Conformal scattering theory

$2^{\rm nd}$ Carroll workshop, Mons 2022

Jean-Philippe Nicolas, University of Brest

2nd Carroll workshop, Mons 2022 Conformal scattering theory

(日) (周) (王) (王) (王)

Two main methods.

- **1** Stationary method. Fourier transform. Chandrasekhar.
- **②** Time dependent method. Spectral analysis.

 $\partial_t \phi = i(H+P)\phi$

H + P simplifies asymptotically to H

$$\lim_{t\to\pm\infty}\|e^{it(H+P)}\varphi_0-e^{itH}\varphi_\pm\|=0\,.$$

イロト イポト イヨト イヨト

Alternative geometric approach: conformal scattering.

- Penrose : Zero rest-mass fields including gravitation : asymptotic behaviour (1965)
- **2** Lax-Phillips : Scattering theory (1967)
- Friedlander : study of radiation fields (1970's), link with the Lax-Phillips theory (1980) this is the first construction of a conformal scattering theory.

Lax-Phillips theory

Α

Wave equation on flat spacetime

$$\partial_t^2 \phi - \Delta \phi = 0 \, .$$

As a Schrödinger equation

$$\begin{split} \partial_t U &= i A U , \ U := \begin{pmatrix} \varphi \\ \partial_t \varphi \end{pmatrix} , \ A = -i \begin{pmatrix} 0 & 1 \\ \Delta & 0 \end{pmatrix} . \\ \text{self-adjoint on } \mathcal{H} &= \dot{H}^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3) = \overline{\mathbb{C}_0^\infty(\mathbb{R}^3) \times \mathbb{C}_0^\infty(\mathbb{R}^3)} \text{ in } \\ \| U \|^2 &:= \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla_x u_1|^2 + |u_2|^2) \mathrm{d}^3 x \,, \end{split}$$

 $\sigma(A) = \sigma_{ac}(A) = \mathbb{R}.$

Generalized eigenfunctions for $\sigma \in \mathbb{R}$ (plane waves)

$$e_{\sigma,\omega}(x) = \left(egin{array}{c} e^{-i\sigma x.\omega} \ i\sigma e^{-i\sigma x.\omega} \end{array}
ight), \ \omega \in S^2.$$

イロト イポト イラト イラト

Lax-Phillips theory

We "project" the elements of \mathcal{H} onto the plane waves $e_{\sigma,\omega}$ $U \in \mathcal{H}$: put $\tilde{U}(\sigma, \omega) := \frac{1}{2} \frac{1}{(2\pi)^{3/2}} \langle U, e_{\sigma,\omega} \rangle_{\mathcal{H}}$

III defined! However, for $U \in \mathcal{C}_0^{\infty}(\mathbb{R}^3) \times \mathcal{C}_0^{\infty}(\mathbb{R}^3)$,

$$\begin{split} \tilde{\mathcal{U}}(\sigma, \omega) &:= \frac{1}{2} \frac{1}{(2\pi)^{3/2}} \langle \mathcal{U}, e_{\sigma, \omega} \rangle_{\mathcal{H}} \\ &= \frac{1}{2} \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} (\nabla u_1 \overline{\nabla e^{-i\sigma x.\omega}} + u_2 \overline{i\sigma e^{-i\sigma x.\omega}}) \mathrm{d}^3 x \\ &= \frac{1}{2} \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} (u_1 (\overline{-\Delta e^{-i\sigma x.\omega}}) + u_2 \overline{i\sigma e^{-i\sigma x.\omega}}) \mathrm{d}^3 x \\ &= \frac{1}{2} \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} (\sigma^2 u_1 - i\sigma u_2) e^{i\sigma x.\omega} \mathrm{d}^3 x \\ &= \frac{1}{2} (\sigma^2 \hat{u}_1 (-\sigma \omega) - i\sigma \hat{u}_2 (-\sigma \omega)) \,. \end{split}$$

2nd Carroll workshop, Mons 2022

Conformal scattering theory

Now $\tilde{U}(\sigma, \omega)$ well defined on \mathfrak{H} and

$$\widetilde{AU} = \sigma \widetilde{U}$$
, $\widetilde{e^{itA}U} = e^{it\sigma}\widetilde{U}$.

This is a spectral representation of the Hamiltonian and propagator. Then, define

$$\mathcal{R}U(r,\omega) := \mathcal{F}_{\sigma}(\tilde{U}(.,\omega))(r).$$

 $\mathcal{R}(e^{itA}U)(r,\omega) = (\mathcal{R}U)(r-t,\omega).$

This is a translation representation of the propagator.

 \mathcal{R} is an isometry from \mathcal{H} onto $L^2(\mathbb{R} \times S^2)$.

- 日本 (語) (語) (語)

Lax-Phillips theory

Translation representation related to the Radon transform. Allows to recover the solution ϕ from its translation representer k

$$\phi(t,x) = \frac{1}{2\pi} \int_{S^2} k(x.\omega - t, \omega) \mathrm{d}^2 \omega \,, \tag{1}$$

and to prove

Theorem (Asymptotic profiles)

Assuming that the data $\varphi_0,\,\varphi_1$ are smooth and compactly supported, denoting

$$k = \mathcal{R} \left(egin{array}{c} \Phi_0 \ \Phi_1 \end{array}
ight)$$
 ,

we have

$$k(s, \omega) = -\lim_{r \to +\infty} r \partial_t \phi(r, (r+s)\omega).$$

(2)

The first conformal scattering construction

- Formula (2) shows that the translation representer is a radiation field.
- Therefore can be recovered by conformal compactification of the geometry.
- Friedlander 1980, "Radiation fields and hyperbolic scattering theory". The framework is static.

・ロト ・得ト ・ヨト ・ヨト

Some more history

- Baez, Segal, Zhou, 1989-1990, extension to nonlinear equations (static).
- Hörmander, 1990, "A remark on the characteristic Cauchy problem" (general).
- Mason, Nicolas, 2002, "Conformal scattering and the Goursat problem" (general).
- Joudioux, 2012, 2020, extension to nonlinear equations (general).
- Nicolas, 2016, extension to black hole spacetimes (static).
- Mokdad, 2019, 2022, black holes with positive cosmological constant including interior (static or general)
- Taujanskas, 2019, nonlinear gauge fields
- Pham, 2020, 2022, linearized gravity on Schwarzschild (static) and Dirac on Kerr (stationnary)
- Coudray, in progress, waves on Vaidya (dynamic)

・吊り ・ヨト ・ヨト

Minkowski spacetime : $\mathbb{M} = \mathbb{R}^4$ with the Minkowski metric

$$\eta := \mathrm{d}t^2 - \mathrm{d}r^2 - r^2 \mathrm{d}\omega^2 \,, \ \mathrm{d}\omega^2 = \mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2 \,.$$

Change of coordinates : u = t - r, v = t + r;

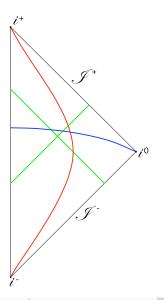
$$au = \arctan(t - r) + \arctan(t + r)$$
,
 $\zeta = \arctan(t + r) - \arctan(t - r)$,

$$\eta = \frac{(1+u^2)(1+v^2)}{4} \left(\mathrm{d}\tau^2 - \mathrm{d}\zeta^2 \right) - \frac{(v-u)^2}{4} \mathrm{d}\omega^2$$

2nd Carroll workshop, Mons 2022 Conformal scattering theory

(日) (周) (王) (王)

Conformal compactification of Minkowski spacetime



- i^{\pm} $(\tau = \pm \pi, \zeta = 0)$
- i^0 ($\tau = 0, \zeta = \pi$)
- green = null
- red = timelike
- blue = spacelike

(4 間) (4 回) (4 回)

2nd Carroll workshop, Mons 2022

Conformal scattering theory

Conformal compactification of Minkowski spacetime

Conformal factor :
$$\Omega^2 = \frac{4}{(1+u^2)(1+v^2)}$$

$$\hat{\eta} := \Omega^2 \eta = \mathrm{d}\tau^2 - \mathrm{d}\zeta^2 - (\sin\zeta)^2 \,\mathrm{d}\omega^2 = \mathrm{d}\tau^2 - \sigma_{\mathcal{S}^3}^2 \,,$$

analytic over $\mathcal{E} = \mathbb{R} \times S^3$. \mathbb{M} open subset of the Einstein cylinder \mathcal{E} . $\hat{\eta}$ is the Einstein metric.

2nd Carroll workshop, Mons 2022 Conformal scattering theory

イロト イポト イヨト イヨト

Conformal compactification of Minkowski spacetime

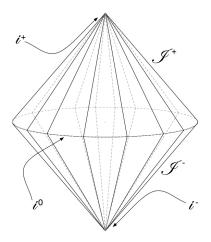


Figure: Compactified Minkowski spacetime.

- \$\mathcal{J}^{\pm}\$ = future and past end-points of null geodesics,
- i[±] = future (resp. past) endpoint of timelike geodesics,
- *i*⁰ = endpoint of spacelike geodesics.
- *i*[±] and *i*⁰ are points.

• • • • • • • • • • • • •

Conformal scattering for the wave equation

Conformally invariant wave equation : $(\Box_g + \frac{1}{6}Scal_g)\phi = 0$

$$\Box_\eta \varphi = \mathbf{0} \Leftrightarrow \Box_{\hat{\eta}} \hat{\varphi} + \hat{\varphi} = \mathbf{0} \, , \ \hat{\varphi} = \Omega^{-1} \varphi \, .$$

where

$$\Box_\eta = \partial_t^2 - \Delta_{\mathbb{R}^3}$$
 , $\ \Box_{\hat{\eta}} = \partial_ au^2 - \Delta_{\mathcal{S}^3}$.

Definition (Conformal scattering theory for the wave equation)

$$\mathbb{T}^{\pm}: \ (\varphi|_{t=0}, \partial_t \varphi|_{t=0}) \longmapsto \hat{\varphi}|_{\mathscr{I}^{\pm}}$$

are isomorphisms between well-chosen function spaces. Scattering operator : $\mathbb{S} := \mathbb{T}^+(\mathbb{T}^-)^{-1}$.

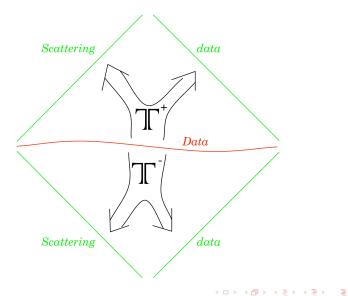
(日) (四) (日) (日) (日)

- Step 1. Define operators \mathbb{T}^{\pm} for \mathbb{C}_0^{∞} data (Leray).
- Step 2. Energy estimates both ways between a Cauchy hypersurface and 𝒴[±]. Allows to extend T[±] as bounded one-to-one operators with closed range.
- Step 3. Prove surjectivity of \mathbb{T}^{\pm} , i.e. density of $\operatorname{Ran}\mathbb{T}^{\pm}$ (by solving the Goursat problem for a dense class of data, follows Hörmander 1990).
- Step 4. Forget about the spacelike slice : $\mathbb{S} = \mathbb{T}^+(\mathbb{T}^-)^{-1}$.

Construction insensitive to time dependence.

(日) (四) (日) (日) (日)

Schematically



 $2^{\rm nd}$ Carroll workshop, Mons 2022

Conformal scattering theory

Some details on step 2

• Define an energy current.

- Stress-energy tensor T_{ab}
 On the Einstein cylinder exactly conserved (Klein-Gordon)
- Timelike vector field (observer) T^a
- Energy current $J_a := T^b T_{ab}$
- Energy estimates obtained using the divergence theorem.
- Error terms (if present) controlled by Gronwall-type estimates. Two possible origins:
 - Killing form of T^a , $T_{ab}\nabla^{(a}T^{b)}$;
 - non conservation of T_{ab} , $T^b \nabla^a T_{ab}$.

・ロト ・ 一下・ ・ ヨト ・ ヨト

Choice of observer

On Minkowski spacetime, two natural choices:

- Time translation along the Einstein cylinder
- **2** Timelike Killing vector field of the physical spacetime.

Give two inequivalent scattering theories.

() Energy on \mathscr{I}^+ in the first case

$$\frac{1}{\sqrt{2}} \int_{\mathscr{I}^+} \left(\left| \hat{\varphi}_\tau - \hat{\varphi}_\zeta \right|^2 + \frac{1}{\sin^2 \zeta} \left| \nabla_{\mathcal{S}^2} \hat{\varphi} \right|^2 + \hat{\varphi}^2 \right) \mathrm{d} \mu_{\mathcal{S}^3} \, ;$$

2 Energy on \mathscr{I}^+ in the second case

$$\frac{1}{\sqrt{2}} \int_{\mathscr{I}^+} \left| \hat{\varphi}_\tau - \hat{\varphi}_\zeta \right|^2 \mathrm{d} \mu_{\mathsf{S}^3} \, .$$

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Different weights in the energy on the initial slice.

Corvino-Schoen / Chrusciel-Delay spacetimes:

- smooth \mathscr{I}^{\pm} and i^{\pm} ;
- \simeq Schwarzschild near i^0 .
- Observer: timelike Killing vector near i^0 , tangent to \mathscr{I}^{\pm} everywhere.
- Energy estimates: use special features of \mathscr{I} .
- Difficulty with the singularity at i^0 .

(日) (母) (王) (王)

We take advantage of the finite propagation speed.

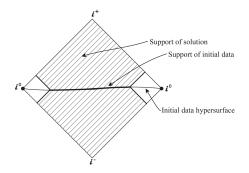


Figure: Avoiding the singularity at i^0

・ロン ・回 と ・ ヨン ・ ヨン

э

Extension to black holes

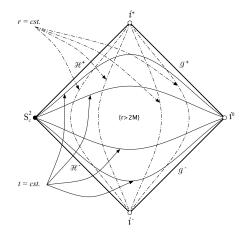


Figure: Penrose diagram of the compactified exterior of a Schwarzschild black hole

イロト イポト イヨト イヨト

э

Extension to black holes

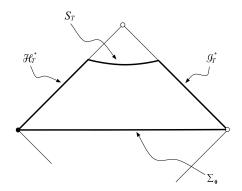


Figure: Strategy for obtaining the energy estimates

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

2nd Carroll workshop, Mons 2022 Conformal scattering theory

- More general spacetimes (radiation)
- Behaviour inside black holes (stability of charged black holes)
- Nonlinear gauge systems and their charges

A D F A R F A B F A

3

THANK YOU!

"The time has come," the walrus said, "to talk of many things: of shoes and ships - and sealing wax - of cabbages and kings."

2nd Carroll workshop, Mons 2022 Conformal scattering theory

・ロト ・ 同ト ・ ヨト ・ ヨト