### Cartan Geometries with model the lightlike cone

#### Francisco José Palomo Departamento de Matemática Aplicada



UNIVERSIDAD DE MÁLAGA

Image: A matrix and a matrix

#### Second Carroll Workshop, 12 September – 16 September 2022 Mons, Belgium

#### OUTLINE

### 1 Carroll geometries



3 Cartan geometries with model the lightlike cone

臣

イロト イヨト イヨト イヨト

# 1. Carroll geometries

- A general definition, examples and something more
- 2 The lightlike cone.

臣

イロト イヨト イヨト イヨト

#### General Carrollian geometries (Levy-Leblond, 1965)

A triple  $(N^{m+1}, h, Z)$  is a Carrollian geometry when

• *h* is a symmetric (0, 2)-tensor on the manifold  $N^{m+1}$  which is positive but non-definite and whose radical

$$\operatorname{Rad} h = \{v \in TN : h(v, -) = 0\}$$

defines a 1-dimensional distribution on  $N^{m+1}$ .

**2**  $Z \in \Gamma(\operatorname{Rad} h) \subset \mathfrak{X}(N)$  spans the radical distribution at every point.

•  $\operatorname{Aut}(N^{m+1}, h, Z)$  may be infinite dimensional.

#### Examples I

- Lightlike hypersurfaces of time-oriented Lorentzian manifolds.
- A General Relativity space-time  $(\widetilde{M}, \widetilde{g})$  is called asymtotically simple, if there is another Lorentzian manifold (M, g) such that
  - $\mathbf{O} \quad \widetilde{M} \text{ is an open subset of } M \text{ with smooth boundary } \partial \widetilde{M} = \mathcal{I}.$
  - 2 There is  $\Omega \in C^{\infty}(M)$  such that  $g = \Omega^2 \tilde{g}$  on M and  $\Omega \mid_{\mathcal{I}} = 0$  but  $d\Omega \neq 0$  on  $\mathcal{I}$ .
  - Every inextendible lightlike geodesic of (M, g) has a future/past endpoint on I.

Then,

$$\left(\mathcal{I}, g \mid_{\mathcal{I}}, Z := (d\Omega)^{\sharp}
ight)$$
 is a Carroll geometry.

E

・ロト ・回ト ・ヨト ・ヨト

# Examples II. The bundle of scales of a conformal Riemannian manifold (M, c)

### $\pi \colon \mathcal{L} = \{g_x : g \in c, x \in M\} \to M$

is a principal fiber bundle with structure group  $\mathbb{R}_+$  (  $g_{\mathsf{x}} \cdot t := t^2 g_{\mathsf{x}}).$ 

$$\mathfrak{h}(\xi,\eta) = \mathfrak{g}_{\mathsf{x}}(T_{\mathsf{g}_{\mathsf{x}}}\pi\cdot\xi, T_{\mathsf{g}_{\mathsf{x}}}\pi\cdot\eta), \quad \xi,\eta\in T_{\mathsf{g}_{\mathsf{x}}}\mathcal{L},$$

$$Z_{g_{x}}=\frac{d}{dt}\mid_{t=0} (e^{2t}g_{x}).$$

 $(\mathcal{L}, h, Z)$  is a Carrollian geometry.

0

2

6

・ロト ・回ト ・ヨト ・

#### Remarks I

*h* induces a bundle-like Riemannian metric *h* on the quotient vector fiber bundle

$$\mathcal{E} := TN/\mathrm{Rad}h \to N.$$

Thus, we can define the endomorphism  $A_Z$  on the fiber vector bundle  $\mathcal E$  by

$$\mathcal{L}_{Z}\bar{h}([u],[v]) = 2\bar{h}(A_{Z}[u],[v]), \quad u,v \in T_{y}N.$$

 $(N^{m+1}, h, Z)$  is generic when  $A_Z$  is an isomorphism on  $\mathcal{E}$ .

- The space orbit  $N^{m+1}/Z$  is typically a manifold  $M^m$  (the absolute space)  $\pi \colon N^{m+1} \to M^m := N^{m+1}/Z.$
- The vector field Z can be assumed to be complete and then (suppose that integral curves of Z are lines)

$$N^{m+1} \times \mathbb{R}_+ \to N^{m+1}, \quad (y,t) \mapsto y \cdot t = \operatorname{Fl}^{Z}_{\log t}(y)$$

and  $\pi: N \to M$  becomes an  $\mathbb{R}_+$ -principal fiber bundle.

イロト イヨト イヨト イヨト 三日

#### Remarks II

#### Carroll geometries as generalized bundles of scales

Assume  $\pi: N^{m+1} \to M^m$ .  $\left(\underbrace{T_y N/\operatorname{Rad}(h_y)}_{\mathcal{E}_y}, h_y\right) \xrightarrow{T_y \pi} \left(T_{\pi(y)}M, c(y)\right) \implies c(y) \in \operatorname{Sym}^+(T_{\pi(y)}M)$   $N \xrightarrow{c} \operatorname{Sym}^+(TM)$  $\pi \searrow \qquad \swarrow$ 

- Every section of  $\pi$  gives a Riemannian metric on M.
- $\mathcal{L}_Z h = 0 \implies h$  induces a Riemaniann metric on M. Carrollian geometry (Y. Herfray)
- $\mathcal{L}_Z h = 2\rho h \implies h$  induces a Riemaniann conformal geometry on M. Conformal Carrollian geometry (Y. Herfray)

#### Our model space

Let  $\mathbb{L}^{m+2}$  be the Minkowski space-time with basis  $(\ell, e_1, \cdots, e_m, \eta)$  such that the Lorentzian metric  $\langle , \rangle$  corresponding to the matrix

$$\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & {\rm I}_m & 0 \\ 1 & 0 & 0 \end{array}\right).$$

• The lightlike cone

$$\left(C^{m+1} := \left\{ v \in \mathbb{L}^{m+2} : \langle v, v \rangle = 0, \quad v \neq 0 \right\}, \langle , \rangle, Z \right)$$

is a Carrollian geometry where  $Z \in \mathfrak{X}(C^{m+1})$  is the restriction of the position vector field.

• Our model for Carrollian geometries

$$\left(\mathcal{N}^{m+1}:= C^{m+1}/\mathbb{Z}_2, \ h, \ \mathcal{Z}
ight)$$

#### $\mathcal{N}^{m+1}$ as homogeneous space

• The action of Möbius group :  $G = PO(m+1,1) := O(m+1,1)/{\pm Id}$ 

$$G \times \mathcal{N}^{m+1} \to \mathcal{N}^{m+1}, \quad [\sigma] \cdot [v] := [\sigma \cdot v]$$

is also transitive, therefore

$$\mathcal{N}^{m+1}=G/H,$$

where  $H \subset G$  is the isotropy group of  $[\ell] = \{\pm \ell\} \in \mathcal{N}^{m+1}$  and

 $G = \operatorname{Aut}(\mathcal{N}^{m+1}, h, \mathcal{Z}).$ 

イロト イポト イヨト イヨト

The absolute space for  $\mathcal{N}^{m+1}$ 

•  $\pi: \mathcal{N}^{m+1} \to \mathcal{N}^{m+1}/\mathcal{Z} \simeq \mathbb{S}^m$ , the space of lightlike lines in  $\mathcal{N}^{m+1}$ .

•  $\mathbb{S}^m = G/P$  is the model for conformal geometry,  $Conf(\mathbb{S}^m) = G$ .  $P \subset G$  is the isotropy group of  $\pi[\ell] \in \mathbb{S}^m$  (Poincaré conformal group)

$$P = \left\{ \begin{bmatrix} \lambda & -\lambda w^t g & -\frac{\lambda}{2} \langle w, w \rangle \\ 0 & g & w \\ 0 & 0 & \lambda^{-1} \end{bmatrix} : \lambda \in \mathbb{R} \setminus \{0\}, w \in \mathbb{R}^m, g \in O(m) \right\}$$

• The isotropy group of  $[\ell] \in \mathcal{N}^{m+1}$  is

$$H = \{ \sigma \in P : \lambda = \pm 1 \} \cong \mathbb{R}^m \rtimes O(m) = \operatorname{Euc}(\mathbb{R}^m)$$

$$G/H = \mathcal{N}^{m+1} \xrightarrow{\pi} \mathbb{S}^m = G/P$$

Carroll geometries Cartan connections Cartan geometries with model the lightlike cone

 $\mathcal{N}^{m+1} = G/H$  at Lie algebras level

$$\mathfrak{g} = \left\{ \begin{pmatrix} a & Z & 0 \\ X & A & -Z^t \\ 0 & -X^t & -a \end{pmatrix} : a \in \mathbb{R}, X \in \mathbb{R}^m, Z \in (\mathbb{R}^m)^*, A \in \mathfrak{so}(m) \right\}$$

 $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$  is a  $\mathbb{Z}$ -grading, that is,  $\left| [\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j} \right|$ 

$$\mathfrak{g} = \underbrace{\mathfrak{g}_{-1} \oplus \mathfrak{z}(\mathfrak{g}_0)}_{\mathfrak{m}} \oplus \underbrace{[\mathfrak{g}_0, \mathfrak{g}_0] \oplus \mathfrak{g}_1}_{\mathfrak{h}} \text{ and } \underbrace{\mathfrak{h} = \underbrace{[\mathfrak{g}_0, \mathfrak{g}_0]}_{\mathfrak{so}(m)} \oplus \mathfrak{g}_1 \leq \mathfrak{p} }_{\mathfrak{so}(m)}$$
 Carrollian model

 $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}\quad \text{ is not a reductive decomposition}!!$ 

In fact, the Lie algebra  $\mathfrak h$  does not admit any reductive complement in  $\mathfrak g.$ 

 $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \qquad \text{and} \qquad \mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \qquad \text{conformal model}$ 

### 2. Cartan connections

3

・ロト ・回 ト ・ヨト ・ヨト

Carroll geometries Cartan connections Cartan geometries with model the lightlike cone

Let  $p : \mathcal{P} \to M$  be an *H*-principal fiber bundle, for every  $X \in \mathfrak{h}$ , the fundamental vector field  $\zeta_X \in \mathfrak{X}(\mathcal{P})$  is  $\zeta_X(u) := \frac{d}{dt} \mid_{t=0} (u \cdot \exp(tX))$ .

Cartan geometry of type (G, H) on M (Charles Ehresmann, 1950)

- An *H*-principal fiber bundle  $p : \mathcal{P} \to M$ .
- A one-form  $\omega \in \Omega^1(\mathcal{P},\mathfrak{g})$ , called the Cartan connection such that

$$\ \, {\bf 0} \ \, \omega(u)(\zeta_X(u))=X \ \, {\rm for \ each} \ \, X\in {\mathfrak h}.$$

2 
$$(r^h)^*\omega = \operatorname{Ad}(h^{-1}) \circ \omega$$
 for all  $h \in H$ .

$$\dim(\mathcal{P}) = \dim(G), \quad \dim(M) = \dim(G/H)$$

#### The curvature form

• 
$$K \in \Omega^2(\mathcal{P}, \mathfrak{g}), \quad K = d\omega + \frac{1}{2}[\omega, \omega].$$

Carroll geometries Cartan connections Cartan geometries with model the lightlike cone

- (G → M ≅ G/H, ω<sub>G</sub>) is called the homogeneous model for Cartan geometries of type (G, H) and has zero curvature. (Maurer-Cartan equation dω<sub>G</sub> + ½[ω<sub>G</sub>, ω<sub>G</sub>] = 0.)
- The converse is locally true. The curvature measures how far is our Cartan geometry from the homogeneous model.

$$\operatorname{Aut}(\mathcal{P},\omega)=\Big\{(F,f):$$
 automorphism of  $p:\mathcal{P} o M$  with  $F^*\omega=\omega\Big\}$ 

$$\begin{array}{ccc} \mathcal{P} & \stackrel{F}{\longrightarrow} & \mathcal{P} \\ \stackrel{p}{\downarrow} & & \downarrow^{p} \\ M & \stackrel{F}{\longrightarrow} & M \end{array} & \begin{cases} F(u \cdot h) = F(u) \cdot h, \ u \in \mathcal{P}, h \in H. \\ F \text{ is a diffeomorphism.} \end{cases}$$

 $\operatorname{Aut}(\mathcal{P},\omega)$  is a Lie group and  $\operatorname{dim}\operatorname{Aut}(\mathcal{P},\omega) \leq \operatorname{dim} \mathcal{G}$ .

イロト イポト イヨト イヨト

### 3. Cartan geometries with model the lightlike cone

Image: A matrix and a matrix

What kind of geometry structure does correspond with  $\mathcal{N}^{m+1}$  as (G, H)?

#### Theorem I $(P^*, 21)$

Every Cartan geometry  $(p: \mathcal{G} \to N^{m+1}, \omega)$  of type  $\mathcal{N}^{m+1} = G/H$ determines a Carrollian geometry  $(N^{m+1}, h^{\omega}, Z^{\omega})$ . Moreover,  $\mathcal{G} \simeq \left\{ (Z_x^{\omega}, e_1, \cdots, e_m) \in \mathcal{P}^1 N^{m+1} : h^{\omega}(e_i, e_j) = \delta_{ij} \right\}$ .

( $\mathcal{G}$  gives a G-structure on  $N^{m+1}$  with structure group H.)

$$\mathcal{H}:=\omega^{-1}(\mathfrak{g}_{-1}\oplus\mathfrak{z}(\mathfrak{g}_0))\subset T\mathcal{G}$$
 .

defines general connection (horizontal distribution) on  $p \colon \mathcal{G} \to N^{m+1}$ .

Theorem II (P\*, 21)

 $\operatorname{Aut}(\mathcal{G},\omega) = \left\{ f \in \operatorname{Aut}(N^{m+1},h^{\omega},Z^{\omega}) : F = Tf \text{ preserves the distribution } \mathcal{H} \right\}.$ 

That is,  $T_u F \cdot \mathcal{H}(u) = \mathcal{H}(F(u))$ .

Carroll geometries Cartan connections Cartan geometries with model the lightlike cone

If we write the elements  $h \in H$  as follows

$$\begin{bmatrix} 1 & -w^{t}g & -\frac{1}{2}\langle w, w \rangle \\ 0 & g & w \\ 0 & 0 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -w^{t} & -\frac{1}{2}\langle w, w \rangle \\ 0 & I_{m} & w \\ 0 & 0 & 1 \end{bmatrix}}_{\sigma(w) \text{ translation}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & g & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\sigma(g) \text{ rotation}}$$

#### Theorem III (P\*, 21)

A Cartan geometry  $(p: \mathcal{G} \to N^{m+1}, \omega)$  of type  $\mathcal{N}^{m+1} = G/H$  is equivalent to

- **1** a Carrollian geometry  $(N^{m+1}, h^{\omega}, Z^{\omega})$  and
- 2 a general connection ( $\simeq$  horizontal distribution)  $\mathcal{H} \subset T\mathcal{G}$  such that

$$\bullet \quad {\mathcal T}_u r^{\sigma(g)} \cdot {\mathcal H}(u) = {\mathcal H}(u \cdot \sigma(g)) \text{ and }$$

$$\Theta \ \omega(u \cdot \sigma(w)) \Big( T_u r^{\sigma(w)} \cdot \mathcal{H}(u) \Big) = \mathrm{Ad}(\sigma(w)^{-1})(\mathfrak{m}),$$

for all  $u \in \mathcal{P}$ ,  $\sigma(g), \sigma(w) \in H$ .

#### An application to Lightlike hypersurfaces

• Let  $(M^{m+2}, g)$  be a timelike-oriented Lorentzian manifold with

$$O^+(M^{m+2}) = \{(\ell^+, e_1, \cdots, e_m, \ell^-) \in \mathcal{P}^1M\}$$

the  $O^+(m+1,1)$ -principal fiber bundle of g-admissible frames and •  $\psi: (N^{m+1}, h) \rightarrow (M^{m+2}, g)$  be a lightlike hypersurface.

•  $(N^{m+1}, h, Z)$  is a Carroll geometry and  $\Psi := T\psi \colon \mathcal{G} \to O^+(M^{m+2}).$ 



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

#### Theorem IV (P\*, 21)

2

Assume  $\gamma \in \Omega^1(\mathcal{O}^+(M), \mathfrak{g})$  is the Levi-Civita (principal) connection of  $(M^{m+2}, g)$  with corresponding linear connection  $\nabla^g$ . The following assertions are equivalent  $\mathbf{O} = \Psi^*(\gamma)$  is a Cartan connection on  $N^{m+1}$  with model  $\mathcal{N}^{m+1} = G/H$ .

$$\begin{array}{ccc} TN/\operatorname{Rad} h & \stackrel{\nabla^g Z}{\longrightarrow} & TN/\operatorname{Rad} h \\ \pi \searrow & \swarrow & \swarrow & , \qquad [v] \mapsto [\nabla^g_v Z] \\ & N \end{array}$$

is an *N*-isomorphism of vector fiber bundles and the *Z*-expansion function  $\lambda$  ( $\nabla_Z^g Z = \lambda Z$  on *N*) is a non-vanishing function.

イロト イヨト イヨト イヨト 三日

#### Examples: Warped product space-times with two dimensional base

 $(B,g_B)$  a Lorentz surface,  $(F^m,g_B)$  a Riemann manifold and  $f\in C^\infty(B)$ .

$$(M^{m+2},g) = (B \times_f F,g := g_B + f^2 g_f)$$

Assume  $Z \in \mathfrak{X}(B)$  is lightlike, then

- $Z^{\perp}$  is an integrable distribution and  $M^{m+2}$  is foliated by a family of Carrollian geometries: the integral hypersurfaces N of  $Z^{\perp}$ .
- $\nabla^g Z \colon TN/\operatorname{Rad} h \to TN/\operatorname{Rad} h, \quad [\xi] \mapsto [\nabla^g_V Z] = \frac{Zf}{f} \cdot [V], \quad \xi = (X, V).$
- Hence, when Zf and  $\lambda$  are non-vanishing functions, the pull-back of the Levi-Civita connection  $\nabla^g$  is a Cartan connection  $\omega$  on every (N, h, Z) with model  $\mathcal{N}^{m+1} = G/H$  such that

$$h^{\omega} = \left(\frac{Zf}{f}\right)^2 h$$
 and  $Z^{\omega} = \frac{1}{\lambda}Z$ 

(i.e., Schwarzschild exterior and interior and Reissner-Nordström)

## Remaining questions

• Describe  $Aut(\mathcal{G}, \omega)$  in terms of the base manifold  $N^{m+1}$ .

$$\operatorname{Aut}(\mathcal{G},\omega) = \operatorname{Aut}(N^{m+1},h^{\omega},Z^{\omega},\underbrace{\cdots\cdots???}_{\text{additional tensors...}})$$

- Characterize those Carroll geometries locally equivalent to bundles of scales of conformal Riemannian manifolds. (correspondence spaces by Čap and Slovák)
- Develop the general theory of Cartan connections with model the lightlike cone  $\mathcal{N}^{m+1} = G/H$ .

・ロト ・回ト ・ヨト ・ヨト

# Thank you very much for your attention!!

Some references

- A. Čap and J. Slovák, Parabolic Geometries I. Background and General Theory, Mathematical Surveys and Monographs **154**, AMS 2009.
- Y. Herfray, *Carrollian manifolds and null infinity: A view from Cartan geometry*, Class. Quantum Grav. (2022).
- F.J. Palomo, Lightlike manifolds and Cartan geometries, Analysis and Mathematical Physics, 11 (2021), Paper No. 112, 39 pp.
- R.W. Sharpe, Differential Geometry, Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics 166, Springer, 1997.

イロト イポト イヨト イヨト