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Carrollian theories of gravity (Hamiltonian)

Electric Carrollian limit of gravity

Carroll-invariant
field theories

Mare Henneau Again, the limits are most conveniently taken in the Hamiltonian
formulation.
The (Dirac-ADM) Hamiltonian action for Einstein gravity reads

Slgij,m’,N,N'| = f dx’° f d“x(n"g; — N# — N'76)

(where we do not write explicitly the surface terms, which
depend on the boundary conditions).
Here, /£ ~ 0 is the Hamiltonian constraint and .#; = 0 is the

momentum constraint with the following explicit expressions (in
appropriate units and with appropriate rescalings, see below)

Gravity

F = GigmtIn™ — O Ry/g, =21 .
] g i|]

19/26

M. Henneaux “Carroll-invariant field theories” @ Carroll Workshop, Vienna
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Carrollian expansion of gravity (metric)

LO and NLO action
Q)t‘(avo( K &W’ C—>o0 7 LO acdion |

) e
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@) e () l]®@
6LLo = vovt + G, Oh*
Lro = g~ [G” v+ SGu ,

@ 1 .
GZ - _§TN(KWKP0 - K2) + h7’\V,\(Km - Khy),

) 1 -
GZ,, = —th(K”Km — K%) + K(K,, — Khy,) — v*V (K, — Khy,).

Lrro = —— | 2w, + Gongm 4 L6 o
NLO — 87TGN 2 Hv 7 2 uv .

N. Obers “Carroll symmetry in field theory and gravity” @ Carroll Workshop, Vienna
see also G. Oling
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Electric and Magnetic theories

e The ¢ — 0 (“zero-signature” or “strong coupling”) limit of Einstein relativity was first written in
Hamiltonian form [Isham '76], [Teitelboim 78, “82] then in Lagrangian form [Henneaux "79].

e At least two ways to define a Carrollian limit: and Magnetic
Recently, the previous theory was realized as an contraction of GR in Hamiltonian form,
and a new Magnetic contraction was constructed [Henneaux, Salgado-Rebolledo "21].

S[gij,ﬂ'ij,N,Ni] :/d:pO/ddaz(wijgﬁj—NH—NiHi) Hi: _27Ti]|j'
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HE = Gijkmm ™"

o and Magnetic theories are qualitatively different:

- 1n the case, 7Y can be eliminated and becomes the extrinsic curvature but in the
Magnetic case, it 1s a Lagrange multiplier and cannot be eliminated

- different space of solutions [Hansen, Obers, Oling, Segaard '22] and asymptotic symmetries
[Pérez 21, '22], [Fuentealba, Henneaux, Salgado-Rebolledo, Salzer "22]

- Hamiltonian analysis performed in [Sengupta 22].
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Theories of Carrollian gravity

In metric and Hamiltonian form: more than one theory of Carrollian gravity
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Theories of Carrollian gravity

In metric and Hamiltonian form: more than one theory of Carrollian gravity

What about gauge theories?
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Gauging procedure and the Carrollian case

e “Gauging” an algebra g is not a straightforward procedure (see José’s talk!)

e Tentative gauging procedure (for the purpose of this talk only):

select a Klein pair (g, )) modeling spatially isotropic homogeneous space M ~ g/}

write a gauge connection taking values in g, gauge fields in g/¥) is a (co)frame

identify curvatures of gauge fields in §j as “curvatures” and in g/¥) as “torsions”

impose zero torsions, build an action from f)-gauge-invariant objects (curvature, metric).
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Gauging procedure and the Carrollian case

e “Gauging” an algebra g is not a straightforward procedure (see José’s talk!)

e Tentative gauging procedure (for the purpose of this talk only):

select a Klein pair (g, )) modeling spatially isotropic homogeneous space M ~ g/}

write a gauge connection taking values in g, gauge fields in g/¥) is a (co)frame

identify curvatures of gauge fields in §j as “curvatures” and in g/¥) as “torsions”

impose zero torsions, build an action from f)-gauge-invariant objects (curvature, metric).

e [eftover ambiguity, e.g. in Carroll spacetime, the vanishing of the torsion two-form is not
enough to entirely fix the connection I,

- I” w 1s “torsion-free” (symmetric) iff the second fundamental form vanishes

- when this is the case, I'”  is only defined up to a shift by n” S for any symmetric S,,, .

e Unsurprisingly, there 1s no unique proposition for a gauge theory of Carroll transformations.
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Comparing gauge theories with metric ones

A ~ ~ 2
S = / e [C (KWKpgh“ph” = A (K ) ) - v]

[Hartong "15]

= — Do = B —

[Bergshoeff, Gomis, Rollier, Rosseel and ter Veldhuis "17]

e Choosing g = span {Jab , C,, P,, H} and §) = span {Jab : Ca} — action of [Bergshoeff et al.].
Similar to the Magnetic theory! But 1s it really the same?

e On the other hand, the action of [Hartong] looks more theory (but it is also more general,
depending on the choice of potential 7). It doesn’t follow the previous procedure.
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The (A)dS Carroll algebra

2\
o Start with the (D + 1)-dimensional (A)dS Carroll algebra, with MP=-¢
DD —1)
[Jab ) ch: — 5achb + 5bd Jca _ 5ad Jcb _ 6[90 Jda ) []ab’ Pc = 5cha _ 5ca Pb )
[Jab’ Cc =5cbca_5cacb’ [Ca’Pb: =5abH’
[H, P =0l*C,, [P, Pl =0%],.

e Also written in a compact way

[Jag»> Jepl = CacIpe+ CopJca — SapJcr — Coe Ipa
[Jag> Pcl = Ccp Pa— Cca Pps
[P, Ppl = 0A*J 5,

0 O

A_ <A
0 5ab) degenerate along n” = ¢ .

using the ¢ — 0 limit of the Minkowski metric {5 = <
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Carrollian connection

e (Connection one-form

1

_ ab a a
A, = 2a)ﬂ Jpte P+ C,+7,H.

e Non-degenerate soldering form EﬂA = (eﬂ“ , Tﬂ) <> vielbein E#, = (e”a , n”)

2 a 72— H — H — a U UV __ 1%
eﬂeb— . el =0, nfe =0, 7 n"=0, e e’y +1,n —5M.

o Degenerate metric g, = ¢,"¢, bs a» along the null n¥-direction: n* g, = 0 and non-vanishing

density E = det(EﬂA) — (g/w , n*, E) “minimal” Carrollian geometry [Henneaux '79].
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Carrollian connection

e (Connection one-form

1

_ ab a a
A, = 2a)ﬂ Jpte P+ C,+7,H.

e Non-degenerate soldering form EﬂA = (e ‘1 ) <> vielbein £, = (e”a : n”)

ooty
a U — sa u u, a _ U _— a v UV _ SU
e er,=10,, Tﬂea—O, n*e, =0, (L =0, e e’y +1,n —5M.

o Degenerate metric g, = ¢,° e 6, along the null n*-direction: n* g,, = 0 and non-vanishing

density £ = det(EﬂA) — (8, » n*, E) “minimal” Carrollian geometry [Henneaux '79].

e They are gauge-invariant under local Carroll rotations and boosts

oE=0, on*=0, 5gﬂy=0.

Extrinsic curvature (second fundamental form) K, = — Eff n 8w -
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Structure equations and action

1
Decomposing F'=d A + 5 [A, A] on the generators of the Carroll algebra H, P, C,and J

Fu =07 + oy, ey =1

F. = oye, +o,%e,, =T,"

FMU“ = d[ﬂ W, + a)[ﬂab W, + o A? T(y e, = RW“ + 6 A% T(, e,
Fwab = 0|, a)y]“b + w, a)y]cb + 6 A* e ey]b = Rﬂyab + 6 A* e’ ey]b .

o Impose 7,, = 0and 7, = 0, corresponding to ¢ = carz(l, D) and ) = 80(D) X RP .
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Structure equations and action

1
Decomposing FF = d A + — [A A] on the generators of the Carroll algebra H, P,, C,and J

Fuw =0ty + a)[ua €l =1
F. = oye, +o,%e,, =T,"
F 4= a[ﬂa)y]“+a)[ﬂ ab ]b+0/121[ﬂ o =RW +6/121[ﬂey]“,
F, ab — 6[ﬂ by a)[ﬂ Ve by oA? e[/f’ ey]b = Rﬂy“b + 6 A% e[ﬂ“ ey]b.

o Impose 7,, = 0and 7, = 0, corresponding to ¢ = carz(l, D) and ) = 80(D) X RP .

e Obvious candidate action is the ¢ — 0 limit of Einstein-Cartan [Bergshoeff et al. "17]

1
Ieo [ES 0,47 _—J dtd’x E (e” e’ R, +2n" e, R,* 2A> .
167Z'GM
e Variation with respect to ,“ and @ 4b gives rise to the torsion constraints 7 wr0andT =~ 0.
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From first-order to Hamiltonian

0

9

e Zero torsion — all components of the spin-connections are determined except S,y = @)
which is a Lagrange multiplier for the first-class constraint K, = e”,e", K, ~ 0 .

e [.ocal Carroll boost-invariance — fix “time gauge” 7; = 0 . Remaining degrees of freedom

1 N

nﬂ=<ﬁ’ _W>’ €”a=(0,eia), 7, =N, 0), eﬂaz(eiaNi,eia)a

e The action reads

Ieo [ES 0,0 = J dtdPx e (2 ¢/,R;—2N'¢/,R;*+ Ne' ¢/, R — 2NA) .
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From first-order to Hamiltonian

0

9

e Zero torsion — all components of the spin-connections are determined except S,y = @)
which is a Lagrange multiplier for the first-class constraint K, = e”,e", K, ~ 0 .

e [.ocal Carroll boost-invariance — fix “time gauge” 7; = 0 . Remaining degrees of freedom
1 N . .
= <N’ _ W) et =(0,¢) . 7, = (N, 0), e = (6N, ) .

e The action reads

Ieo [ES 0,0 = J dtdPx e 2 ¢/,R;“*-2N"¢/,R;*+ Ne' e/, R — 2NA) .

- term
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From first-order to Hamiltonian

0

9

e Zero torsion — all components of the spin-connections are determined except S,y = @)
which is a Lagrange multiplier for the first-class constraint K, = e”,e", K, ~ 0 .

e [.ocal Carroll boost-invariance — fix “time gauge” 7; = 0 . Remaining degrees of freedom

1 N

nﬂ=<ﬁ’ _W>’ €”a=(0,eia), 7, =N, 0), eﬂaz(eiaNi,eia)a

e The action reads

Ieo [ES 0,4 = J dtdPx e 2 e/,R §2N'e¢/ R, ; Né, ebe,.jab—zNA) .

- term
- spatial Hamiltonian density
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From first-order to Hamiltonian

0

9

e Zero torsion — all components of the spin-connections are determined except S,y = @)
which is a Lagrange multiplier for the first-class constraint K, = e”,e", K, ~ 0 .

e [.ocal Carroll boost-invariance — fix “time gauge” 7; = 0 . Remaining degrees of freedom

n”: %, —% , e”a=<0,eia), Tpt:(N’ O)v eﬂaz(eiaNi’eia>’

e The action reads

I |ES 0, = ——— | drdPxe!2¢/ R % RENe O, RP—2NAY.
167TGM : .S S 7_ B Lo oo i P TN - - P “I:’ ’

- term
- spatial Hamiltonian density
- transverse Hamiltonian density.
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From first-order to Hamiltonian

e Eliminating the spatial spin connection a)l-jk , the curvature term takes a familiar form

i 4] ab _
¢\, ¢/, R =R,

3 1
where R = hY <ak Vkij — 0 ijk + J/lij =7 7kjl> and 7kij =5 K (ai 81 +0;8;— 0 gij) '

e Eliminating the rest of @, the action only depends on the gauge-invariant metric fields g;; , N ‘N

aswellas S.- = e%e?S . as a Laeranee multiplier
ij i vj “ab grang p

Ico (8 N.N', V] = J dt d°x (nl'fg,.j +2N,V,;n’ - N%M> ,

. g g
\/§ (S’J—h’JS’) and # ' = — \/_

67TGM 1 67TGM

where we defined 7Y = (R-—2A).
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From first-order to Hamiltonian

e Eliminating the spatial spin connection a)l-jk , the curvature term takes a familiar form

i 4] ab _
¢\, ¢/, R =R,

3 1
where R = hY <ak Vkij — 0 ijk + J/lij V=71 7kjl> and 7kij =5 K <ai 81 +0;8;— 0 gij) '

e Eliminating the rest of @, the action only depends on the gauge-invariant metric fields g;; , N ‘N

aswellas S.- = e%e?S . as a Laeranee multiplier
ij i vj “ab grang p

Ico (8 N.N', V] = J dt d°x (nl'fg,.j +2N,V,;n’ - N%M> ,

. g g
\/§ (S’J—h’JS’) and # ' = — \/_

67TGM 1 67TGM

where we defined 7Y = (R-—2A).

e [tis an action which 1s Istorder in time derivative and 2nd order in spatial derivatives
... and it is exactly the action of the Magnetic theory in Hamiltonian form!
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Carrollian rewriting of Einstein-Cartan

® One can play a similar game, starting from the Einstein-Cartan action gauging the (A)dS algebra

C3

EC ™~ 167TGN

I dtdPx & (%MA &y R A — 2A> |

e We use ¢ = ¢ and set the geometrical units ¢ = 1 so that the Carrollian limitis € — 0 .

e Parametrising the vielbein as in [Pilati 78], [Castellani, van Nieuwenhuizen, Pilati ‘82]

1 N . .
&= —-—n,, —ns+ey ), = (e*N' +eNnt, e?),
A < eN A eN A A> 7 ( I I )

reproduces the standard metric of [Arnowitt, Deser, Misner '59]

_ [ N'N;—&°N* N,
g,ul/ - ]vl glj |
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Partial solving of the torsion constraints

e Full torsion constraint allows to eliminate completely the spin connection €2 ﬂAB

o A __ A AB C ~
T =0,8, +Q,"E "ngc~0.

¢ One can choose instead to eliminate almost all components of the spin connection

9UJ_R$O, gl]kQJJO, gnlr’tﬁo, gt[l‘]]r’:ﬁo (XJ_EXAI/ZA)

Can be done consistently by varying with respect to {Q[l-j] L Qijk , 1, Qn-j} :

e Remaining components 7 are singular when ¢ — 0 .

1(ij

e Corresponding components of the spin connection £2;;y, cannot be solved in the Carrollian limit

and are related to the conjugate momenta to the metric.
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Magnetic action from the limait

e Choosing the time gauge once again so that n = 5(‘)4 and performing a Legendre transform

(i DA — V8

0L g
EC and defining #¥=—p

QW —piQ k)
5éA 2 4 167zGM< . 1)

Py =
we recover directly the Hamiltonian formulation of general relativity

IADM[gijaNaNia ﬂl]] — [ dthx (ﬂljgl]-l_ Q’ZVZV]ﬂU_N%J_> )

. 167G 1 )
with | =%y + € [ \/gM <gil ik~ _q i gkl) i ”kl] -

e Magnetic theory is obtained by sending € — 0 ( potential term subleading in ¢) provided
one rescales Newton’s constant Gy, = £* Gy, .
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Conclusion and outlook

® Relativistic theory of GR is the same in second-order and Hamiltonian formulations.
The (g =130(1,D), h = éo(l,D)) Einstein-Cartan action is also equivalent.

Hamiltonian (1storder in 0,)

second-order (metric) < first-order (gauge)

Solving of torsion constraint
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Conclusion and outlook

® Relativistic theory of GR is the same in second-order and Hamiltonian formulations.
The (g =130(1,D), h = éo(l,D)) Einstein-Cartan action is also equivalent.

Hamiltonian (1storder in 0,)

V\{%«y.
sss{?‘/&
‘s~0/p.
ss /0
@
N Of‘
ss {O
N
‘. /O
second-order (metric) < first-order (gauge)
Solving of torsion constraint
® This is not true in Carroll gravity: the theory emerging from the Carrollian limit is in

second-order formulation, but Magnetic in Hamiltonian formulation.

o The (g = carx(1,D), § = 8o(D) X RP ) first-order action reproduces the Magnetic theory.

® Future work: coupling of fermionic fields to Magnetic gravity in first-order formulation.
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Looking for the Electric theory

e A gauge theory of gravity 1s still elusive. Didn’t emerge in the classification of gauge
theories based on the Carroll algebra [Figueroa-O’Farrill, Have, Prohazka, Salzer '22].
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Looking for the Electric theory

e A gauge theory of gravity 1s still elusive. Didn’t emerge in the classification of gauge
theories based on the Carroll algebra [Figueroa-O’Farrill, Have, Prohazka, Salzer '22].

o potential subleading in first-order and Hamiltonian forms in ¢ — 0.
Magnetic potential subleading in second-order form in ¢ — O [Hansen, Obers, Oling, Segaard '22].

Second-order Hamiltonian First-order
Leading theory Magnetic theory Magnetic theory
Next-to-leading Magnetic potential potential potential
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Looking for the Electric theory

e A gauge theory of gravity 1s still elusive. Didn’t emerge in the classification of gauge
theories based on the Carroll algebra [Figueroa-O’Farrill, Have, Prohazka, Salzer '22].

o potential subleading in first-order and Hamiltonian forms in ¢ — 0.
Magnetic potential subleading in second-order form in ¢ — O [Hansen, Obers, Oling, Segaard "22].

Second-order Hamiltonian First-order
Leading theory Magnetic theory Magnetic theory
Next-to-leading Magnetic potential potential potential

¢ Final thoughts:

- 1n first-order formulation, one can always reverse the hierarchy by rescaling fields,
however the action is not invariant under local Carroll boosts in the limit

- 1n second-order formulation, the full Magnetic theory can be recovered using an auxiliary
field, leading to the same hierarchy as in first-order.

- Question: can we apply this trick to get a first-order formulation of gravity?
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Carrollian wonderland
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