Fareghbal-Simon '13] [Bagchi-Fareghbal '12] [Detournay-Grumiller-Scholler-Simon '14] [Bagchi-Basu-Grumiller-Riegler '15] [Hartong '16] [Bagchi-Grumiller-Merbis '16] [Campoleoni-Ciambelii-Delfante-Marteau-Petropoulos-Ruzziconi '22]

Iluid/gravity correspondence:

[Ciambelli-Marteau-Petkou-Petropoulos-Siampos '18]

Gravity in asymptotically flat spacetime

Carrollian fluid at the boundary

Drawbacks:

- Few is known about quantum Carrollian CFTs.
- I How to treat the non-conservation of the charges generated by outgoing radiation?

 \implies One of the goals of this talk is to address these 2 issues.

References Motivations Carrollian holography Celestial holography Objectives

Celestial holography

• Celestial holography:

 S-matrix elements in the bulk ↔ Correlation functions in a 2d CFT [see Laura's talk] [de Boer-Solodukhin '03] [Pasterski-Shao-Strominger '17] [Strominger '18] [Donnay-Puhm-Strominger '19] [Fotopoulos-Taylor '19]
 Massless scattering → Mellin transform: [de Boer-Solodukhin '03] [Pasterski-Shao-Strominger '17] [Pasterski-Shao '17]

$$\langle \mathcal{O}_{\Delta_1,J_1}(z_1,ar{z}_1)\ldots\mathcal{O}_{\Delta_N,J_N}(z_N,ar{z}_N)
angle = \left(\prod_{i=1}^N\int_0^{+\infty}d\omega_i\,\omega_i^{\Delta_i-1}
ight)\mathcal{A}(\{\omega_i\},\{z_i\},\{ar{z}_i\})$$

where the CCFT operators $\mathcal{O}_{\Delta_i,J_i}(z_i, \bar{z}_i)$ are characterized by conformal dimension Δ_i and spin J_i . • Conformal symmetries in CCFT induced by Lorentz transformations in the bulk: $\operatorname{Conf}(S^2) \simeq \operatorname{Lorentz}$

References Motivations Carrollian holography Celestial holography Objectives

Pros vs Cons of celestial holography

- Advantages and successes of this approach:
 - Ose the powerful techniques of CFT (OPEs in CCFT are obtained by collinear limit of bulk amplitudes).
 - Ward identities in the CCFT encode the soft theorems in the bulk.
 - **(3)** New $w_{1+\infty}$ symmetries uncovered in the CCFT OPEs.
 - \implies Infinite tower of soft theorems in the bulk.
 - \implies Provides an organization of the solution space in gravity.

[Strominger '21] [Guevara-Himwich-Pate-Strominger '21] [Adamo-Mason-Sharma '21] [Freidel-Pranzetti-Raclariu '21] [Compère-Oliveri-Seraj '22] [Bu-Heuveline-Skinner '22]

- Drawbacks:
 - **(**) No clear path to relate with AdS_4/CFT_3 .
 - 2 Information on the dynamics not manifest.

(Where is time in celestial holography? How to encode the flux-balance laws?).

 \implies One of the goals of this talk is to address these 2 issues.

Introduction

Objectives

Objectives

- From the bulk... Gravity in 4d asymptotically flat spacetime:
 - Bondi gauge.
 - BMS and conformal Carroll symmetries.
 - Surface charges and flux-balance laws. \implies
- ...to null infinity... Carrollian CFT at null infinity:
 - → Describe the non-conservation at null infinity in terms of external sources.
 - → Write the Ward identities of a sourced Carrollian CFT.
 - \implies Show that the Ward identities holographically describe the asymptotic bulk dynamics.
- ...to the celestial sphere. Relate the Carrollian and the celestial approaches:
 - \implies Relate Carrollian and CCFT operators through an appropriate integral transform.
 - → Demonstrate the equivalence between the Ward identities of the sourced Carrollian CFT and those of the CCFT

Solution space BMS and conformal Carrollian symmetries Phase space

From the bulk...

and the second 1-

Solution space BMS and conformal Carrollian symmetries Phase space

Solution space of 4*d* asymptotically flat spacetimes

• Asymptotically flat metric in Bondi coordinates to study \mathscr{I}^+ : (u, r, x^A) where $x^A = (z, \bar{z})$ [Bondi-van der Burg-Metzner '62] [Sachs '62]:

$$ds^{2} = \left(\frac{2M}{r} + \mathcal{O}(r^{-2})\right) du^{2} - 2\left(1 + \mathcal{O}(r^{-2})\right) dudr$$
$$+ \left(r^{2}\mathring{g}_{AB} + r C_{AB} + \mathcal{O}(r^{0})\right) dx^{A} dx^{B}$$
$$+ \left(\frac{1}{2}\partial_{B} C_{A}^{B} + \frac{2}{3r}(N_{A} + \frac{1}{4}C_{A}^{B}\partial_{C} C_{B}^{C}) + \mathcal{O}(r^{-2})\right) dudx^{A}.$$

- Flat boundary metric: $\dot{q}_{AB} dx^A dx^B = 2dz d\bar{z}$.
- Minkowski metric: $ds_{Mink}^2 = -2dudr + 2r^2dzd\bar{z}$.
- Subleading corrections in r with respect to Minkowski metric are obtained by solving the Einstein equations. They involve functions of (u, x^A) :
 - $\begin{array}{l} \bullet \quad C_{AB} : \text{ asymptotic shear,} \\ \bullet \quad N_{AB} = \partial_u C_{AB} : \text{ Bondi news (outgoing radiation),} \\ \bullet \quad M : \text{ mass aspect,} \end{array}$
 - **9** N_A : angular momentum aspect.

• Time evolution/constraint equations on the mass and angular momentum aspects

$$\begin{aligned} \partial_{u}M &= -\frac{1}{8}N_{AB}N^{AB} + \frac{1}{4}\partial_{A}\partial_{B}N^{AB}, \\ \partial_{u}N_{A} &= \partial_{A}M + \frac{1}{16}\partial_{A}(N_{BC}C^{BC}) - \frac{1}{4}N^{BC}\partial_{A}C_{BC} - \frac{1}{4}\partial_{B}(C^{BC}N_{AC} - N^{BC}C_{AC}) \\ &- \frac{1}{4}\partial_{B}\partial^{B}\partial^{C}C_{AC} + \frac{1}{4}\partial_{B}\partial_{A}\partial_{C}C^{BC}, \end{aligned}$$

with $N_{AB} = \partial_u C_{AB}$ the Bondi news tensor.

Bondi mass loss formula:

$$\partial_u \left[\int_{S^2_\infty} d^2 z \, M
ight] = - rac{1}{8} \int_{S^2_\infty} d^2 z \, N_{AB} N^{AB} \leq 0.$$

- The mass decreases in time due to the emission of gravitational waves.
- Important argument to show the existence of gravitational waves at a non-linear level of the theory.
- \implies The analysis at \mathscr{I}^+ provides some information on the dynamics of the system.

Solution space BMS and conformal Carrollian symmetries Phase space

Asymptotic symmetries

• Diffeomorphisms preserving the solution space: $\xi = \xi^u \partial_u + \xi^z \partial + \xi^{\bar{z}} \bar{\partial} + \xi' \partial_r$ with

$$\xi^{u} = \mathcal{T} + \frac{u}{2}(\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}}), \quad \xi^{z} = \mathcal{Y} + \mathcal{O}(r^{-1}), \quad \xi^{\bar{z}} = \bar{\mathcal{Y}} + \mathcal{O}(r^{-1}), \quad \xi^{r} = -\frac{r}{2}(\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}}) + \mathcal{O}(r^{0})$$

where

- **(**) $T = T(z, \bar{z})$ is the supertranslation parameter;
- $\mathcal{Y} = \mathcal{Y}(z), \ \mathcal{\overline{Y}} = \mathcal{\overline{Y}}(z)$ are the superrotation parameters satisfying the conformal Killing equation.

• Using the modified Lie bracket $[\xi_1, \xi_2]_{\star} = [\xi_1, \xi_2] - \delta_{\xi_1}\xi_2 + \delta_{\xi_2}\xi_1$ that takes into account the field-dependence of the vector fields [Barnich-Troessart '10]:

$$[\xi(\mathcal{T}_1,\mathcal{Y}_1,\bar{\mathcal{Y}}_1),\xi(\mathcal{T}_2,\mathcal{Y}_2,\bar{\mathcal{Y}}_2)]_{\star}=\xi(\mathcal{T}_{12},\mathcal{Y}_{12},\bar{\mathcal{Y}}_{12}),$$

with

$$\mathcal{T}_{12} = \mathcal{Y}_1 \partial \mathcal{T}_2 - \frac{1}{2} \partial \mathcal{Y}_1 \mathcal{T}_2 - (1 \leftrightarrow 2) + \text{c.c.}, \quad \mathcal{Y}_{12} = \mathcal{Y}_1 \partial \mathcal{Y}_2 - (1 \leftrightarrow 2), \quad \bar{\mathcal{Y}}_{12} = \bar{\mathcal{Y}}_1 \bar{\partial} \bar{\mathcal{Y}}_2 - (1 \leftrightarrow 2)$$

where c.c. stands for complex conjugate terms. $\implies \mathfrak{bms}_4$ algebra.

(Extended BMS: $\mathfrak{bms}_4^{\mathsf{ext}} = (\mathsf{Witt} \oplus \mathsf{Witt}) \oplus \mathfrak{supertranslations}^*$ [Barnich-Troessaert '10])

- ⇒ Extended BMS algebra is the most convenient asymptotic symmetry algebra for holographic discussions.
- \implies See [Schwarz '22] for a recent discussion favouring Virasoro instead of Diff(S^2) superrotations.

Solution space BMS and conformal Carrollian symmetries Phase space

Conformal Carroll \simeq BMS

• Carrollian structure on \mathscr{I}^+ with coordinates $x^a = (u, z, \bar{z})$ [Geroch '77]:

$$(q_{ab}, n^c)$$
 with $q_{ab}n^b = 0$.

- Consistently with the Bondi metric, $q_{ab}dx^adx^b = 0du^2 + 2dzd\bar{z}$ and $n^a\partial_a = \partial_u$.
- Conformal Carrollian symmetries are generated by vector fields $\bar{\xi} = \bar{\xi}^a \partial_a$ on \mathscr{I}^+ satisfying

$$\mathcal{L}_{\bar{\xi}} q_{ab} = 2 \alpha q_{ab} , \qquad \mathcal{L}_{\bar{\xi}} n^a = - \alpha n^a ,$$

with $\alpha = \frac{1}{2}(\partial \mathcal{Y} + \bar{\partial} \bar{\mathcal{Y}}).$

Solution:

$$ar{\xi} = \left[\mathcal{T} + rac{u}{2}(\partial\mathcal{Y} + ar{\partial}ar{\mathcal{Y}})
ight]\partial_u + \mathcal{Y}\partial + ar{\mathcal{Y}}ar{\partial}$$

 \implies Coincides with the restriction on \mathscr{I}^+ of the bulk BMS asymptotic Killing vectors. \implies The standard Lie bracket of these vector fields reproduces the \mathfrak{bms}_4 algebra.

 $\bullet \ \ \text{Isomorphism:} \ \ \, \mathfrak{bms_4}\simeq \text{Conformal Carroll algebra.} \ \ \, [Duval-Gibbons-Horvathy~'14]$

Solution space BMS and conformal Carrollian symmetries Phase space

BMS surface charges

• Poisson structure on the radiative phase space [Ashtekar-Streubel '81]:

$$\{N_{zz}(u, z, \bar{z}), C_{\bar{w}\bar{w}}(u', w, \bar{w})\} = 16\pi G \,\delta(u - u') \,\delta^{(2)}(z - w) \,.$$

- At a cut S_u ≡ {u = constant} of S⁺, one can construct "surface charges" associated with BMS symmetries using covariant phase space methods [Wald-Zoupas '99] [Barnich-Troessaert '10].
- BMS charges are non-integrable and non-conserved due to the outgoing radiation at 𝓕⁺.
 ⇒ Typical properties for a dissipative system.
- Selection of a meaningful integrable part:

[Compère-Fiorucci-Ruzziconi '18] [Campiglia-Peraza '20] [Compère-Fiorucci-Ruzziconi '20] [Donnay-Ruzziconi '21] [Freidel-Pranzetti '21]:

$$ar{H}_{\xi}[g] = rac{1}{8\pi G} \int_{\mathcal{S}_{u}} d^{2}z \left[2\mathcal{T}\mathcal{M} + \mathcal{Y}\bar{\mathcal{N}} + \bar{\mathcal{Y}}\mathcal{N}
ight]$$

with

$$\mathcal{M} = \mathcal{M} + \frac{1}{8} (C_{zz} N^{zz} + C_{\bar{z}\bar{z}} N^{\bar{z}\bar{z}}), \qquad \mathcal{N} = N_{\bar{z}} - u\bar{\partial}\mathcal{M} + \frac{1}{4} C_{\bar{z}\bar{z}} \bar{\partial} C^{\bar{z}\bar{z}} + \frac{3}{16} \bar{\partial} (C_{zz} C^{zz}) \Big] \\ + \frac{u}{4} \bar{\partial} \Big[\Big(\partial^2 - \frac{1}{2} N_{zz} \Big) C_{\bar{z}}^z - \Big(\bar{\partial}^2 - \frac{1}{2} N_{\bar{z}\bar{z}} \Big) C_{\bar{z}}^{\bar{z}} \Big]$$

- Remark: $\mathcal{M} = -\operatorname{Re}\Psi_2^0$, $\mathcal{N} = -\Psi_1^0 + u\eth\Psi_2^0$.
- Using the Barnich-Troessaert bracket [Barnich-Troessaert '10] or one of its refinements [Freidel-Oliveri-Pranzetti-Speziale '21], one can write charge algebra for "open gravitational system", from which one can deduce the BMS flux-balance laws:

$$\frac{d}{du}\bar{H}_{\xi}[g]=\mathcal{F}_{\xi}[g]\neq 0.$$

Solution space BMS and conformal Carrollian symmetries Phase space

BMS fluxes

• BMS fluxes [see Laura's talk]:

$$\begin{split} & \frac{d\bar{H}_{\xi}}{du} = \int_{\mathcal{S}_{u}} dz d\bar{z} \left(F_{\xi}^{H} + F_{\xi}^{S}\right), \\ & F_{\xi}^{H} = \frac{1}{16\pi G} \left[-\frac{1}{2} \mathcal{T} N^{zz} N_{zz} - \frac{u}{2} N^{zz} N_{zz} \partial \mathcal{Y} + \frac{1}{4} \mathcal{Y} \partial (C_{zz} N^{zz}) + \frac{1}{2} \mathcal{Y} C_{zz} \partial N^{zz} \right] + \text{c.c.} \\ & F_{\xi}^{S} = \frac{1}{16\pi G} N^{zz} \left(\partial^{2} \mathcal{T} + u \, \partial^{3} \mathcal{Y} \right) + \text{c.c.} \,. \end{split}$$

• F_{ξ}^{H} : hard flux (quadratic in C_{AB} and N_{AB}), F_{ξ}^{S} : soft flux (linear in C_{AB} and N_{AB}).

- Properties:
 - **1** The BMS charges are conserved when $N_{AB} = 0$.

The BMS fluxes generate canonically the transformations on the radiative phase space: [He-Lysov-Mitra-Strominger '14] [Kapec-Lysov-Pasterski-Strominger '14]

$$\left\{\int_{\mathscr{I}^+} dudz d\bar{z} \, F^{S,H}_{\xi}(u,z,\bar{z}), \, C_{AB}(u',w,\bar{w})\right\} = -\delta^{S,H}_{\xi} C_{AB}(u',w,\bar{w}).$$

③ The BMS fluxes form a representation of the BMS algebra: $\{\int_{\mathscr{I}} + F_{\xi_1}, \int_{\mathscr{I}} + F_{\xi_2}\} = -\int_{\mathscr{I}} + F_{\lfloor\xi_1, \xi_2\rfloor}$ for the standard bracket $\{\int_{\mathscr{I}} + F_{\xi_1}, \int_{\mathscr{I}} + F_{\xi_2}\} = \int_{\mathscr{I}} + \delta_{\xi_1} F_{\xi_2}$. [Campiglia-Peraza '20] [Compère-Fiorucci-Ruzziconi '20] [Donnay-Ruzziconi '21]

• Remark: a similar analysis can be performed in the advanced Bondi coordinates (v, r, x^A) at \mathscr{I}^- .

Sourced Ward identities Application to Carrollian CFT Antipodal gluing

Sourced Ward identities Application to Carrollian CFT Antipodal gluing

Sourced Ward identities

- Goal: Establish a framework that holographically encodes the leaks through the conformal boundary.
 - \implies Coupling with external sources [See Adrien's talk].
- Consider a QFT on a manifold \mathcal{M} with coordinates x^a .
- Fields: $\Phi^{i}(x)$, symmetries: $\delta_{K}\Phi^{i} = K^{i}[\Phi]$, conserved Noether currents: $\partial_{a}j_{K}^{a}(x) = 0$.
- Couple the theory with external sources $\sigma(x)$:
 - ⇒ Classically, generically breaks the Noetherian symmetries;
 - >> Noether currents are no longer conserved [Troessaert '15] [Barnich-Fiorucci-Ruzziconi, to appear]:

$$\partial_a j_K^a(x) = F_K(x), \qquad F_K(x)|_{\sigma=0} = 0.$$

• At the quantum level, sourced Ward identities (key result) [Donnay-Herfray-Fiorucci-Ruzziconi '22]:

$$\langle \partial_a j^a_{\mathcal{K}}(\mathbf{x}) X
angle + rac{\hbar}{i} \sum_{i=1}^N \delta^{(n)}(\mathbf{x} - \mathbf{x}_i) \, \delta_{\mathcal{K}^i} \, \langle X
angle = \langle F_{\mathcal{K}}(\mathbf{x}) X
angle$$

with

$$\begin{array}{l} \bullet X \equiv \Phi^{i_1}(x_1) \dots \Phi^{i_N}(x_N): \text{ insertions of operators;} \\ \bullet \delta_{K^i} \langle X \rangle \equiv \langle \Phi^{i_1}(x_1) \dots K^i [\Phi(x_i)] \dots \Phi^{i_N}(x_N) \rangle. \end{array}$$

 $\implies \text{With no field insertion: } \langle \partial_a j_K^a(x) \rangle = \langle F_K(x) \rangle \text{ (reproduces the classical equation);} \\\implies \text{ In absence of sources: } \langle \partial_a j_K^a(x) X \rangle + \frac{\hbar}{i} \sum_{i=1}^{N} \delta^{(n)}(x - x_i) \delta_{\kappa i} \langle X \rangle = 0 \text{ (standard result).}$

Sourced Ward identities Application to Carrollian CFT Antipodal gluing

Integrated Ward identity:

$$\sum_{i=1}^{N} \delta_{K^{i}} \left\langle X \right\rangle = \frac{i}{\hbar} \Big\langle \left(\int_{\mathscr{M}} \mathbf{F}_{K} - \int_{\partial \mathscr{M}} \mathbf{j}_{K} \right) X \Big\rangle$$

with $\mathbf{F}_{K} = F_{K}(d^{n}x)$ and $\mathbf{j}_{K} = j_{K}^{a}(d^{n-1}x)_{a}$.

• Usual textbook result recovered after assuming:

$$\sum_{i=1}^N \delta_{\kappa^i} raket{X} = 0$$
 .

⇒ Invariance of the correlators.

• For our purpose, we will not make these assumptions.

Sourced Ward identities Application to Carrollian CFT Antipodal gluing

Application to Carrollian CFT

- Consider a 3*d* Carrollian CFT. Local coordinates: $x^a = (u, z, \bar{z})$. Carrollian structure: $ds^2 = 0 du^2 + 2dzd\bar{z}$ and $n^a \partial_a = \partial_u$.
- Noether currents:

$$j^{a}_{\bar{\xi}} = \mathcal{C}^{a}{}_{b}\bar{\xi}^{b}, \qquad \mathcal{C}^{a}{}_{b} = \begin{bmatrix} \mathcal{M} & \mathcal{N}_{\mathcal{B}} \\ \mathcal{B}^{\mathcal{A}} & \mathcal{A}^{\mathcal{A}}{}_{\mathcal{B}} \end{bmatrix}.$$

 $\implies C^{a}{}_{b}$: Carrollian stress-tensor;

 $\implies \mathcal{M}, \mathcal{N}_{\mathcal{B}}, \mathcal{B}^{\mathcal{A}}, \mathcal{A}^{\mathcal{A}}{}_{\mathcal{B}}$: Carrollian momenta.

[Ciambelli-Marteau-Petkou-Petkou-Petropoulos-Siampos '18] [de Boer, Hartong, Obers, Sybesma, Vandoren '18] [Ciambelli-Marteau '18] [Donnay-Marteau '19] [Chandrasekaran-Flanagan-Shehzad- Speranza '21] [Freidel-Pranzetti '21]

• Noether currents associated with 3*d* global conformal Carrollian symmetries ($\simeq 4d$ Poincaré symmetries) satisfy the classical flux-balance law $\partial_a j_{\bar{e}}^a(x) = F_{\bar{e}}(x)$, with $F_{\bar{e}} = F_a \bar{\xi}^a$, provided

Carrollian translations	:	∂_b	\Rightarrow	$\partial_a \mathcal{C}^a{}_b = \mathcal{F}_b$,
Carrollian rotation	:	$-z\partial + ar zar \partial$	\Rightarrow	$\mathcal{C}^{z}{}_{z}-\mathcal{C}^{\bar{z}}{}_{\bar{z}}=0,$
Carrollian boosts	:	$\bar{x}^{A}\partial_{u}$	\Rightarrow	$\mathcal{C}^{A}{}_{u}=0$,
Carrollian dilatation	:	$x^a \partial_a$	\Rightarrow	$\mathcal{C}^{a}{}_{a}=0$,

- No further constraints coming from supertranslations and superrotations.
- Constraints on the Carrollian momenta:

$$\begin{array}{ll} \partial_u \mathcal{M} = F_u \,, & \mathcal{B}^A = 0 \,, \\ \partial_u \mathcal{N}_z - \frac{1}{2} \partial \mathcal{M} + \bar{\partial} \mathcal{A}^{\bar{z}}_{\ z} = F_z \,, & 2\mathcal{A}^z_{\ z} + \mathcal{M} = 0 \,, \\ \partial_u \mathcal{N}_{\bar{z}} - \frac{1}{2} \bar{\partial} \mathcal{M} + \partial \mathcal{A}^z_{\ \bar{z}} = F_{\bar{z}} \,, & 2\mathcal{A}^{\bar{z}}_{\ \bar{z}} + \mathcal{M} = 0 \,. \end{array}$$

Sourced Ward identities Application to Carrollian CFT Antipodal gluing

Sourced Conformal Carrollian Ward identities

• Consider the sourced Ward identities with (quasi) conformal Carrollian primary fields insertions:

$$\delta_{\bar{\xi}} \Phi_{(k,\bar{k})} = \left[\left(\mathcal{T} + \frac{u}{2} (\partial \mathcal{Y} + \bar{\partial} \bar{\mathcal{Y}}) \right) \partial_u + \mathcal{Y} \partial + \bar{\mathcal{Y}} \bar{\partial} + k \, \partial \mathcal{Y} + \bar{k} \, \bar{\partial} \bar{\mathcal{Y}} \right] \Phi_{(k,\bar{k})} \,.$$

- Carrollian weights (k, \bar{k}) are integers or half-integers.
- In terms of the Carrollian momenta:

$$\begin{split} \partial_{u} \langle \mathcal{M} X \rangle &+ \frac{\hbar}{i} \sum_{i} \delta^{(3)} (x - x_{i}) \partial_{u_{i}} \langle X \rangle = \langle F_{u} X \rangle , \\ \partial_{u} \langle \mathcal{N}_{z} X \rangle &- \frac{1}{2} \partial \langle \mathcal{M} X \rangle + \bar{\partial} \langle \mathcal{A}^{\bar{z}}_{z} X \rangle + \frac{\hbar}{i} \sum_{i} \left[\delta^{(3)} (x - x_{i}) \partial_{i} \langle X \rangle - \partial \left(\delta^{(3)} (x - x_{i}) k_{i} \langle X \rangle \right) \right] = \langle F_{z} X \rangle , \\ \langle \mathcal{B}^{A} X \rangle &= 0 , \\ \langle (\mathcal{A}^{z}_{z} + \frac{1}{2} \mathcal{M}) X \rangle + \frac{\hbar}{i} \sum_{i} \delta^{(3)} (x - x_{i}) k_{i} \langle X \rangle = 0 . \end{split}$$

(together with the complex conjugate relations)

- Remark: with no field insertion, the sourced Ward identities reproduce the VEV of the classical relations.
- Claim:

The sourced Ward identities holographically encode the asymptotic dynamics of gravity in asymptotically flat spacetimes.

Sourced Ward identities Application to Carrollian CFT Antipodal gluing

Holographic correspondence

• Correspondence between boundary Carrollian momenta and bulk gravitational data at \mathscr{I}^+ [Donnay-Herfray-Fiorucci-Ruzziconi '22]:

$$\begin{split} \langle \mathcal{M} \rangle &= \frac{1}{4\pi G} \left[\mathcal{M} + \frac{1}{8} (C_{AB} N^{AB}) \right], \quad \langle \mathcal{A}^{A}{}_{B} \rangle = -\frac{1}{2} \delta^{A}{}_{B} \langle \mathcal{M} \rangle, \\ \langle \mathcal{N}_{A} \rangle &= \frac{1}{8\pi G} \left(\mathcal{N}_{A} + \frac{1}{4} C^{B}_{A} \partial_{C} C^{C}_{B} + \frac{3}{32} \partial_{A} (C^{C}_{B} C^{B}_{C}) + \frac{u}{4} \partial^{B} (\partial_{B} \partial_{C} - \frac{1}{2} \mathcal{N}_{BC}) C^{C}_{A} - \frac{u}{4} \partial^{B} (\partial_{A} \partial_{C} - \frac{1}{2} \mathcal{N}_{AC}) C^{C}_{B} \right) \,. \end{split}$$

- Fixed by requiring compatibility between boundary Noether currents and bulk gravitational charges.
- Similar to the AdS/CFT dictionary where the holographic stress-energy tensor of the CFT is identified with some subleading order in the expansion of the bulk metric. [Balasubramanian-Kraus '99] [de Haro-Solodukhin-Skenderis '01]
- External sources identified with the news: $\sigma_{AB} = N_{AB}$.
- Dissipation through the fluxes:

$$\begin{split} F_{u} &= -\frac{1}{16\pi G} \left[\sigma^{zz} \sigma_{zz} - 2(\bar{\partial}^{2} \sigma_{zz} + \partial^{2} \sigma_{\bar{z}\bar{z}}) \right], \\ F_{z} &= \frac{1}{32\pi G} \left[\partial (\sigma^{zz} \Phi_{zz}) + 2 \Phi_{zz} \partial \sigma^{zz} + u \partial (\bar{\partial}^{2} \sigma_{zz} - \partial^{2} \sigma_{\bar{z}\bar{z}}) \right], \quad F_{\bar{z}} = \bar{F}_{z} \; . \end{split}$$

• $\Phi_{zz} \equiv \Phi_{(\frac{3}{2},-\frac{1}{2})}$ holographically associated with the asymptotic shear: $\langle \Phi_{AB} \rangle = C_{AB}$, (Compatibility: $\langle \partial_u \Phi_{AB} \rangle = \sigma_{AB}$). $\delta_{\xi} C_{zz} = \left[\left(\mathcal{T} + \frac{u}{2} (\partial \mathcal{Y} + \bar{\partial} \bar{\mathcal{Y}}) \right) \partial_u + \mathcal{Y} \partial + \bar{\mathcal{Y}} \bar{\partial} + \frac{3}{2} \partial \mathcal{Y} - \frac{1}{2} \bar{\partial} \bar{\mathcal{Y}} \right] C_{zz} - 2 \partial^2 \mathcal{T} - u \, \partial^3 \mathcal{Y} \, .$

• With these identifications, the sourced Ward identities reproduce the BMS flux-balance laws.

Sourced Ward identities Application to Carrollian CFT Antipodal gluing

Antipodal gluing

- Where does the Carrollian CFT live?
- Glue \mathscr{I}^+ and \mathscr{I}^- by identifying antipodally \mathscr{I}^+_- with \mathscr{I}^-_+ :

$$\hat{\mathscr{I}}=\mathscr{I}^{-}\sqcup\mathscr{I}^{+}$$

[Donnay-Herfray-Fiorucci-Ruzziconi '22]

- Intrinsically, the gluing surface Σ₀ is distinguished by a vanishing n^a.
- Carrollian momenta and symmetry generators smoothly defined on $\hat{\mathscr{I}}$.
 - Geometric implementation of the antipodal matching. [Strominger '13] [Troessaert '17] [Henneaux-Troessaert '18] [Prabhu '19] [Capone-Nguyen-Parisini '22]

Celestial holography Carrollian and celestial operators Carrollian and celestial Ward identities

From the bulk...

...to the celestial sphere.

Celestial holography Carrollian and celestial operators Carrollian and celestial Ward ident

Celestial holography

- Scattering of massless particles: [de Boer-Solodukhin '03] [Pasterski-Shao-Strominger '17] [Pasterski-Shao '17] $\langle \mathcal{O}_{\Delta_1, J_1}(z_1, \bar{z}_1) \dots \mathcal{O}_{\Delta_N, J_N}(z_N, \bar{z}_N) \rangle = \left(\prod_{i=1}^N \int_0^{+\infty} d\omega_i \, \omega_i^{\Delta_i - 1}\right) \langle \text{out} | \mathcal{S} | \text{in} \rangle$ where the CCFT operators $\mathcal{O}_{\Delta_i, J_i}(z_i, \bar{z}_i)$ are characterized by conformal dimension Δ_i and spin J_i . 2d Celestial (FT) $\langle \text{cont} | \mathcal{S} | \text{in} \rangle$
- Soft theorems in the bulk ↔ Ward identities in the CCFT.
- The CCFT correlation functions obey the Ward identities: [Strominger '13] [Kapec-Mitra-Raclariu-Strominger '17]

$$\left\langle P(z,\bar{z})\prod_{i=1}^{N}\mathcal{O}_{\Delta_{\bar{i}},J_{\bar{i}}}(z_{i},\bar{z}_{i})\right\rangle + \hbar\sum_{q=1}^{N}\frac{1}{z-z_{q}}\left\langle \ldots\mathcal{O}_{\Delta_{q}+1,J_{q}}(z_{q},\bar{z}_{q})\ldots\right\rangle = 0 \quad (\text{leading soft theorem}) \quad P(z,\bar{z}):\left(\frac{3}{2},\frac{1}{2}\right)$$

$$\left\langle T(z)\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle + \hbar\sum_{q=1}^{N}\left[\frac{\partial_{q}}{z-z_{q}} + \frac{h_{q}}{(z-z_{q})^{2}}\right]\left\langle\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle = 0 \quad \text{(subleading soft theorem)} \quad T(z):(2,0)$$

where $h_q = \frac{1}{2}(\Delta_q + J_q).$

• How to relate the 2d CCFT correlation functions and Ward identities with those of the 3d Carrollian CFT?

Celestial holography Carrollian and celestial operators Carrollian and celestial Ward identities

Relation between Carrollian and celestial operators

Relation between (quasi) conformal Carrollian primary operators and CCFT operators [Donnay-Herfray-Fiorucci-Ruzziconi '22]:

$$\begin{array}{l} \mathcal{O}_{\Delta_{i},J_{i}}^{out}(z_{i},\bar{z}_{i}) = i^{\Delta_{i}}\Gamma[\Delta_{i}] \int_{-\infty}^{+\infty} du_{i} \ u_{i}^{-\Delta_{i}} \ \Phi_{(k_{i},\bar{k}_{i})}^{out}(u_{i},z_{i},\bar{z}_{i}) , \\ \\ \mathcal{O}_{\Delta_{j},J_{j}}^{in}(z_{j},\bar{z}_{j}) = i^{\Delta_{j}}\Gamma[\Delta_{j}] \int_{-\infty}^{+\infty} dv_{j} \ v_{j}^{-\Delta_{j}} \ \Phi_{(k_{j},\bar{k}_{j})}^{in}(v_{j},z_{j},\bar{z}_{j}) . \end{array} \right\}$$
(Fourier + Mellin transforms)

⇒ Exchange between time and conformal dimension.

⇒ Extrapolate dictionary [Pasterski-Puhm-Trevisani '21].

• Matching between Carrollian weights (k, \bar{k}) and celestial spin J:

$$k = \frac{1}{2}(1 + J), \qquad \bar{k} = \frac{1}{2}(1 - J).$$

(compatible with the falloffs of the conformal compactification)

• Correlation functions (N = m + n):

$$\left\langle \prod_{i=1}^{m} \mathcal{O}_{\Delta_{i},J_{j}}^{out}(z_{i},\bar{z}_{i}) \prod_{j=1}^{n} \mathcal{O}_{\Delta_{j},J_{j}}^{in}(z_{j},\bar{z}_{j}) \right\rangle$$

$$= \left(\prod_{i=1}^{m} i^{\Delta_{i}} \Gamma[\Delta_{i}] \int_{-\infty}^{+\infty} du_{i} u_{i}^{-\Delta_{i}} \right) \left(\prod_{j=1}^{n} i^{\Delta_{j}} \Gamma[\Delta_{j}] \int_{-\infty}^{+\infty} dv_{j} v_{j}^{-\Delta_{j}} \right) \left\langle \underbrace{\Phi_{(k_{1},\bar{k}_{1})}^{out}(x_{1}) \dots \Phi_{(k_{m},\bar{k}_{m})}^{out}(x_{m})}_{\text{Insertions at } \mathscr{I}^{+}} \underbrace{\Phi_{(k_{1},\bar{k}_{1})}^{in}(x_{1}) \dots \Phi_{(k_{m},\bar{k}_{m})}^{in}(x_{m})}_{\text{Insertions at } \mathscr{I}^{+}} \right) \left\langle \underbrace{\Phi_{(k_{1},\bar{k}_{1})}^{out}(x_{1}) \dots \Phi_{(k_{m},\bar{k}_{m})}^{out}(x_{m})}_{\text{Insertions at } \mathscr{I}^{+}} \right\rangle$$

Celestial holography Carrollian and celestial operators Carrollian and celestial Ward identities

Relation between Carrollian and celestial Ward identities

Integrated conformal Carrollian Ward identities:

$$\delta_{\bar{\xi}}\langle X\rangle = \frac{i}{\hbar} \Big\langle \left(\int_{\mathscr{I}^- \sqcup \mathscr{I}^+} \mathbf{F}_{\bar{\xi}} - \int_{\mathscr{I}^+_+} \mathbf{j}_{\bar{\xi}} + \int_{\mathscr{I}^-_-} \mathbf{j}_{\bar{\xi}} \right) X \Big\rangle$$

where
$$X \equiv \Phi_{(k_1,\bar{k}_1)}^{out}(x_1) \dots \Phi_{(k_m,\bar{k}_m)}^{out}(x_m) \Phi_{(k_1,\bar{k}_1)}^{in}(x_1) \dots \Phi_{(k_n,\bar{k}_n)}^{in}(x_n).$$

- Assumption of massless scattering: $\mathbf{j}_{\bar{\xi}}|_{\mathscr{I}^+_+} = 0 = \mathbf{j}_{\bar{\xi}}|_{\mathscr{I}^-_-}$
- Incoming flux = outgoing flux: $\int_{\mathscr{I}^-} \mathbf{F}_{\bar{\xi}} = -\int_{\mathscr{I}^+} \mathbf{F}_{\bar{\xi}}$ (constraint on the sources).
- With these assumptions \implies invariance of the correlators under BMS symmetries: $\delta_{\bar{\xi}}\langle X \rangle = 0$. [Donnay-Herfray-Fiorucci-Ruzziconi '22]

• Supertranslations:

• $\delta_{\mathcal{T}}\langle X \rangle = \delta_{\mathcal{T}}^{S}\langle X \rangle + \delta_{\mathcal{T}}^{H}\langle X \rangle \langle \delta_{\mathcal{T}}^{S}\langle X \rangle \neq 0$ if there is at least one graviton insertion). • $\delta_{\mathcal{T}}^{S}\langle X \rangle \sim \langle \mathcal{J}_{\mathcal{F}}F_{\mathcal{T}}^{S}X \rangle$ using $[\prod_{zz}(u,z,\bar{z}), \Phi_{\bar{w}\bar{w}}(u',w,\bar{w})] = 16\pi G i\hbar \,\delta(u-u') \,\delta^{(2)}(z-w)$ with $\prod_{zz} = \partial_{u}\Phi_{zz}$.

(3) Specify the relation to $\mathcal{T}(z, \bar{z}) = \delta^{(2)}(z - w)$ and introduce the supertranslation current

$$P(z,\bar{z})=\frac{1}{4G}\left(\int_{-\infty}^{+\infty}du+\int_{-\infty}^{+\infty}dv\right)\bar{\partial}\Pi_{zz}.$$

Perform the integral transforms on X:

$$\left\langle P(z,\bar{z})\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})
ight
angle +\hbar\sum_{q=1}^{N}rac{1}{z-z_{q}}\left\langle \ldots\mathcal{O}_{\Delta_{q}+1,J_{q}}(z_{q},\bar{z}_{q})\ldots
ight
angle =0$$

Superrotations:

δ_Y(X) = δ⁵_Y(X) + δ^H_Y(X) (δ⁵_Y(X) ≠ 0 if there is at least one graviton insertion).
 δ⁵_Y(X) ~ (∫_J F⁵_Y X).
 Specify the relation to Y(z) = 1/(z-w) and introduce the 2d stress-tensor

$$\Gamma(z) = -\frac{i}{8\pi G} \int \frac{dwdw}{z-w} \left(\int_{-\infty}^{+\infty} du \, u + \int_{-\infty}^{+\infty} dv \, v \right) \partial^3 \Pi_{\bar{w}\bar{w}} \, .$$

Perform the integral transforms on X:

$$\left\langle T(z)\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle +\hbar\sum_{q=1}^{N}\left[\frac{\partial_{q}}{z-z_{q}}+\frac{h_{q}}{(z-z_{q})^{2}}\right]\left\langle \prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle =0\,.$$

Summary

• Two complementary pictures of \mathscr{I}^+ and \mathscr{I}^- leading to two complementary approaches of flat space holography:

- Proposition of a dual theory in Carrollian holography: 3d Carrollian CFT coupled with external sources.
- The sources holographically encode the bulk radiation leaking through the boundary.
- Relation between Carrollian and celestial holographies established.
- Ward identities in CCarr FT \iff Ward identities in CCFT.

Summary Perspectives The End

Perspectives

- From the bulk ... to null infinity ... to the celestial sphere.
 - \implies Deduce more insights in Carrollian holography from celestial holography and reciprocally.
- Relation with (A)dS/CFT correspondence?
 - \implies In the bulk, the flat limit works provided one starts with leaky boundary conditions.
 - \implies A-BMS symmetries and phase space. [Compère-Fiorucci-Ruzziconi '19] [Fiorucci-Ruzziconi '21]
 - \implies Obtain the sourced Carrollian CFT in the ultra-relativistic limit of a sourced conformal field theory.

• How general is our proposal?

Gravity in d+1 dimensions with leaky boundary conditions

⇔ So

Sourced QFT in d dimensions

- \implies Holography of open systems.
- \implies Holography of finite regions.

Summary Perspectives **The End**

Thank you!

AUSTRIAN SCIENCE FUND

Coadjoint representation of BMS₄

- In which representation does the solution space transform?
- In 3d asymptotically flat gravity, it transforms in the coadjoint representation of the BMS₃ algebra.
 - \implies Identify the coadjoint representation of the BMS₄ algebra in the transformation of the solution space of 4*d* gravity (momentum map)
- Short summary (see [Barnich-Ruzziconi '21] for details and more results):
 - $(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}}) \in \mathfrak{bms}_4 \text{ and } (p,[j],[\bar{j}]) \in \mathfrak{bms}_4^* \text{ with } j \sim j + \partial \mathcal{N} \text{ and } \bar{j} \sim \bar{j} + \bar{\partial} \bar{\mathcal{N}}.$

 $\textcircled{0} \text{ Pairing: } \mathfrak{bms}_4^* \times \mathfrak{bms}_4 \mapsto \mathbb{R} : \left((\textbf{\textit{p}}, [j], [\bar{j}]), (\mathcal{T}, \mathcal{Y}, \bar{\mathcal{Y}}) \right) \rightarrow \langle (\mathcal{P}, [\mathcal{J}], [\bar{\mathcal{J}}]), (\mathcal{T}, \mathcal{Y}, \bar{\mathcal{Y}}) \rangle \text{ with }$

$$\langle (\rho, [j], [\bar{j}]), (\mathcal{T}, \mathcal{Y}, \bar{\mathcal{Y}}) \rangle = \int_{\mathcal{S}} \frac{dz d\bar{z}}{(2i\pi)^2} [\mathcal{T}\rho + \mathcal{Y}\bar{j} + \bar{\mathcal{Y}}j].$$

$$\begin{aligned} & \textbf{O} \quad \text{The coadjoint representation } ad^* \text{ is defined via} \\ & \langle ad^*_{(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}})}(p,[j],[\bar{j}]), (\mathcal{T}',\mathcal{Y}',\bar{\mathcal{Y}}) \rangle \rangle = -\langle (p,[j],[\bar{j}]), [(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}}), (\mathcal{T}',\mathcal{Y}',\bar{\mathcal{Y}}')] \rangle, \text{ which implies} \\ & \delta_{(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}})}p = \mathcal{Y}\partial p + \bar{\mathcal{Y}}\bar{\partial}p + \frac{3}{2}\bar{\partial}\mathcal{Y}p + \frac{3}{2}\bar{\partial}\bar{\mathcal{Y}}p, \end{aligned}$$

$$\delta_{(\mathcal{T},\mathcal{Y},\bar{\mathcal{Y}})}j = \mathcal{Y}\partial j + \bar{\mathcal{Y}}\bar{\partial}j + \partial\mathcal{Y}j + 2\bar{\partial}\bar{\mathcal{Y}}j + \frac{1}{2}\mathcal{T}\bar{\partial}\rho + \frac{3}{2}\bar{\partial}\mathcal{T}\rho.$$

 \implies Construct the momentum map = identify $(p, [j], [\bar{j}])$ in the solution space of gravity.