Magnetic Carrollian gravity from the Carroll algebra

Simon Pekar (UMONS)

2nd Carroll Workshop in Mons – 15/09/2022

based on [2207.14167] with A. Campoleoni, M. Henneaux, A. Pérez and P. Salgado-Rebolledo (to be published in JHEP)

PREVIDUSLY DN

CARROLL WORKSHOP TU VIENNA 15 > 22 FEBRUARY 2022

Carrollian theories of gravity (Hamiltonian)

Electric Carrollian limit of gravity

Carroll-invariant field theories

Marc Henneaux

Introduction

Carrollian causality – *p*-forms

Carroll Geometry

Conditions for a theory to be Carroll invariant

Covariant actions

Gravity

Carrollian-BMS groups Conclusions and Again, the limits are most conveniently taken in the Hamiltonian formulation.

The (Dirac-ADM) Hamiltonian action for Einstein gravity reads

$$S[g_{ij},\pi^{ij},N,N^i] = \int dx^0 \int d^d x (\pi^{ij} \dot{g}_{ij} - N\mathcal{H} - N^i \mathcal{H}_i)$$

(where we do not write explicitly the surface terms, which depend on the boundary conditions).

Here, $\mathcal{H} \approx 0$ is the Hamiltonian constraint and $\mathcal{H}_i \approx 0$ is the momentum constraint with the following explicit expressions (in appropriate units and with appropriate rescalings, see below)

$$\mathcal{H} = G_{ijkm} \pi^{ij} \pi^{mn} - c^6 R \sqrt{g}, \qquad \mathcal{H}_i = -2\pi_{i|j}^j.$$

M. Henneaux "Carroll-invariant field theories" @ Carroll Workshop, Vienna

Simon Pekar (UMONS)

Magnetic Carrollian gravity from the Carroll algebra

ク Q (~ 19/26

A

Carrollian expansion of gravity (metric)

N. Obers "Carroll symmetry in field theory and gravity" @ Carroll Workshop, Vienna see also G. Oling

Simon Pekar (UMONS)

Magnetic Carrollian gravity from the Carroll algebra

2nd Carroll Workshop

Electric and Magnetic theories

- The $c \rightarrow 0$ ("zero-signature" or "strong coupling") limit of Einstein relativity was first written in Hamiltonian form [Isham '76], [Teitelboim '78, '82] then in Lagrangian form [Henneaux '79].
- At least two ways to define a Carrollian limit: Electric and Magnetic Recently, the previous theory was realized as an Electric contraction of GR in Hamiltonian form, and a new Magnetic contraction was constructed [Henneaux, Salgado-Rebolledo '21].

$$S[g_{ij}, \pi^{ij}, N, N^i] = \int dx^0 \int d^d x (\pi^{ij} \dot{g}_{ij} - N\mathcal{H} - N^i \mathcal{H}_i) \qquad \mathcal{H}_i = -2\pi_i^{j}{}_{|j}.$$
$$\mathcal{H}^E = G_{ijkm} \pi^{ij} \pi^{mn} \qquad \mathcal{H}^M = -R\sqrt{g}$$

Electric and Magnetic theories

- The $c \rightarrow 0$ ("zero-signature" or "strong coupling") limit of Einstein relativity was first written in Hamiltonian form [Isham '76], [Teitelboim '78, '82] then in Lagrangian form [Henneaux '79].
- At least two ways to define a Carrollian limit: Electric and Magnetic Recently, the previous theory was realized as an Electric contraction of GR in Hamiltonian form, and a new Magnetic contraction was constructed [Henneaux, Salgado-Rebolledo '21].

$$S[g_{ij}, \pi^{ij}, N, N^i] = \int dx^0 \int d^d x (\pi^{ij} \dot{g}_{ij} - N\mathcal{H} - N^i \mathcal{H}_i) \qquad \mathcal{H}_i = -2\pi_i^{j}{}_{|j}.$$
$$\mathcal{H}^E = G_{ijkm} \pi^{ij} \pi^{mn} \qquad (\mathcal{H}^M = -R\sqrt{g})$$

- Electric and Magnetic theories are qualitatively different:
 - in the Electric case, π^{ij} can be eliminated and becomes the extrinsic curvature but in the Magnetic case, it is a Lagrange multiplier and cannot be eliminated
 - different space of solutions [Hansen, Obers, Oling, Søgaard '22] and asymptotic symmetries [Pérez '21, '22], [Fuentealba, Henneaux, Salgado-Rebolledo, Salzer '22]
 - Hamiltonian analysis performed in [Sengupta '22].

Simon Pekar (UMONS)

Magnetic Carrollian gravity from the Carroll algebra

2nd Carroll Workshop

Theories of Carrollian gravity

In metric and Hamiltonian form: more than one theory of Carrollian gravity

Theories of Carrollian gravity

In metric and Hamiltonian form: more than one theory of Carrollian gravity

What about gauge theories?

Simon Pekar (UMONS) 🕈 Magnetic Carrollian gravity from the Carroll algebra 🔶 2nd Carroll Workshop

Gauging procedure and the Carrollian case

- "Gauging" an algebra **g** is not a straightforward procedure (see José's talk!)
- Tentative gauging procedure (for the purpose of this talk only):
 - select a Klein pair $(\mathfrak{g}, \mathfrak{h})$ modeling spatially isotropic homogeneous space $M \simeq \mathfrak{g}/\mathfrak{h}$
 - write a gauge connection taking values in \mathfrak{g} , gauge fields in $\mathfrak{g}/\mathfrak{h}$ is a (co)frame
 - identify curvatures of gauge fields in \mathfrak{h} as "curvatures" and in $\mathfrak{g}/\mathfrak{h}$ as "torsions"
 - impose zero torsions, build an action from \mathfrak{h} -gauge-invariant objects (curvature, metric).

Gauging procedure and the Carrollian case

- "Gauging" an algebra **g** is not a straightforward procedure (see José's talk!)
- Tentative gauging procedure (for the purpose of this talk only):
 - select a Klein pair $(\mathfrak{g}, \mathfrak{h})$ modeling spatially isotropic homogeneous space $M \simeq \mathfrak{g}/\mathfrak{h}$
 - write a gauge connection taking values in \mathfrak{g} , gauge fields in $\mathfrak{g}/\mathfrak{h}$ is a (co)frame
 - identify curvatures of gauge fields in \mathfrak{h} as "curvatures" and in $\mathfrak{g}/\mathfrak{h}$ as "torsions"
 - impose zero torsions, build an action from \mathfrak{h} -gauge-invariant objects (curvature, metric).
- Leftover ambiguity, e.g. in Carroll spacetime, the vanishing of the torsion two-form is not enough to entirely fix the connection $\Gamma^{\rho}_{\mu\nu}$
 - $\Gamma^{\rho}_{\mu\nu}$ is "torsion-free" (symmetric) iff the second fundamental form vanishes
 - when this is the case, $\Gamma^{\rho}_{\mu\nu}$ is only defined up to a shift by $n^{\rho} S_{\mu\nu}$ for any symmetric $S_{\mu\nu}$.
- Unsurprisingly, there is no unique proposition for a gauge theory of Carroll transformations.

V

Comparing gauge theories with metric ones

$$S = \int d^3x e \left[C \left(K_{\mu\nu} K_{\rho\sigma} \hat{h}^{\mu\rho} \hat{h}^{\nu\sigma} - \lambda \left(\hat{h}^{\mu\nu} K_{\mu\nu} \right)^2 \right) - \mathcal{V} \right]$$

[Hartong '15]

$$S_{\rm Car} = -\frac{1}{16\pi G_C} \int e\left(2\tau^{\mu} e_a^{\nu} R(G)_{\mu\nu}{}^a + e_a^{\mu} e_b^{\nu} R(J)_{\mu\nu}{}^{ab}\right)$$

Simon Pekar (UMONS)

[Bergshoeff, Gomis, Rollier, Rosseel and ter Veldhuis '17]

- Choosing $\mathfrak{g} = \operatorname{span} \{J_{ab}, C_a, P_a, H\}$ and $\mathfrak{h} = \operatorname{span} \{J_{ab}, C_a\} \to \operatorname{action} \operatorname{of} [\operatorname{Bergshoeff} \operatorname{et} \operatorname{al.}].$ Similar to the Magnetic theory! But is it really the same?
- On the other hand, the action of [Hartong] looks more Electric theory (but it is also more general, depending on the choice of potential \mathscr{V}). It doesn't follow the previous procedure.

The (A)dS Carroll algebra

• Start with the (D + 1)-dimensional (A)dS Carroll algebra, with $\lambda^2 = -\sigma \frac{2\Lambda}{D(D-1)}$

$$\begin{split} & [J_{ab}, J_{cd}] = \delta_{ac} J_{db} + \delta_{bd} J_{ca} - \delta_{ad} J_{cb} - \delta_{bc} J_{da}, & [J_{ab}, P_c] = \delta_{cb} P_a - \delta_{ca} P_b, \\ & [J_{ab}, C_c] = \delta_{cb} C_a - \delta_{ca} C_b, & [C_a, P_b] = \delta_{ab} H, \\ & [H, P_a] = \sigma \lambda^2 C_a, & [P_a, P_b] = \sigma \lambda^2 J_{ab}. \end{split}$$

• Also written in a compact way

Simon Pekar (UMONS)

$$\begin{split} &[J_{AB}, J_{CD}] = \zeta_{AC} J_{DB} + \zeta_{BD} J_{CA} - \zeta_{AD} J_{CB} - \zeta_{BC} J_{DA}, \\ &[J_{AB}, P_C] = \zeta_{CB} P_A - \zeta_{CA} P_B, \\ &[P_A, P_B] = \sigma \lambda^2 J_{AB}, \end{split}$$

using the $c \to 0$ limit of the Minkowski metric $\zeta_{AB} = \begin{pmatrix} 0 & 0 \\ 0 & \delta_{ab} \end{pmatrix}$ degenerate along $n^A = \delta_0^A$.

Magnetic Carrollian gravity from the Carroll algebra \blacklozenge 2nd Carroll Workshop

Carrollian connection

• Connection one-form

$$A_{\mu} = \frac{1}{2} \omega_{\mu}^{\ ab} J_{ab} + e_{\mu}^{\ a} P_{a} + \omega_{\mu}^{\ a} C_{a} + \tau_{\mu} H \,.$$

• Non-degenerate soldering form $E_{\mu}^{A} = (e_{\mu}^{a}, \tau_{\mu}) \leftrightarrow \text{vielbein } E_{A}^{\mu} = (e_{\mu}^{\mu}, n^{\mu})$

$$e_{\mu}^{\ a} e^{\mu}_{\ b} = \delta^{a}_{b}, \quad \tau_{\mu} e^{\mu}_{\ a} = 0, \quad n^{\mu} e_{\mu}^{\ a} = 0, \quad \tau_{\mu} n^{\mu} = 0, \quad e_{\mu}^{\ a} e^{\nu}_{\ b} + \tau_{\mu} n^{\nu} = \delta^{\nu}_{\mu}.$$

• Degenerate metric $g_{\mu\nu} = e_{\mu}^{\ a} e_{\nu}^{\ b} \delta_{ab}$ along the null n^{μ} -direction: $n^{\mu} g_{\mu\nu} = 0$ and non-vanishing density $E = \det(E_{\mu}^{\ A}) \rightarrow (g_{\mu\nu}, n^{\mu}, E)$ "minimal" Carrollian geometry [Henneaux '79].

Carrollian connection

Connection one-form

Simon Pekar (UMONS)

$$A_{\mu} = \frac{1}{2} \omega_{\mu}^{\ ab} J_{ab} + e_{\mu}^{\ a} P_{a} + \omega_{\mu}^{\ a} C_{a} + \tau_{\mu} H .$$

• Non-degenerate soldering form $E_{\mu}^{A} = (e_{\mu}^{a}, \tau_{\mu}) \leftrightarrow \text{vielbein } E_{A}^{\mu} = (e_{\mu}^{\mu}, n^{\mu})$

$$e_{\mu}^{\ a} e^{\mu}_{\ b} = \delta^{a}_{b}, \quad \tau_{\mu} e^{\mu}_{\ a} = 0, \quad n^{\mu} e_{\mu}^{\ a} = 0, \quad \tau_{\mu} n^{\mu} = 0, \quad e_{\mu}^{\ a} e^{\nu}_{\ b} + \tau_{\mu} n^{\nu} = \delta^{\nu}_{\mu}.$$

- Degenerate metric $g_{\mu\nu} = e_{\mu}^{\ a} e_{\nu}^{\ b} \delta_{ab}$ along the null n^{μ} -direction: $n^{\mu} g_{\mu\nu} = 0$ and non-vanishing density $E = \det(E_{\mu}^{\ A}) \rightarrow (g_{\mu\nu}, n^{\mu}, E)$ "minimal" Carrollian geometry [Henneaux '79].
- They are gauge-invariant under *local Carroll rotations and boosts*

$$\delta E = 0, \quad \delta n^{\mu} = 0, \quad \delta g_{\mu\nu} = 0$$

• Extrinsic curvature (second fundamental form) $K_{\mu\nu} = -\frac{1}{2}\mathscr{L}_n g_{\mu\nu}$.

Magnetic Carrollian gravity from the Carroll algebra

Structure equations and action

• Decomposing $F = dA + \frac{1}{2}[A, A]$ on the generators of the Carroll algebra H, P_a, C_a and J_{ab}

$$\begin{split} F_{\mu\nu} &= \partial_{[\mu} \tau_{\nu]} + \omega_{[\mu}{}^{a} e_{\nu]a} &= T_{\mu\nu}, \\ F_{\mu\nu}{}^{a} &= \partial_{[\mu} e_{\nu]}{}^{a} + \omega_{[\mu}{}^{ab} e_{\nu]b} &= T_{\mu\nu}{}^{a}, \\ F_{\mu\nu}{}^{a} &= \partial_{[\mu} \omega_{\nu]}{}^{a} + \omega_{[\mu}{}^{ab} \omega_{\nu]b} + \sigma \lambda^{2} \tau_{[\mu} e_{\nu]}{}^{a} &= R_{\mu\nu}{}^{a} + \sigma \lambda^{2} \tau_{[\mu} e_{\nu]}{}^{a}, \\ F_{\mu\nu}{}^{ab} &= \partial_{[\mu} \omega_{\nu]}{}^{ab} + \omega_{[\mu}{}^{ac} \omega_{\nu]c}{}^{b} + \sigma \lambda^{2} e_{[\mu}{}^{a} e_{\nu]}{}^{b} &= R_{\mu\nu}{}^{ab} + \sigma \lambda^{2} e_{[\mu}{}^{a} e_{\nu]}{}^{b}, \end{split}$$

• Impose $T_{\mu\nu} = 0$ and $T_{\mu\nu}^{\ a} = 0$, corresponding to $\mathfrak{g} = \mathfrak{carr}(1, D)$ and $\mathfrak{h} = \mathfrak{so}(D) \ltimes \mathbb{R}^D$.

Structure equations and action

• Decomposing $F = dA + \frac{1}{2}[A, A]$ on the generators of the Carroll algebra H, P_a, C_a and J_{ab}

- $$\begin{split} F_{\mu\nu} &= \partial_{[\mu} \tau_{\nu]} + \omega_{[\mu}{}^{a} e_{\nu]a} &= T_{\mu\nu}, \\ F_{\mu\nu}{}^{a} &= \partial_{[\mu} e_{\nu]}{}^{a} + \omega_{[\mu}{}^{ab} e_{\nu]b} &= T_{\mu\nu}{}^{a}, \\ F_{\mu\nu}{}^{a} &= \partial_{[\mu} \omega_{\nu]}{}^{a} + \omega_{[\mu}{}^{ab} \omega_{\nu]b} + \sigma \lambda^{2} \tau_{[\mu} e_{\nu]}{}^{a} &= R_{\mu\nu}{}^{a} + \sigma \lambda^{2} \tau_{[\mu} e_{\nu]}{}^{a}, \\ F_{\mu\nu}{}^{ab} &= \partial_{[\mu} \omega_{\nu]}{}^{ab} + \omega_{[\mu}{}^{ac} \omega_{\nu]c}{}^{b} + \sigma \lambda^{2} e_{[\mu}{}^{a} e_{\nu]}{}^{b} &= R_{\mu\nu}{}^{ab} + \sigma \lambda^{2} e_{[\mu}{}^{a} e_{\nu]}{}^{b}. \end{split}$$
- Impose $T_{\mu\nu} = 0$ and $T_{\mu\nu}^{\ a} = 0$, corresponding to $\mathfrak{g} = \mathfrak{carr}(1, D)$ and $\mathfrak{h} = \mathfrak{so}(D) \ltimes \mathbb{R}^D$.
- Obvious candidate action is the $c \rightarrow 0$ limit of Einstein-Cartan [Bergshoeff et al. '17]

Simon Pekar (UMONS)

$$I_{Car}[E_{\mu}^{A}, \omega_{\mu}^{AB}] = \frac{1}{16\pi G_{M}} \int dt \, d^{D}x \, E\left(e^{\mu}_{a} e^{\nu}_{b} R_{\mu\nu}^{ab} + 2 n^{\mu} e^{\nu}_{a} R_{\mu\nu}^{a} - 2\Lambda\right).$$

• Variation with respect to $\omega_{\mu}{}^{a}$ and $\omega_{\mu}{}^{ab}$ gives rise to the torsion constraints $T_{\mu\nu} \approx 0$ and $T_{\mu\nu}{}^{a} \approx 0$.

- Zero torsion \rightarrow all components of the spin-connections are determined *except* $S_{(ab)} \equiv \omega_{(ab)}^{0}^{0}$, which is a Lagrange multiplier for the first-class constraint $K_{ab} = e^{\mu}_{\ a} e^{\nu}_{\ b} K_{\mu\nu} \approx 0$.
- Local Carroll boost-invariance \rightarrow fix "time gauge" $\tau_i = 0$. Remaining degrees of freedom

$$n^{\mu} = \left(\frac{1}{N}, -\frac{N^{i}}{N}\right), \ e^{\mu}_{\ a} = \left(0, \ \mathbf{e}^{i}_{\ a}\right), \ \tau_{\mu} = (N, \ 0), \ e^{\ a}_{\mu} = \left(\mathbf{e}^{\ a}_{i} N^{i}, \ \mathbf{e}^{\ a}_{i}\right),$$

• The action reads

$$I_{Car}[E_{\mu}{}^{A},\omega_{\mu}{}^{AB}] = \frac{1}{16\pi G_{M}} \int dt \, d^{D}x \, \mathbf{e} \left(2 \, \mathbf{e}_{a}^{j} R_{tj}{}^{a} - 2 \, N^{i} \, \mathbf{e}_{a}^{j} R_{ij}{}^{a} + N \, \mathbf{e}_{a}^{i} \, \mathbf{e}_{b}^{j} R_{ij}{}^{ab} - 2 \, N \Lambda\right) \,.$$

- Zero torsion \rightarrow all components of the spin-connections are determined *except* $S_{(ab)} \equiv \omega_{(ab)}^0$, which is a Lagrange multiplier for the first-class constraint $K_{ab} = e^{\mu}_{\ a} e^{\nu}_{\ b} K_{\mu\nu} \approx 0$.
- Local Carroll boost-invariance \rightarrow fix "time gauge" $\tau_i = 0$. Remaining degrees of freedom

$$n^{\mu} = \left(\frac{1}{N}, -\frac{N^{i}}{N}\right), \ e^{\mu}_{a} = \left(0, e^{i}_{a}\right), \ \tau_{\mu} = (N, 0), \ e^{a}_{\mu} = \left(e^{a}_{i}N^{i}, e^{a}_{i}\right),$$

• The action reads

$$I_{Car}[E_{\mu}^{A},\omega_{\mu}^{AB}] = \frac{1}{16\pi G_{M}} \int dt \, d^{D}x \, \mathbf{e} \left(2 \, \mathbf{e}_{a}^{j} R_{tj}^{a} - 2 \, N^{i} \, \mathbf{e}_{a}^{j} R_{ij}^{a} + N \, \mathbf{e}_{a}^{i} \, \mathbf{e}_{b}^{j} R_{ij}^{ab} - 2 \, N \Lambda\right).$$

- kinetic term

- Zero torsion \rightarrow all components of the spin-connections are determined *except* $S_{(ab)} \equiv \omega_{(ab)}^{0}^{0}$, which is a Lagrange multiplier for the first-class constraint $K_{ab} = e^{\mu}_{\ a} e^{\nu}_{\ b} K_{\mu\nu} \approx 0$.
- Local Carroll boost-invariance \rightarrow fix "time gauge" $\tau_i = 0$. Remaining degrees of freedom

$$n^{\mu} = \left(\frac{1}{N}, -\frac{N^{i}}{N}\right), \ e^{\mu}_{\ a} = \left(0, \ \mathbf{e}^{i}_{\ a}\right), \ \tau_{\mu} = (N, \ 0), \ e^{\ a}_{\mu} = \left(\mathbf{e}^{\ a}_{i} N^{i}, \ \mathbf{e}^{\ a}_{i}\right),$$

• The action reads

$$I_{Car}[E_{\mu}^{\ A}, \omega_{\mu}^{\ AB}] = \frac{1}{16\pi G_{M}} \int dt \, d^{D}x \, e^{2e_{a}^{j}R_{tj}^{\ a}} \left[2N^{i}e_{a}^{j}R_{ij}^{\ a}\right] - Ne_{a}^{i}e_{b}^{j}R_{ij}^{\ ab} - 2N\Lambda\right).$$

- kinetic term
- spatial Hamiltonian density

Magnetic Carrollian gravity from the Carroll algebra

2nd Carroll Workshop

- Zero torsion \rightarrow all components of the spin-connections are determined *except* $S_{(ab)} \equiv \omega_{(ab)}^{0}^{0}$, which is a Lagrange multiplier for the first-class constraint $K_{ab} = e^{\mu}_{\ a} e^{\nu}_{\ b} K_{\mu\nu} \approx 0$.
- Local Carroll boost-invariance \rightarrow fix "time gauge" $\tau_i = 0$. Remaining degrees of freedom

$$n^{\mu} = \left(\frac{1}{N}, -\frac{N^{i}}{N}\right), \ e^{\mu}_{a} = \left(0, e^{i}_{a}\right), \ \tau_{\mu} = (N, 0), \ e^{a}_{\mu} = \left(e^{a}_{i}N^{i}, e^{a}_{i}\right),$$

• The action reads

Simon Pekar (UMONS)

$$I_{Car}[E_{\mu}^{A},\omega_{\mu}^{AB}] = \frac{1}{16\pi G_{M}} \int dt \, d^{D}x \, e^{i} 2 \, e^{j}_{a} R_{tj}^{a} \left[2N^{i} e^{j}_{a} R_{ij}^{a} \right] \left[N \, e^{i}_{a} \, e^{j}_{b} R_{ij}^{ab} - 2N\Lambda \right]$$

- kinetic term
- spatial Hamiltonian density
- transverse Hamiltonian density.

Magnetic Carrollian gravity from the Carroll algebra

2nd Carroll Workshop

A

• Eliminating the spatial spin connection ω_i^{jk} , the curvature term takes a familiar form

$$\mathbf{e}^{i}_{a} \, \mathbf{e}^{j}_{b} \, R_{ij}^{ab} = R \; ,$$

where
$$R = h^{ij} \left(\partial_k \gamma^k_{\ ij} - \partial_i \gamma^k_{\ jk} + \gamma^l_{\ ij} \gamma^k_{\ kl} - \gamma^l_{\ ik} \gamma^k_{\ jl} \right)$$
 and $\gamma^k_{\ ij} = \frac{1}{2} h^{kl} \left(\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij} \right).$

• Eliminating the rest of ω , the action only depends on the gauge-invariant metric fields g_{ij} , N^i , N as well as $S_{ij} = \mathbf{e}_i^{\ a} \mathbf{e}_j^{\ b} S_{ab}$ as a Lagrange multiplier

$$\begin{split} I_{Car}[g_{ij},N,N^i,\pi^{ij}] &= \int dt \, d^D x \, \left(\pi^{ij} \dot{g}_{ij} + 2 \, N_i \, \nabla_j \, \pi^{ij} - N \, \mathcal{H}_M\right) \,, \end{split}$$
 where we defined $\pi^{ij} = \frac{\sqrt{g}}{16\pi G_M} \left(S^{ij} - h^{ij}S'\right) \, \text{ and } \, \mathcal{H}_M = -\frac{\sqrt{g}}{16\pi G_M} \left(R - 2 \, \Lambda\right) \,. \end{split}$

• Eliminating the spatial spin connection ω_i^{jk} , the curvature term takes a familiar form

$$\mathbf{e}^{i}_{a} \, \mathbf{e}^{j}_{b} \, R_{ij}^{ab} = R \; ,$$

where
$$R = h^{ij} \left(\partial_k \gamma^k_{\ ij} - \partial_i \gamma^k_{\ jk} + \gamma^l_{\ ij} \gamma^k_{\ kl} - \gamma^l_{\ ik} \gamma^k_{\ jl} \right)$$
 and $\gamma^k_{\ ij} = \frac{1}{2} h^{kl} \left(\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij} \right).$

• Eliminating the rest of ω , the action only depends on the gauge-invariant metric fields g_{ij} , N^i , N as well as $S_{ij} = \mathbf{e}_i^{\ a} \mathbf{e}_j^{\ b} S_{ab}$ as a Lagrange multiplier

$$\begin{split} I_{Car}[g_{ij},N,N^i,\pi^{ij}] &= \int dt \, d^D x \, \left(\pi^{ij} \dot{g}_{ij} + 2 \, N_i \, \nabla_j \, \pi^{ij} - N \, \mathcal{H}_M\right), \\ \text{where we defined } \pi^{ij} &= \frac{\sqrt{g}}{16\pi G_M} \left(S^{ij} - h^{ij} S'\right) \text{ and } \mathcal{H}_M = -\frac{\sqrt{g}}{16\pi G_M} \left(R - 2 \,\Lambda\right). \end{split}$$

• It is an action which is 1st order in time derivative and 2nd order in spatial derivatives ... and it is exactly the action of the Magnetic theory in Hamiltonian form!

Simon Pekar (UMONS)

Carrollian rewriting of Einstein-Cartan

• One can play a similar game, starting from the Einstein-Cartan action gauging the (A)dS algebra

$$I_{EC} = \frac{c^3}{16\pi G_N} \int dt \, d^D x \, \mathcal{E} \left(\mathcal{E}^{\mu}_{\ A} \, \mathcal{E}^{\nu}_{\ B} \, \mathcal{R}_{\mu\nu}^{\ AB} - 2 \, \Lambda \right) \, . \label{eq:IEC}$$

- We use $c = \varepsilon \hat{c}$ and set the geometrical units $\hat{c} = 1$ so that the Carrollian limit is $\varepsilon \to 0$.
- Parametrising the vielbein as in [Pilati '78], [Castellani, van Nieuwenhuizen, Pilati '82]

$$\mathscr{E}^{\mu}_{A} = \left(-\frac{1}{\varepsilon N}n_{A}, \frac{N^{i}}{\varepsilon N}n_{A} + e^{i}_{A}\right), \quad \mathscr{E}^{A}_{\mu} = \left(e^{A}_{i}N^{i} + \varepsilon Nn^{A}, e^{A}_{i}\right),$$

reproduces the standard metric of [Arnowitt, Deser, Misner '59]

$$g_{\mu\nu} = \begin{pmatrix} N^i N_i - \varepsilon^2 N^2 & N_i \\ N_i & g_{ij} \end{pmatrix}.$$

2nd Carroll Workshop

Partial solving of the torsion constraints

• Full torsion constraint allows to eliminate completely the spin connection Ω_{μ}^{AB}

$$\mathcal{T}_{\mu\nu}{}^{A} = \partial_{[\mu} \mathscr{C}_{\nu]}{}^{A} + \Omega_{[\mu}{}^{AB} \mathscr{C}_{\nu]}{}^{C} \eta_{BC} \approx 0 .$$

• One can choose instead to eliminate **almost all** components of the spin connection

$$\mathcal{T}_{ij\perp} \approx 0, \quad \mathcal{T}_{ijk} \approx 0, \quad \mathcal{T}_{ti\perp} \approx 0, \quad \mathcal{T}_{t[ij]} \approx 0. \qquad (X_{\perp} \equiv X^A n_A)$$

Can be done consistently by varying with respect to $\left\{ \Omega_{[ij]\perp}, \Omega_{ij}^{k}, \Omega_{ti\perp}, \Omega_{tij} \right\}$.

• Remaining components $\mathcal{T}_{t(ij)}$ are singular when $\varepsilon \to 0$.

Simon Pekar (UMONS)

• Corresponding components of the spin connection $\Omega_{(ij)\perp}$ cannot be solved in the Carrollian limit and are related to the conjugate momenta to the metric.

Magnetic action from the limit

• Choosing the time gauge once again so that $n^A = \delta_0^A$ and performing a Legendre transform

$$p_A^i \equiv \frac{\delta \mathscr{L}_{EC}}{\delta \dot{e}_i^A} \quad \text{and defining} \quad \pi^{ij} \equiv \frac{1}{2} p_A^{(i)} e^{jA} = -\frac{\sqrt{g}}{16\pi G_M} \left(\Omega_{k}^{(ij)} - h^{ij} \Omega_{k}^{k} \right) \,,$$

we recover directly the Hamiltonian formulation of general relativity

Simon Pekar (UMONS)

$$I_{ADM}[g_{ij}, N, N^i, \pi^{ij}] = \int dt \, d^D x \, \left(\pi^{ij} \dot{g}_{ij} + 2 N_i \nabla_j \pi^{ij} - N \mathcal{H}_{\perp}\right),$$

with
$$\mathscr{H}_{\perp} = \mathscr{H}_{M} + \varepsilon^{2} \left[\frac{16\pi G_{M}}{\sqrt{g}} \left(g_{il} g_{jk} - \frac{1}{D-1} g_{ij} g_{kl} \right) \pi^{ij} \pi^{kl} \right]$$

• Magnetic theory is obtained by sending $\varepsilon \to 0$ (Electric potential term subleading in ε) provided one rescales Newton's constant $G_N = \varepsilon^4 G_M$.

A

Conclusion and outlook

• *Relativistic* theory of GR is the same in second-order and Hamiltonian formulations. The $(\mathfrak{g} = \mathfrak{i}\mathfrak{so}(1, D), \mathfrak{h} = \mathfrak{so}(1, D))$ Einstein-Cartan action is also equivalent.

2nd Carroll Workshop

Conclusion and outlook

• *Relativistic* theory of GR is the same in second-order and Hamiltonian formulations. The $(\mathfrak{g} = \mathfrak{i}\mathfrak{so}(1, D), \mathfrak{h} = \mathfrak{so}(1, D))$ Einstein-Cartan action is also equivalent.

- This is not true in Carroll gravity: the theory emerging from the Carrollian limit is Electric in second-order formulation, but Magnetic in Hamiltonian formulation.
- The $(\mathfrak{g} = \mathfrak{carr}(1, D), \mathfrak{h} = \mathfrak{so}(D) \ltimes \mathbb{R}^D)$ first-order action reproduces the Magnetic theory.
- *Future work*: coupling of fermionic fields to Magnetic gravity in first-order formulation.

Simon Pekar (UMONS)

Magnetic Carrollian gravity from the Carroll algebra

2nd Carroll Workshop

Looking for the Electric theory

• A gauge theory of Electric gravity is still elusive. Didn't emerge in the classification of gauge theories based on the Carroll algebra [Figueroa-O'Farrill, Have, Prohazka, Salzer '22].

Looking for the Electric theory

- A gauge theory of Electric gravity is still elusive. Didn't emerge in the classification of gauge theories based on the Carroll algebra [Figueroa-O'Farrill, Have, Prohazka, Salzer '22].
- Electric potential subleading in first-order and Hamiltonian forms in $c \rightarrow 0$. Magnetic potential subleading in second-order form in $c \rightarrow 0$ [Hansen, Obers, Oling, Søgaard '22].

	Second-order	Hamiltonian	First-order
Leading	Electric theory	Magnetic theory	Magnetic theory
Next-to-leading	Magnetic potential	Electric potential	Electric potential

Looking for the Electric theory

- A gauge theory of Electric gravity is still elusive. Didn't emerge in the classification of gauge theories based on the Carroll algebra [Figueroa-O'Farrill, Have, Prohazka, Salzer '22].
- Electric potential subleading in first-order and Hamiltonian forms in *c* → 0.
 Magnetic potential subleading in second-order form in *c* → 0 [Hansen, Obers, Oling, Søgaard '22].

	Second-order	Hamiltonian	First-order
Leading	Electric theory	Magnetic theory	Magnetic theory
Next-to-leading	Magnetic potential	Electric potential	Electric potential

• Final thoughts:

Simon Pekar (UMONS)

- in first-order formulation, one can always reverse the hierarchy by rescaling fields, however the action *is not invariant under local Carroll boosts* in the limit
- in second-order formulation, the *full* Magnetic theory can be recovered using an auxiliary field, leading to the same hierarchy as in first-order.
- *Question*: can we apply this trick to get a first-order formulation of Electric gravity?

Magnetic Carrollian gravity from the Carroll algebra

2nd Carroll Workshop

Carrollian wonderland

Magnetic Carrollian gravity from the Carroll algebra

2nd Carroll Workshop