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M. Henneaux “Carroll-invariant "eld theories” @ Carroll Workshop, Vienna

Carrollian theories of gravity (Hamiltonian)
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N. Obers “Carroll symmetry in "eld theory and gravity” @ Carroll Workshop, Vienna 
see also G. Oling

Carrollian expansion of gravity (metric)
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 Electric and Magnetic theories

• The  (“zero-signature” or “strong coupling”) limit of Einstein relativity was first written in 
Hamiltonian form [Isham ’76], [Teitelboim ’78, ’82] then in Lagrangian form [Henneaux ’79].

c → 0

• At least two ways to define a Carrollian limit: Electric and Magnetic 
Recently, the previous theory was realized as an Electric contraction of GR in Hamiltonian form, 
and a new Magnetic contraction was constructed [Henneaux, Salgado-Rebolledo ’21].
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• The  (“zero-signature” or “strong coupling”) limit of Einstein relativity was first written in 
Hamiltonian form [Isham ’76], [Teitelboim ’78, ’82] then in Lagrangian form [Henneaux ’79].

c → 0

• At least two ways to define a Carrollian limit: Electric and Magnetic 
Recently, the previous theory was realized as an Electric contraction of GR in Hamiltonian form, 
and a new Magnetic contraction was constructed [Henneaux, Salgado-Rebolledo ’21].

• Electric and Magnetic theories are qualitatively different:

- in the Electric case,  can be eliminated and becomes the extrinsic curvature but in the 
Magnetic case, it is a Lagrange multiplier and cannot be eliminated

- different space of solutions [Hansen, Obers, Oling, Søgaard ’22] and asymptotic symmetries 
[Pérez ’21, ’22], [Fuentealba, Henneaux, Salgado-Rebolledo, Salzer ’22] 

- Hamiltonian analysis performed in [Sengupta ’22].

πij
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 Theories of Carrollian gravity

In metric and Hamiltonian form: more than one theory of Carrollian gravity
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 Theories of Carrollian gravity

In metric and Hamiltonian form: more than one theory of Carrollian gravity

What about gauge theories?
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 Gauging procedure and the Carrollian case

• “Gauging” an algebra  is not a straightforward procedure (see José’s talk!)"

• Tentative gauging procedure (for the purpose of this talk only):

- select a Klein pair  modeling spatially isotropic homogeneous space 

- write a gauge connection taking values in , gauge fields in  is a (co)frame

- identify curvatures of gauge fields in  as “curvatures” and in  as “torsions”

- impose zero torsions, build an action from -gauge-invariant objects (curvature, metric).

(", #) M ≃ "/#

" "/#

# "/#

#
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• Leftover ambiguity, e.g. in Carroll spacetime, the vanishing of the torsion two-form is not 
enough to entirely fix the connection 

-  is “torsion-free” (symmetric) iff the second fundamental form vanishes

- when this is the case,  is only defined up to a shift by  for any symmetric  .

Γρ
μν

Γρ
μν

Γρ
μν nρ Sμν Sμν

• Unsurprisingly, there is no unique proposition for a gauge theory of Carroll transformations.
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 Comparing gauge theories with metric ones

• Choosing  and  → action of [Bergshoe# et al.]. 
Similar to the Magnetic theory! But is it really the same?

• On the other hand, the action of [Hartong] looks more Electric theory (but it is also more general, 
depending on the choice of potential ). It doesn’t follow the previous procedure.

" = span {Jab , Ca , Pa , H} # = span {Jab , Ca}

&

[Bergshoe#, Gomis, Rollier, Rosseel and ter Veldhuis ’17]

[Hartong ’15]
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 The (A)dS Carroll algebra

• Start with the -dimensional (A)dS Carroll algebra, with 

 

• Also written in a compact way

using the  limit of the Minkowski metric  degenerate along  .

(D + 1) λ2 = − σ
2Λ

D(D − 1)

[Jab , Jcd] = δac Jdb + δbd Jca − δad Jcb − δbc Jda , [Jab , Pc] = δcb Pa − δca Pb ,
[Jab , Cc] = δcb Ca − δca Cb , [Ca , Pb] = δab H ,
[H , Pa] = σλ2 Ca , [Pa , Pb] = σλ2 Jab .

[JAB , JCD] = ζAC JDB + ζBD JCA − ζAD JCB − ζBC JDA ,
[JAB , PC] = ζCB PA − ζCA PB ,
[PA , PB] = σλ2 JAB ,

c → 0 ζAB = (0 0
0 δab) nA = δA

0
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 Carrollian connection

• Connection one-form

 .Aμ = 1
2 ωμ

ab Jab + eμ
a Pa + ωμ

a Ca + τμ H

• Non-degenerate soldering form   ↔  vielbein Eμ
A = (eμ

a , τμ) Eμ
A = (eμ

a , nμ)
 .eμ

a eμ
b = δa

b , τμ eμ
a = 0 , nμ eμ

a = 0 , τμ nμ = 0 , eμ
a eν

b + τμ nν = δν
μ

• Degenerate metric  along the null -direction:  and non-vanishing 
density   →   “minimal” Carrollian geometry [Henneaux ’79].

gμν = eμ
a eν

b δab nμ nμ gμν = 0
E = det(Eμ

A) (gμν , nμ , E)
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2 ωμ

ab Jab + eμ
a Pa + ωμ

a Ca + τμ H

• Non-degenerate soldering form   ↔  vielbein Eμ
A = (eμ

a , τμ) Eμ
A = (eμ

a , nμ)
 .eμ

a eμ
b = δa

b , τμ eμ
a = 0 , nμ eμ

a = 0 , τμ nμ = 0 , eμ
a eν

b + τμ nν = δν
μ

• Degenerate metric  along the null -direction:  and non-vanishing 
density   →   “minimal” Carrollian geometry [Henneaux ’79].

gμν = eμ
a eν

b δab nμ nμ gμν = 0
E = det(Eμ

A) (gμν , nμ , E)

• They are gauge-invariant under local Carroll rotations and boosts

 .δ E = 0 , δ nμ = 0 , δ gμν = 0

• Extrinsic curvature (second fundamental form)     .Kμν = − 1
2 ℒn gμν
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 Structure equations and action

• Decomposing  on the generators of the Carroll algebra , ,  and 

 

F = d A + 1
2 [A, A] H Pa Ca Jab

Fμν = ∂[μ τν] + ω[μ
a eν]a = Tμν ,

Fμν
a = ∂[μ eν]

a + ω[μ
ab eν]b = Tμν

a ,
Fμν

a = ∂[μ ων]
a + ω[μ

ab ων]b + σ λ2 τ[μ eν]
a = Rμν

a + σ λ2 τ[μ eν]
a ,

Fμν
ab = ∂[μ ων]

ab + ω[μ
ac ων]c

b + σ λ2 e[μ
a eν]

b = Rμν
ab + σ λ2 e[μ

a eν]
b .

• Impose  and , corresponding to  and  .Tμν = 0 Tμν
a = 0 " = +,--(1, D) # = ./(D) ⋉ ℝD
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ab + ω[μ
ac ων]c

b + σ λ2 e[μ
a eν]

b = Rμν
ab + σ λ2 e[μ

a eν]
b .

• Impose  and , corresponding to  and  .Tμν = 0 Tμν
a = 0 " = +,--(1, D) # = ./(D) ⋉ ℝD

• Obvious candidate action is the  limit of Einstein-Cartan [Bergshoe# et al. ’17]c → 0

 .ICar [Eμ
A, ωμ

AB] = 1
16πGM ∫ dt dDx E (eμ

a eν
b Rμν

ab + 2 nμ eν
a Rμν

a − 2 Λ)

• Variation with respect to  and  gives rise to the torsion constraints  and  .ωμ
a ωμ

ab Tμν ≈ 0 Tμν
a ≈ 0
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 From first-order to Hamiltonian

• Zero torsion → all components of the spin-connections are determined except , 
which is a Lagrange multiplier for the first-class constraint  .

S(ab) ≡ ω(ab)
0

Kab = eμ
a eν

b Kμν ≈ 0

• Local Carroll boost-invariance → fix “time gauge”  .  Remaining degrees of freedomτi = 0

 ,    ,    ,    ,nμ = ( 1
N

, − Ni

N ) eμ
a = (0 , 4i

a) τμ = (N , 0) eμ
a = (4i

a Ni , 4i
a)

• The action reads

 .ICar [Eμ
A, ωμ

AB] = 1
16πGM ∫ dt dDx 4 (2 4 j

a Rtj
a − 2 Ni 4 j

a Rij
a + N 4i

a 4 j
b Rij

ab − 2 N Λ)
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 ,    ,    ,    ,nμ = ( 1
N

, − Ni

N ) eμ
a = (0 , 4i

a) τμ = (N , 0) eμ
a = (4i

a Ni , 4i
a)

• The action reads

 .ICar [Eμ
A, ωμ

AB] = 1
16πGM ∫ dt dDx 4 (2 4 j

a Rtj
a − 2 Ni 4 j

a Rij
a + N 4i

a 4 j
b Rij

ab − 2 N Λ)
- kinetic term
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 From first-order to Hamiltonian

• Zero torsion → all components of the spin-connections are determined except , 
which is a Lagrange multiplier for the first-class constraint  .

S(ab) ≡ ω(ab)
0

Kab = eμ
a eν

b Kμν ≈ 0

• Local Carroll boost-invariance → fix “time gauge”  .  Remaining degrees of freedomτi = 0

 ,    ,    ,    ,nμ = ( 1
N

, − Ni

N ) eμ
a = (0 , 4i

a) τμ = (N , 0) eμ
a = (4i

a Ni , 4i
a)

• The action reads

 .ICar [Eμ
A, ωμ

AB] = 1
16πGM ∫ dt dDx 4 (2 4 j

a Rtj
a − 2 Ni 4 j

a Rij
a + N 4i

a 4 j
b Rij

ab − 2 N Λ)
- kinetic term
- spatial Hamiltonian density
- transverse Hamiltonian density.
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 From first-order to Hamiltonian

• Eliminating the spatial spin connection , the curvature term takes a familiar formωi
jk

 ,4i
a 4 j

b Rij
ab = R

where        and     .R = hij (∂k γk
ij − ∂i γk

jk + γl
ij γk

kl − γl
ik γk

jl) γk
ij = 1

2 hkl (∂i gjl + ∂j gil − ∂l gij)

• Eliminating the rest of , the action only depends on the gauge-invariant metric fields  ,  ,  
as well as  as a Lagrange multiplier

ω gij Ni N
Sij = 4i

a 4j
b Sab

 ,ICar [gij, N, Ni, πij] = ∫ dt dDx (πij ·gij + 2 Ni ∇j πij − N ℋM)
where we defined   and   .πij =

g
16πGM

(Sij − hijS′ ) ℋM = −
g

16πGM
(R − 2 Λ)

Simon Pekar (UMONS)        ♥        Magnetic Carrollian gravity from the Carroll algebra        ♠        2nd Carroll Workshop 



 
 
 From first-order to Hamiltonian

• Eliminating the spatial spin connection , the curvature term takes a familiar formωi
jk

 ,4i
a 4 j

b Rij
ab = R

where        and     .R = hij (∂k γk
ij − ∂i γk

jk + γl
ij γk

kl − γl
ik γk

jl) γk
ij = 1

2 hkl (∂i gjl + ∂j gil − ∂l gij)

• Eliminating the rest of , the action only depends on the gauge-invariant metric fields  ,  ,  
as well as  as a Lagrange multiplier

ω gij Ni N
Sij = 4i

a 4j
b Sab

 ,ICar [gij, N, Ni, πij] = ∫ dt dDx (πij ·gij + 2 Ni ∇j πij − N ℋM)
where we defined   and   .πij =

g
16πGM

(Sij − hijS′ ) ℋM = −
g

16πGM
(R − 2 Λ)

• It is an action which is 1st order in time derivative and 2nd order in spatial derivatives 
… and it is exactly the action of the Magnetic theory in Hamiltonian form!
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 Carrollian rewriting of Einstein-Cartan

• One can play a similar game, starting from the Einstein-Cartan action gauging the (A)dS algebra

 .

• We use  and set the geometrical units  so that the Carrollian limit is  .

• Parametrising the vielbein as in [Pilati ’78], [Castellani, van Nieuwenhuizen, Pilati ’82] 

 ,     ,

reproduces the standard metric of [Arnowitt, Deser, Misner ’59] 

 .

IEC = c3

16πGN ∫ dt dDx ℰ (ℰμ
A ℰν

B ℛμν
AB − 2 Λ)

c = ε ̂c ̂c = 1 ε → 0

ℰμ
A = (− 1

εN
nA , Ni

εN
nA + ei

A) ℰμ
A = (ei

A Ni + εN nA , ei
A)

gμν = (NiNi − ε2N2 Ni
Ni gij)

Simon Pekar (UMONS)        ♥        Magnetic Carrollian gravity from the Carroll algebra        ♠        2nd Carroll Workshop 



 
 
 Partial solving of the torsion constraints

• Full torsion constraint allows to eliminate completely the spin connection 

 .

• One can choose instead to eliminate almost all components of the spin connection

 .           ( )

Can be done consistently by varying with respect to  .

• Remaining components  are singular when  .

• Corresponding components of the spin connection  cannot be solved in the Carrollian limit 
and are related to the conjugate momenta to the metric.

Ωμ
AB

<μν
A = ∂[μ ℰν]

A + Ω[μ
AB ℰν]

C ηBC ≈ 0

<ij⊥ ≈ 0 , <ijk ≈ 0 , <ti⊥ ≈ 0 , <t[ij] ≈ 0 X⊥ ≡ XA nA

{Ω[ij]⊥ , Ωij
k , Ωti⊥ , Ωtij}

<t(ij) ε → 0

Ω(ij)⊥
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 Magnetic action from the limit

• Choosing the time gauge once again so that  and performing a Legendre transform

    and defining     ,

we recover directly the Hamiltonian formulation of general relativity

 ,

with     .

• Magnetic theory is obtained by sending  (Electric potential term subleading in ) provided 
one rescales Newton’s constant  .

nA = δA
0

pi
A ≡ δ ℒEC

δ ·eiA πij ≡ 1
2 p(i

A ej)A = −
g

16πGM
(Ω(ij)

⊥ − hij Ωk
k
⊥)

IADM [gij, N, Ni, πij] = ∫ dt dDx (πij ·gij + 2 Ni ∇j πij − N ℋ⊥)

ℋ⊥ = ℋM + ε2 [ 16πGM

g (gil gjk − 1
D − 1 gij gkl) πij πkl]

ε → 0 ε
GN = ε4 GM
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 Conclusion and outlook

• Relativistic theory of GR is the same in second-order and Hamiltonian formulations. 
The  Einstein-Cartan action is also equivalent.(" = >./(1, D) , # = ./(1, D))

Hamiltonian (1st order in )∂t

second-order (metric) first-order (gauge)
Solving of torsion constraint

Partial solving of torsionLege
nd

re 
tra

nsf
orm
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 Conclusion and outlook

• Relativistic theory of GR is the same in second-order and Hamiltonian formulations. 
The  Einstein-Cartan action is also equivalent.(" = >./(1, D) , # = ./(1, D))

• This is not true in Carroll gravity: the theory emerging from the Carrollian limit is Electric in 
second-order formulation, but Magnetic in Hamiltonian formulation.

• The  first-order action reproduces the Magnetic theory.(" = +,--(1, D) , # = ./(D) ⋉ ℝD)

• Future work: coupling of fermionic fields to Magnetic gravity in first-order formulation.

Hamiltonian (1st order in )∂t

second-order (metric) first-order (gauge)
Solving of torsion constraint

Partial solving of torsionLege
nd

re 
tra

nsf
orm
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 Looking for the Electric theory

• A gauge theory of Electric gravity is still elusive. Didn’t emerge in the classification of gauge 
theories based on the Carroll algebra [Figueroa-O’Farrill, Have, Prohazka, Salzer ’22].
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 Looking for the Electric theory

• A gauge theory of Electric gravity is still elusive. Didn’t emerge in the classification of gauge 
theories based on the Carroll algebra [Figueroa-O’Farrill, Have, Prohazka, Salzer ’22].

• Electric potential subleading in first-order and Hamiltonian forms in . 
Magnetic potential subleading in second-order form in  [Hansen, Obers, Oling, Søgaard ’22].

c → 0
c → 0

Second-order Hamiltonian First-order

Leading Electric theory Magnetic theory Magnetic theory

Next-to-leading Magnetic potential Electric potential Electric potential
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 Looking for the Electric theory

• A gauge theory of Electric gravity is still elusive. Didn’t emerge in the classification of gauge 
theories based on the Carroll algebra [Figueroa-O’Farrill, Have, Prohazka, Salzer ’22].

• Electric potential subleading in first-order and Hamiltonian forms in . 
Magnetic potential subleading in second-order form in  [Hansen, Obers, Oling, Søgaard ’22].

c → 0
c → 0

• Final thoughts:

- in first-order formulation, one can always reverse the hierarchy by rescaling fields, 
however the action is not invariant under local Carroll boosts in the limit

- in second-order formulation, the full Magnetic theory can be recovered using an auxiliary 
field, leading to the same hierarchy as in first-order.

- Question: can we apply this trick to get a first-order formulation of Electric gravity?

Second-order Hamiltonian First-order

Leading Electric theory Magnetic theory Magnetic theory

Next-to-leading Magnetic potential Electric potential Electric potential
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 Carrollian wonderland
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