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Spacetime geometries
Spacetime geometries can be described along three different, complementary, approaches:

Intrinsic approach
Spacetime is a (d+ 1)-dimensional manifold endowed with a « metric structure » m together with a
compatible Koszul connection∇m = 0.

Cartan approach
Spacetime is the base manifold of a Cartan geometry modelled on an effective kinematical Klein pair.

Ambient approach
Spacetime arises as a quotient/hypersurface of a (d+ 2)-dimensional manifold.

Relating those three approaches yields different problems:

Cartan equivalence problem:
Solve the Cartan connection in terms of its invariants to make contact between the Cartan and
intrinsic approaches

Lifting problem:
Given an intrinsic geometry M̄ , find an ambient geometry M such that M̄ is isomorphic to the
quotient M/R

Embedding problem:
Given an intrinsic geometry M̃ , find an ambient geometry M such that M̃ is isomorphic to a
hypersurface of M



Bargmann–Eisenhart waves
Eisenhart 28’, Duval, Burdet, Künzle, Perrin 85’, Duval, Gibbons, Horvathy, Zhang 14’

The paradigmatic example of ambient approach is given by the embedding of Galilean/Carrollian
geometries inside Bargmann–Eisenhart waves (a.k.a. Brinkmann spacetimes or pp-waves).

Bargmann–Eisenhart waves lie at the intersection of two interesting categories of structures:

1 Gravitational waves (M , [ξ], g) i.e. Lorentzian manifolds (M , g) endowed with an
equivalence class [ξ] of nowhere vanishing vector fields:

R

M

M/R

π

ξ ∼ Ω ξ where Ω ∈ C∞6=0(M )

such that each representative ξ ∈ [ξ] is:

lightlike i.e. g(ξ, ξ) = 0

hypersurface-orthogonal i.e. dψ ∧ ψ = 0 where ψ := g(ξ) (i.e. Kerψ is involutive)

Bargmann–Eisenhart waves are characterised among gravitational waves by the existence
of a parallel representative∇g ξ = 0 (or equivalently Lξg = 0 = dψ).

2 Bargmannian manifolds i.e. Cartan geometries for the reductive Bargmann algebra:[
K, H

]
∼ P ,

[
K,P
]
∼M .

After solving the Cartan equivalence problem, Bargmannian manifolds can be characterised
as tuples (M , ξ, g,∇) i.e. Lorentzian manifolds (M , g) endowed with a lightlike vector field ξ
together with a (possibly torsionful) connection∇ preserving both the metric and the lightlike
vector field, i.e.∇ξ = 0,∇g = 0.

In this context, Bargmann–Eisenhart waves identify with torsionfree Bargmannian manifolds.



Lifting à la Duval et al.
R

Bargmann–Eisenhart wave

(M , ξ, g)

Lξg = 0, dψ = 0, Tor(∇g) = 0, Lξ∇g = 0, Rµν|αβ = Rαβ|µν

Newtonian manifold

(M̄ , ψ̄, γ̄, ∇̄)

dψ̄ = 0, Tor(∇̄) = 0, R̄µ̄ᾱν̄ β̄ = R̄ν̄ β̄
µ̄
ᾱ

π

Theorem
The quotient manifold of a Bargmann–Eisenhart wave is a Newtonian manifold.
Conversely, any Newtonian manifold can be lifted to a Bargmann–Eisenhart wave.

Duval et al. 85’



Embedding à la Duval et al.
Invariant torsionfree Carrollian manifold Bargmann–Eisenhart wave

(M̃ , ξ̃, γ̃, ∇̃) (M , ξ, g)

Lξ̃γ̃ = 0, Tor(∇̃) = 0, Lξ̃∇̃ = 0 Lξg = 0,Tor(∇g) = 0, Lξ∇g = 0

Theorem
Any Bargmann–Eisenhart wave admits a lightlike foliation by invariant torsionfree Carrollian manifolds.
Conversely, any invariant torsionfree Carrollian manifold can be embedded into a B–E wave.

Duval et al. 14’

Example
Duval et al. 14’

Flat Carroll manifold Minkowski wave

(M̃ , ξ̃, γ̃, ∇̃) (M , ξ, g)

ξ̃ = ∂u, γ̃ = δijdx
i ⊗ dxj , Γ̃ = 0 ξ = ∂u, g = du⊗ dt+ dt⊗ du+ δijdx

i ⊗ dxj

Question: What about the (A)dS Carroll manifold? Bergshoeff, Gomis, Parra 15’



Embedding (A)dS Carroll
No-Go: The (A)dS Carroll manifold (M̃ , ξ̃, γ̃, ∇̃) reads:

ξ̃ = ∂u , γ̃ = γijdx
i ⊗ dxj , Γ̃uij = ε u γij , Γ̃ijk = Γγ

where γij is the d-dimensional hyperbolic (resp. spherical) metric whenever ε < 0 (resp. ε > 0).

The connection is not invariant, as:

Lξ̃∇̃ = ε ξ̃ ⊗ γ̃

hence (A)dS Carroll cannot be embedded into a Bargmann–Eisenhart wave.

There are two possible directions to circumvent this issue:

1 Gravitational waves: K.M. Part I
Allowing for the (more general) class of gravitational waves characterised by∇ξ = ψ ⊗ χ allows
to embed torsionfree Carrollian manifold satisfying the less restrictive (non)-invariance condition:

Lξ̃∇̃
λ̃
µ̃ν̃ = −ξ̃λ̃ Ω−1∇̃µ̃∇̃ν̃ Ω for some nowhere vanishing invariant function Ω

In particular, one can show that the (Anti)-de Sitter wave is foliated by (A)dS Carroll manifolds
(cf. also Figueroa-O’Farrill, Prohazka 18’).

2 Bargmannian manifolds: Bekaert, K.M. 15’, K.M. Part II
Allowing for torsional Bargmannian geometries permits to lift/embed any Galilean/Carrollian
manifold into a Bargmannian manifold.



Ambient problems
One can distinguish in a more refined way between three classes of ambient problems:

1 Generic lifting problem
Given a Galilean geometry G, find an ambient geometry (M , ξ,m) such that G 'M/R

2 Torsionfree lifting problem
Given a torsionfree Galilean geometry G, find a torsionfree ambient geometry (M , ξ,m) such
that G 'M/R

3 Homogeneous lifting problem
Given a homogeneous Galilean geometry G, find a homogeneous ambient geometry (M , ξ,m)
such that G 'M/R



Ambient problems
One can distinguish in a more refined way between three classes of ambient problems:

1 Generic embedding problem
Given a Carrollian geometry C, find an ambient geometry (M , ψ,m) such that C is isomorphic
to a hypersurface of the foliation Ker ψ

2 Torsionfree embedding problem
Given a torsionfree Carrollian geometry C, find a torsionfree ambient geometry (M , ψ,m) such
that C is isomorphic to a hypersurface of the foliation Ker ψ

3 Homogeneous embedding problem
Given a homogeneous Carrollian geometry C, find a homogeneous ambient geometry
(M , ψ,m) such that C is isomorphic to a hypersurface of the foliation Ker ψ



Ambient problems
One can distinguish in a more refined way between three classes of ambient problems:

1 Generic embedding problem
Given a Carrollian geometry C, find an ambient geometry (M , ψ,m) such that C is isomorphic
to a hypersurface of the foliation Ker ψ

2 Torsionfree embedding problem
Given a torsionfree Carrollian geometry C, find a torsionfree ambient geometry (M , ψ,m) such
that C is isomorphic to a hypersurface of the foliation Ker ψ

3 Homogeneous embedding problem
Given a homogeneous Carrollian geometry C, find a homogeneous ambient geometry
(M , ψ,m) such that C is isomorphic to a hypersurface of the foliation Ker ψ

Bargmann scoreboard:

Ambient manifold Ambient problem Lifting
(Galilean)

Embedding
(Carrollian)

Bargmann

Generic Full Full

Torsionfree Partial Partial

Homogeneous Full Partial



Homogeneous problem
(Bargmann version)

Homogeneous lifting problem into Bargmann:

Galilei: Duval, Burdet, Künzle, Perrin 85’

(A)dS Galilei: Gibbons, Patricot 03’

Torsional Galilei: Figueroa-O’Farrill, Grassie, Prohazka 22’

Homogeneous embedding problem into Bargmann:

Carroll: Duval, Gibbons, Horvathy, Zhang 14’

No go: (A)dS Carroll does not admit an embedding
into a homogeneous Bargmannian manifold.

Question: Does there exist other possible ambient
geometries where to lift/embed all homogeneous Galilean
and Carrollian manifolds?



Leibnizian geometry
Bekaert, K.M. 15’

Definition
A Leibnizian structure is a quadruplet (M , ξ, ψ, γ) where

M is a smooth manifold of dimension d+ 2.

ξ ∈ Γ(TM ) is a nowhere vanishing vector field.

ψ ∈ Ω(M ) is a nowhere vanishing 1-form annihilating ξ i.e. ψ(ξ) = 0.

γ ∈ Γ
(
∨2 (Ker ψ)∗

)
is a positive semi-definite rank d covariant metric acting on Γ(Ker ψ)

and whose radical is spanned by ξ i.e. γ(X, ·) = 0⇔ X ∼ ξ.

A Leibnizian structure endowed with a compatible connection:

∇ξ = 0 , ∇ψ = 0 , ∇γ = 0

is called a Leibnizian manifold (M , ξ, ψ, γ,∇).

The intrinsic torsion (Figueroa-O’Farrill 20’) of a Leibnizian structure is given by dψ ⊕ Lξγ.

Any Bargmannian manifold (M , ξ, g,∇) induces a Leibnizian manifold (M , ξ, ψ, γ,∇)
upon the identification:

ψ := g(ξ) , γ := g|Ker ψ.



Leibnizian geometry
Bekaert, K.M. 15’

Example
Flat Leibniz structure

Let M ∼= Rd+2 be a (d+ 2)-dimensional spacetime coordinatised by (u, t, xi) where i ∈ {1, . . . , d}.

The Leibniz metric structure is defined as the quadruplet (M , ξ, ψ, γ) where:

ξ = ∂u , ψ = dt and where γ = δij dx
i ⊗ dxj acts on Ker ψ.

The quotient M̄ = M/R is isomorphic to the flat Galilei structure:

ψ = dt and where γ = δij dx
i ⊗ dxj acts on Ker ψ.

The hypersurfaces M̃t characterised by t = const are isomorphic to the flat Carroll structure:

ξ = ∂u and where γ = δij dx
i ⊗ dxj acts on the whole TM̃t.

More generally, any (torsionfree) Galilean/Carrollian manifold can be lifted/embedded into a

(torsionfree) Leibnizian manifold (generic and torsionfree lifting/embedding problem).



Leibnizian geometry
Bekaert, K.M. 15’

Example
Flat Leibniz structure

Let M ∼= Rd+2 be a (d+ 2)-dimensional spacetime coordinatised by (u, t, xi) where i ∈ {1, . . . , d}.

The Leibniz metric structure is defined as the quadruplet (M , ξ, ψ, γ) where:

ξ = ∂u , ψ = dt and where γ = δij dx
i ⊗ dxj acts on Ker ψ.

Flat Leibniz manifold

Endowing the Leibniz metric structure with the flat connection∇ with Γ = 0 yields the flat Leibniz
manifold whose isometry algebra:

g :=
{
X ∈ Γ

(
TM
)
| LXξ = 0,LXψ = 0,LXγ = 0 and LX∇ = 0

}
is the Leibniz algebra g = Span {M,H,P, C,D,K, J}:[

D,K
]

= C ,
[

K, H
]

= P ,
[

D,P
]

= M ,
[
C,H

]
= M

spanned by:
M = ∂u , H = ∂t , Pi = ∂i

C = −t ∂u , Di = −xi∂u , Ki = −t∂i , Jij = xi∂j − xj∂i.



Possible ambient kinematics
K.M. Part II

The Leibniz algebra has maximal dimension in spacetime dimension d+ 2. However, it does not
contain a so(d+ 1) subalgebra hence it is not a kinematical algebra in (d+ 2)-dimensions.

We define the concept of ambient kinematical algebra:

Definition
An ambient kinematical algebra in d spatial dimensions is a (d+3)(d+2)

2 -dimensional Lie algebra

g = Span {M,H,P, C,D,K, J}

and satisfying the following properties:

1 The generators J span a so(d) Lie algebra.
2 The generator M,H and C are in the scalar representation of so(d).
3 The generators P, D and K are in the vector representation of so(d).

An ambient Klein pair is a pair (g, h) where h = Span {C,D,K, J} is a subalgebra of g.

Of particular interest for the ambient approach is the following subclass:

Definition
A Leibnizian pair is an ambient Klein pair satisfying:

Adg/h(M) = 0 , Adg/h(H∗) = 0 , Adg/h(γ) = 0 on Ker H∗.



Lifting kinematical algebras
K.M. Part II

Any kinematical algebra in (d+ 2) spacetime dimensions induces an ambient kinematical algebra in
d spatial dimensions via:

H 7→ H , P0 7→M , P 7→ P , K0 7→ C , K 7→ K , J0i 7→ D , J 7→ J.

Example: Galilei in ambient form [
K, H

]
∼ P ,

[
C,H

]
∼M[

D,M
]
∼ −P ,

[
D,P
]
∼M ,

[
D, C
]
∼ −K ,

[
D,K
]
∼ C ,

[
D,D
]
∼ −J.

By construction, a kinematical algebra in ambient form possesses a canonical subalgebra
(the original kinematical algebra in d spatial dimension) spanned by {H,P,K, J}.

Performing an İnönü-Wigner contraction along this subalgebra yields a new algebra for which
i = {M,C,D} is a canonical ideal.

Applying this procedure to the Galilei algebra yields the Leibniz algebra, which is ensured by
construction to project on the Galilei algebra.



Lifting kinematical algebras
K.M. Part II

Any kinematical algebra in (d+ 2) spacetime dimensions induces an ambient kinematical algebra in
d spatial dimensions via:

H 7→ H , P0 7→M , P 7→ P , K0 7→ C , K 7→ K , J0i 7→ D , J 7→ J.

Example: Galilei in ambient form (after İnönü-Wigner contraction)[
K, H

]
∼ P ,

[
C,H

]
∼M

�����[
D,M

]
∼ −P ,

[
D,P
]
∼M , �����[

D, C
]
∼ −K ,

[
D,K
]
∼ C , �����[

D,D
]
∼ −J.

By construction, a kinematical algebra in ambient form possesses a canonical subalgebra
(the original kinematical algebra in d spatial dimension) spanned by {H,P,K, J}.

Performing an İnönü-Wigner contraction along this subalgebra yields a new algebra for which
i = {M,C,D} is a canonical ideal.

Applying this procedure to the Galilei algebra yields the Leibniz algebra, which is ensured by
construction to project on the Galilei algebra.



Lifting Galilean algebras
K.M. Part II

Repeating the procedure for all effective Galilean kinematical pairs (Figueroa-O’Farrill, Prohazka 18’):

Algebra
[
h, h
]

= h
[
h, p
]

= p
[
p, p
]

= h (Curvature)
[
p, p
]

= p (Torsion)

Galilei
[

K, H
]

= P[
K, H

]
= P

[
H,P
]

= P

α+ ≥ 0
[

K, H
]

= P
[
H,P
]

= K
[
H,P
]

= α+P

α− ≥ 0
[

K, H
]

= P
[
H,P
]

= −K
[
H,P
]

= α−P

yields effective Leibnizian pairs:

Algebra
[
h, h
]

= h
[
h, p
]

= p
[
p, p
]

= h (Curvature)
[
p, p
]

= p (Torsion)

Leibniz
[

D,K
]

= C
[

K, H
]

= P,
[
C,H

]
= M ,

[
D,P
]

= M[
D,K
]

= C
[

K, H
]

= P,
[
C,H

]
= M ,

[
D,P
]

= M
[
H,P
]

= P,
[
H,M

]
= M

α+ ≥ 0
[

D,K
]

= C
[

K, H
]

= P,
[
C,H

]
= M ,

[
D,P
]

= M
[
H,P
]

= K,
[
H,M

]
= C

[
H,P
]

= α+P,
[
H,M

]
= α+M

α− ≥ 0
[

D,K
]

= C
[

K, H
]

= P, ,
[
C,H

]
= M ,

[
D,P
]

= M
[
H,P
]

= −K,
[
H,M

]
= −C

[
H,P
]

= α−P,
[
H,M

]
= α−M

thus allowing to solve the homogeneous lifting problem for Leibnizian geometry.



Lifting homogeneous Galilean manifolds
K.M. Part II

Each of these Leibnizian algebras can be realised as isometry algebra

g :=
{
X ∈ Γ

(
TM
)
| LXξ = 0,LXψ = 0,LXγ = 0 and LX∇ = 0

}
of the flat Leibniz structure:

ξ = ∂u , ψ = dt and where γ = δij dx
i ⊗ dxj acts on Ker ψ

endowed with a compatible connection:

Γuut Γutt Γitt Γijt
(0, 0) 0 0 0 0
(1, 0) −1 0 0 −δij

(α+, 1) −α+ u xi −α+δ
i
j

(α−, 1) −α− −u −xi −α−δij

These connections all satisfy Lξ∇ ∼ ξ and
T (ξ, ·) ∼ ξ and hence are projectable.

Homogeneous (projective) Leibnizian manifolds

The quotient M/R is isomorphic to the flat Galilei structure:

ψ = dt and where γ = δij dx
i ⊗ dxj acts on Ker ψ

endowed with the compatible connection:

Γitt Γijt
(0, 0) 0 0
(1, 0) 0 −δij

(α+, 1) xi −α+δ
i
j

(α−, 1) −xi −α−δij

Homogeneous Galilean manifolds



Mirroring ambient algebras
K.M. Part II

Any kinematical algebra in (d+ 2) spacetime dimensions induces an ambient kinematical algebra in
d spatial dimensions via:

H 7→ H , P0 7→M , P 7→ P , K0 7→ C , K 7→ K , J0i 7→ D , J 7→ J.

Example: Galilei in ambient form[
h, h
]

= h
[
h, p
]

= p[
D, C
]
∼ −K,

[
D,K
]
∼ C,

[
D,D
]
∼ −J

[
K, H

]
∼ P,

[
C,H

]
∼M ,

[
D,M

]
∼ −P,

[
D,P
]
∼M

Performing the exchange D↔ P yields the mirror algebra:

Example: Mirror image of Galilei in ambient form (withM 7→ −M )[
h, p
]

= p
[
p, p
]

= h (Curvature)
[
h, p
]

= h (Non-reductivity)[
D,P
]
∼M ,

[
C,H

]
∼ −M

[
M,P

]
∼ −D,

[
P,P
]
∼ −J

[
K, H

]
∼ D,

[
C,P
]
∼ K,

[
K,P
]
∼ −C

The obtained pair (g, h) is Leibnizian and effective, albeit non-reductive.

It provides a non-reductive embedding of dS Carroll into a Leibnizian pair.



Homogeneous problem
(Leibniz version) K.M. Part II

Homogeneous lifting problem into Leibniz:

Galilei

(A)dS Galilei

Torsional Galilei

Homogeneous embedding problem into Leibniz:

Carroll

(A)dS Carroll





Conclusion

Main point

Ambient is fun: many novel algebraic and geometric structures to explore

Leibniz as a « maximal » alternative to Bargmann:

Ambient manifold Ambient problem Lifting
(Galilean)

Embedding
(Carrollian)

Bargmann

Generic Full Full

Torsionfree Partial Partial

Homogeneous Full Partial

Leibniz

Generic Full Full

Torsionfree Full Full

Homogeneous Full Full

Perspectives

Classify ambient kinematical and Aristotelian effective Klein pairs

Explore the corresponding Cartan geometries and their embedding power

BMS like extension of Leibnizian algebras



Ambient Aristotelian geometries
Starting from a Leibnizian manifold (M , ξ, ψ, γ,∇) one can define various ambient Aristotelian
geometries by supplementing it with an additional (compatible) canonical structure:

1 G-Ari manifolds endowed with a canonical Ehresmann connection A

A(ξ) = 1 and∇A = 0

2 C-Ari manifolds endowed with a canonical field of observers N

ψ(N) = 1 and∇N = 0.

3 Bargmannian manifolds endowed with a canonical Lagrangian metric g

g(ξ) = ψ , g|Ker ψ = γ and∇g = 0.

The intersection between any
two of the above structures is
called a Lifshitzian manifold.

Bargmann
g

G-Ari
A

C-Ari
N

Lifshitz
N,A


	Appendix

