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General Carrollian geometries (Levy-Leblond, 1965)

A triple (Nm+1, h,Z ) is a Carrollian geometry when

1 h is a symmetric (0, 2)-tensor on the manifold Nm+1 which is positive
but non-definite and whose radical

Rad h = {v ∈ TN : h(v ,−) = 0}
defines a 1-dimensional distribution on Nm+1.

2 Z ∈ Γ(Rad h) ⊂ X(N) spans the radical distribution at every point.

Aut(Nm+1, h,Z ) may be infinite dimensional.
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Examples I

Lightlike hypersurfaces of time-oriented Lorentzian manifolds.

A General Relativity space-time (M̃, g̃) is called asymtotically simple,
if there is another Lorentzian manifold (M, g) such that

1 M̃ is an open subset of M with smooth boundary ∂M̃ = I.
2 There is Ω ∈ C∞(M) such that g = Ω2g̃ on M̃ and Ω |I= 0 but

dΩ 6= 0 on I.
3 Every inextendible lightlike geodesic of (M̃, g̃) has a future/past

endpoint on I.
Then, (

I, g |I ,Z := (dΩ)]
)

is a Carroll geometry.
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Examples II. The bundle of scales of a conformal Riemannian
manifold (M , c)

1

π : L = {gx : g ∈ c, x ∈ M} → M

is a principal fiber bundle with structure group R+ ( gx · t := t2gx).

2

h(ξ, η) = gx(Tgxπ · ξ,Tgxπ · η), ξ, η ∈ TgxL,
3

Zgx =
d

dt
|t=0 (e2tgx).

(L, h,Z ) is a Carrollian geometry.
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Remarks I

h induces a bundle-like Riemannian metric h̄ on the quotient vector fiber
bundle

E := TN/Radh→ N.

Thus, we can define the endomorphism AZ on the fiber vector bundle E by

LZ h̄([u], [v ]) = 2h̄(AZ [u], [v ]), u, v ∈ TyN.

(Nm+1, h,Z ) is generic when AZ is an isomorphism on E .
The space orbit Nm+1/Z is typically a manifold Mm (the absolute space)

π : Nm+1 → Mm := Nm+1/Z .

The vector field Z can be assumed to be complete and then (suppose that
integral curves of Z are lines)

Nm+1 × R+ → Nm+1, (y , t) 7→ y · t = FlZlog t(y)

and π : N → M becomes an R+-principal fiber bundle.

Francisco José Palomo 7 / 23
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Remarks II

Carroll geometries as generalized bundles of scales

Assume π : Nm+1 → Mm.(
TyN/Rad(hy )︸ ︷︷ ︸

Ey

, hy
)

Tyπ−→
(
Tπ(y)M, c(y)

)
=⇒ c(y) ∈ Sym+(Tπ(y)M)

N
c−→ Sym+(TM)

π ↘ ↙
M

Every section of π gives a Riemannian metric on M.

LZh = 0 =⇒ h induces a Riemaniann metric on M.

Carrollian geometry (Y. Herfray)

LZh = 2ρh =⇒ h induces a Riemaniann conformal geometry on M.

Conformal Carrollian geometry (Y. Herfray)
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Our model space

Let Lm+2 be the Minkowski space-time with basis (`, e1, · · · , em, η) such that the
Lorentzian metric 〈 , 〉 corresponding to the matrix(

0 0 1
0 Im 0
1 0 0

)
.

The lightlike cone(
Cm+1 :=

{
v ∈ Lm+2 : 〈v , v〉 = 0, v 6= 0

}
, 〈 , 〉,Z

)
is a Carrollian geometry where Z ∈ X(Cm+1) is the restriction of the
position vector field.

Our model for Carrollian geometries(
Nm+1 := Cm+1/Z2, h, Z

)
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Nm+1 as homogeneous space

The action of Möbius group : G = PO(m + 1, 1) := O(m + 1, 1)/{±Id}

G ×Nm+1 → Nm+1, [σ] · [v ] := [σ · v ]

is also transitive, therefore

Nm+1 = G/H,

where H ⊂ G is the isotropy group of [`] = {±`} ∈ Nm+1 and

G = Aut(Nm+1, h,Z).
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The absolute space for Nm+1

π : Nm+1 → Nm+1/Z ' Sm, the space of lightlike lines in Nm+1.

Sm = G/P is the model for conformal geometry, Conf(Sm) = G .

P ⊂ G is the isotropy group of π[`] ∈ Sm (Poincaré conformal group)

P =


 λ −λw tg −λ2 〈w ,w〉

0 g w
0 0 λ−1

 : λ ∈ R \ {0},w ∈ Rm, g ∈ O(m)


The isotropy group of [`] ∈ Nm+1 is

H = {σ ∈ P : λ = ±1} ∼= Rm o O(m) = Euc(Rm)

G/H = Nm+1 π−→ Sm = G/P
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Nm+1 = G/H at Lie algebras level

g =


 a Z 0

X A −Z t

0 −X t −a

 : a ∈ R,X ∈ Rm,Z ∈ (Rm)∗,A ∈ so(m)


g = g−1 ⊕ g0 ⊕ g1 is a Z-grading, that is, [gi , gj ] ⊂ gi+j

g = g−1 ⊕ z(g0)︸ ︷︷ ︸
m

⊕ [g0, g0]⊕ g1︸ ︷︷ ︸
h

and h = [g0, g0]︸ ︷︷ ︸
so(m)

⊕g1 ≤ p Carrollian model

g = m⊕ h is not a reductive decomposition!!

In fact, the Lie algebra h does not admit any reductive complement in g.

g = g−1 ⊕ g0 ⊕ g1 and p = g0 ⊕ g1 conformal model
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2. Cartan connections
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Let p : P → M be an H-principal fiber bundle, for every X ∈ h, the
fundamental vector field ζX ∈ X(P) is ζX (u) := d

dt |t=0 (u · exp(tX )).

Cartan geometry of type (G ,H) on M (Charles Ehresmann, 1950)

An H-principal fiber bundle p : P → M.

A one-form ω ∈ Ω1(P, g), called the Cartan connection such that

1 ω(u)(ζX (u)) = X for each X ∈ h.

2 (rh)∗ω = Ad(h−1) ◦ ω for all h ∈ H.

3 ω(u) : TuP → g is a linear isomorphism for all u ∈ P.

dim(P) = dim(G ), dim(M) = dim(G/H)

The curvature form

K ∈ Ω2(P, g), K = dω + 1
2 [ω, ω].
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(G → M ∼= G/H, ωG ) is called the homogeneous model for Cartan
geometries of type (G ,H) and has zero curvature.
(Maurer-Cartan equation dωG + 1

2 [ωG , ωG ] = 0.)

The converse is locally true. The curvature measures how far is our
Cartan geometry from the homogeneous model.

Aut(P, ω) =
{

(F , f ) : automorphism of p : P → M with F ∗ω = ω
}

P F−−−−→ P

p

y yp

M −−−−→
f

M

{
F (u · h) = F (u) · h, u ∈ P , h ∈ H.

F is a diffeomorphism.

Aut(P, ω) is a Lie group and dimAut(P, ω) ≤ dimG .

Francisco José Palomo 15 / 23



Carroll geometries
Cartan connections

Cartan geometries with model the lightlike cone

3. Cartan geometries
with model the lightlike cone

What kind of geometry structure does correspond with Nm+1 as (G ,H)?

Francisco José Palomo 16 / 23



Carroll geometries
Cartan connections

Cartan geometries with model the lightlike cone

Theorem I (P*, 21)

Every Cartan geometry (p : G → Nm+1, ω) of type Nm+1 = G/H
determines a Carrollian geometry (Nm+1, hω,Zω).

Moreover, G '
{

(Zωx , e1, · · · , em) ∈ P1Nm+1 : hω(ei , ej) = δij

}
.

(G gives a G -structure on Nm+1 with structure group H.)

H := ω−1(g−1 ⊕ z(g0)) ⊂ TG
defines general connection (horizontal distribution) on p : G → Nm+1.

Theorem II (P*, 21)

Aut(G, ω) =
{
f ∈ Aut(Nm+1, hω,Zω) : F = Tf preserves the distribution H

}
.

That is, TuF · H(u) = H(F (u)).
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If we write the elements h ∈ H as follows 1 −w tg − 1
2 〈w ,w〉

0 g w
0 0 1

 =

 1 −w t − 1
2 〈w ,w〉

0 Im w
0 0 1


︸ ︷︷ ︸

σ(w) translation

 1 0 0
0 g 0
0 0 1


︸ ︷︷ ︸
σ(g) rotation

Theorem III (P*, 21)

A Cartan geometry (p : G → Nm+1, ω) of type Nm+1 = G/H is equivalent to

1 a Carrollian geometry (Nm+1, hω,Zω) and

2 a general connection (' horizontal distribution) H ⊂ TG such that

1 Tur
σ(g) · H(u) = H(u · σ(g)) and

2 ω(u · σ(w))
(
Tur

σ(w) · H(u)
)

= Ad(σ(w)−1)(m),

for all u ∈ P, σ(g), σ(w) ∈ H.
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An application to Lightlike hypersurfaces

Let (Mm+2, g) be a timelike-oriented Lorentzian manifold with

O+(Mm+2) = {(`+, e1, · · · , em, `−) ∈ P1M}

the O+(m + 1, 1)-principal fiber bundle of g -admissible frames and

ψ : (Nm+1, h)→ (Mm+2, g) be a lightlike hypersurface.

(Nm+1, h,Z ) is a Carroll geometry and Ψ := Tψ : G → O+(Mm+2).

G Ψ−−−−→ O+(Mm+2)

p

y yπ
Nm+1 −−−−→

ψ
Mm+2
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Theorem IV (P*, 21)

Assume γ ∈ Ω1(O+(M), g) is the Levi-Civita (principal) connection of (Mm+2, g)
with corresponding linear connection ∇g . The following assertions are equivalent

1 ω = Ψ∗(γ) is a Cartan connection on Nm+1 with model Nm+1 = G/H.

2

TN/Rad h
∇gZ−→ TN/Rad h

π ↘ ↙
N

, [v ] 7→ [∇g
vZ ]

is an N-isomorphism of vector fiber bundles and the Z -expansion function λ
( ∇g

ZZ = λZ on N ) is a non-vanishing function.

Francisco José Palomo 20 / 23



Carroll geometries
Cartan connections

Cartan geometries with model the lightlike cone

Examples: Warped product space-times with two dimensional base

(B, gB) a Lorentz surface, (Fm, gB) a Riemann manifold and f ∈ C∞(B).

(Mm+2, g) = (B ×f F , g := gB + f 2gf )

Assume Z ∈ X(B) is lightlike, then

Z⊥ is an integrable distribution and Mm+2 is foliated by a family of
Carrollian geometries: the integral hypersurfaces N of Z⊥.

∇gZ : TN/Rad h→ TN/Rad h, [ξ] 7→ [∇g
VZ ] = Zf

f · [V ], ξ = (X ,V ).

Hence, when Zf and λ are non-vanishing functions, the pull-back of the
Levi-Civita connection ∇g is a Cartan connection ω on every (N, h,Z ) with
model Nm+1 = G/H such that

hω =
(
Zf
f

)2
h and Zω = 1

λZ

(i.e., Schwarzschild exterior and interior and Reissner-Nordström)
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Remaining questions
1 Describe Aut(G, ω) in terms of the base manifold Nm+1.

Aut(G, ω) = Aut(Nm+1, hω,Zω, · · · · · ·???︸ ︷︷ ︸
additional tensors...

)

2 Characterize those Carroll geometries locally equivalent to bundles of
scales of conformal Riemannian manifolds.
(correspondence spaces by Čap and Slovák)

3 Develop the general theory of Cartan connections with model the
lightlike cone Nm+1 = G/H.
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Thank you very much for your attention!!
Some references
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