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Start from: Math.DG/0504582, Duke Math (2007), w/ C. LeBrun
and: Adamo, M. & Sharma 2103.16984,
to construct global SD metrics & full amplitudes from I .
Work in progress with C. LeBrun
+ some extra on amplitudes & Strominger’s Lw1+∞.



Holography from null infinity, and amplitudes

▶ Celestial Holography seeks to
find boundary theory that
constructs 4d gravity from I .

▶ Newman ’70’s: tries to rebuild
space-time from ‘cuts’ of I .

▶ Yields instead ‘H-space’ a
complex self-dual space-time.
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I

      

▶ Penrose: ; asymptotic Twistor space
PT ∼ CP3, the nonlinear graviton.

▶ Embodies integrability of SD sector.
▶ Chiral sigma models in twistor space give

full 4d gravity S-matrix expanding around
self-dual sector.



Flat holography: the split signature story from I
Caroll geometry for split signature

Now I = R× S1 × S1 with real coords (u, λ, λ̃), λ = λ1/λ0.

ds2 =
1

R2

(
dudR − dλd λ̃+ Rσd λ̃2 + Rσ̃dλ2 + . . .

)
,

where R = 1/r , and I = {R = 0}.
▶ The σ, σ̃ are now real asymptotic shears that encode

gravitational data.
▶ σ encodes SD sector and σ̃ the ASD sector.
▶ Split signature ; real ‘twistors’ = totally null SD 2-planes.
▶ Twistors intersect I in null geodesics in λ = const. planes:

u = Z (λ, λ̃),
∂2Z
∂λ̃2

= σ(Z , λ, λ̃) .

▶ We will show how twistor construction encodes (σ, σ̃) into
twistor data h(U), h̃(Ũ) encoding Lw1+∞ action.

SD sector arises by solving open disk chiral sigma model, and
gives formulae for perturbations about SD sector.



Conformal self-duality in 4d, split signature
Recall on 4d manifold (M4,g),

Ω2
M =

Ω2+

⊕
Ω2−

 , Riem =

(
Weyl+ + Sδ Ricci0

Ricci0 Weyl− + Sδ

)
.

This talk: focus on Ricci = 0 = Weyl−, so Ω2− is flat.

Conformal group = SO(3,3) acts on global models:
▶ Conformally flat models: S2 × S2 or S2 × S2/Z2:

ds2 = Ω2(ds2
S2

x
− ds2

S2
y
) ,

Coordinates (x,y) ∈ R3 × R3, |x| = |y| = 1.
▶ Z2 acts by (x,y)→ (−x,−y).
▶ For Λ = 0 : Ω = 1

x3−y3
, and I = R× S1 × S1.

▶ (For Λ ̸= 0: Ω = 1/y3, and I = S2 × S1.)



α and β-surfaces and the Zollfrei condition
The split signature conformally flat metric

ds2 = Ω2(ds2
S2

x
− ds2

S2
y
) ,

admits a 3-parameter family of β-planes denoted by PTR:
▶ respectively totally null ASD S2s given by

x = Ay , A ∈ SO(3) = RP3 .

▶ Weyl− = 0⇒ β-planes survive as β-surfaces.
▶ β-surfaces are projectively flat.
▶ If compact, β-surfaces are necessarily S2 or RP2.
▶ Null geodesics are projectively RP1s or double cover.

Following Guillemin we define:

Definition
An indefinite space (Md ,g) is (strongly) Zollfrei if all null
geodesics are embedded S1s (of same projective length).



Conformally self-dual case
Theorem (LeBrun & M. [Duke Math J. 2007, math.dg/0504582.)
Let (M4, [g]) be Zollfrei with SD Weyl-curvature. Then either
▶ M = S2 × S2/Z2 with the standard conformally flat

conformal structure, or
▶ M = S2 ×S2 and there is a 1 : 1-correspondence between

1. SD conformal structures on S2 × S2 near flat model &
2. Deformations of the standard embedding of RP3 ⊂ CP3

modulo reparametrizations of RP3 and PGL(4,C) on CP3.

The deformed embedded RP3 is space of β planes PTR and
CP3 is a complex twistor space.

Data encoded in graph



Reconstruction of M from twistor space PTR
Each x ∈ M ↔ holomorphic disc Dx ⊂ CP3 with ∂Dx ⊂ PTR.
▶ Dx generates the degree-1 class in H2(CP3,PTR,Z) = Z.
▶ Reconstruct M from PTR space of all such disks:

M = {Moduli of degree-1 hol. disks: Dx ⊂ CP3, ∂Dx ⊂ PTR}

▶ Gives compact 4d moduli space
▶ M admits a conformal structure for which ∂Dx ∩ ∂Dx ′ = Z

means that x , x ′ sit on same β-plane:

X ′

X
Zx

x′

Space-time Twistor Space



Restriction to Einstein vacuum case

Which PTR ⊂ CP3 give SD Einstein g ∈ [g] on S2 × S2?
▶ Let Z A, A = 1, . . . ,4 be homogenous coordinates for CP3.
▶ Introduce real skew εABCD and

IAB = I[AB], IAB =
1

2
εABCDICD, with IABIAC = 0 .

▶ To define contact and Poisson structures on CP3

θ = IABZ AdZ B ∈ Ω1(2) , {f ,g} := IAB ∂f
∂Z A

∂g
∂Z B

of homogeneity degree 2 and −2 respectively & rank 2.

Theorem
A vacuum g ∈ [g] exists when θ|PTR & { , }PTR are real.



Generating functions for Einstein embeddings
Explicitly in homogeneous coordinates:
▶ Let Z A = UA + iV A,UA,V A ∈ R4.
▶ Let h(U) be an arbtrary function of homogeneity degree 2,

U · ∂h
∂U

= 2h.

Proposition
All ‘small’ Einstein vacuum twistor data↔ h(U) by setting

TR =

{
Z A = UA + iIAB ∂h

∂UB

}
projectivising gives PTR.
The corresponding SD (2,2) vacuum metrics are Zollfrei on
S2 × S2 with null I modelled by x3 = y3.
The Poisson bracket underpins Strominger’s Lw1+∞ structure,
[Adamo, M., Sharma, 2110.06066.]. Here Lw1+∞ acts canonically on

{SD gravity phase space} = LwC
1+∞/Lw1+∞ ∋ h(U)



Holography: SD vacuum spaces from I
Twistor space can be constructed from σ at I :
▶ At fixed λα, real twistor coords µα̇ parametrize null

geodesics u = Z (λ̃) in I where

∂2
λ̃
Z = σ(Z , λ̃, λ).

Defines projective structure on each λ = const..
▶ Flat σ = 0 case has u = µα̇λ̃α̇.
▶ In general ∃ nonlinear correspondence [Lebrun & M, JDiffGeom. ’02]:

{σ ̸= 0} 1:1←→ {h(U)} ,

gives I ↔ PTR ⊂ PT at each fixed λ.
▶ Transform between I -data (σ, σ̃) and twistor data

(h(U), h̃(U)) is nonlinear analogue of radon transform

σ(u, λ̃, λ) = ∂2
u

∫ ∞

−∞
dt h(µα̇ + t λ̃α̇, λα) .

in α-planes at I (cf light-ray transform).



Examples:
▶ Let Z A = (λα, µ

α), α, β = 0,1; set εαβ = ε[αβ] and

θ = λαdλβε
αβ , {f ,g} = εαβ

∂f
∂µα

∂g
∂µβ

,

▶ λα real on PTR; if µα̇ = uα + ivα, take h = h(uαλα, λα) so

vα = λαḣ .

▶ Use λα as homogeneous coordinates on the hol. disks,
expressed as graphs by

µα = xαβλβ + (t + g(x , λ))λα, xαβ = x (αβ) .

where

g(xαβ, λ) =

∮
λ0 − iλ1

λ′
0 − iλ′

1

1
⟨λλ′⟩

ḣ((xαβλ′
αλ

′
β, λ

′
α)Dλ′

▶ Gives split signature version of Gibbons-Hawking metrics

ds2 = Vdx·dx+V−1(dt+ω)2 , dV =∗ dω , V =

∮
ḧDλ .

But now V satisfies 2 + 1 wave equation!



Open chiral twistor sigma models
Hol. disks in PT with boundary on PTR are given in
homogeneous coordinates by

Z A(σ) : D → T , Z A|σ=σ̄ ∈ TR .

representing D by upper-half-plane D = {σ ∈ C,ℑσ ≥ 0}.
▶ For k points σi ∈ R, and Z A

i ∈ TR, ∃! deg k −1 disk thru Zi :

Z A(σ) =
k∑

i=1

Z A
i

σ − σi
+ M(σ) , M(σ) holomorphic on D.

▶ For Z = (λα, µ
α̇) ∈ TR implies λα real.

▶ Therefore MA = (0,mα̇), but mα̇ ̸= 0 unless h = 0.
▶ Action for holomorphy and boundary conditions:

SD[Z (σ),Zi ] =

∫
D
[m ∂̄m]dσ +

∮
∂D

h(Z )dσ

using spinor-helicity notation [µ ν] := µα̇ν
α̇, ⟨1 2⟩ := κ1ακ

α
2 .



Sigma model and gravity S-matrix on SD background
Amplitudes are functionalsM[h, h̃i ] of gravitational data:
▶ h ∈ C∞(PTR,O(2))for fully nonlinear SD part,
▶ h̃i ∈ C∞(PTR,O(−6)), i = 1, . . . , k , ASD perturbations.
▶ For eigenstates of momentum kiαα̇ = κiακ̃iα̇ take:

hi =

∫
dt
t3 δ

2(tλα−κiα)eit[µ,κ̃i ], h̃i =

∫
dt
t−5 δ

2(tλα−κiα)eit[µ,κ̃i ]

Proposition (Adapted from [Adamo, M. & Sharma, 2103.16984] to split signature. )
The amplitude for k ASD perturbations on SD background h is

M(h, h̃i) =

∫
(S1×PTR)k

Sos
D [h,Zi , σi ] det

′H̃
k∏

i=1

h̃i(Zi)D3Zidσi .

Here Sos
D [h,Zi , σi ] is the on-shell Sigma model action and

H̃ij(Zi) =


⟨λiλj ⟩
σi−σj

i ̸= j

−
∑

l
⟨λiλl ⟩
σi−σj

, i = j .



Ideas in proof
▶ Expand h = hk+1 + . . .+ hn to 1st order in momentum

e-states hi to give flat background perturbative amplitude.
▶ On shell action expands as tree correlator

Sos
D [hk+1 + . . .+ hn,Zi , σi ] = ⟨Vhk+1 . . .Vhn⟩tree + O(h2

i ) .

▶ Here the ‘vertex operators’ are Vhi =
∫
∂D hi(σi)dσi .

▶ Propagators for SD give Poisson bracket { , }

⟨hihj⟩tree =
[∂µhi ∂µhj ]

σi − σj
=

[i j]
σi − σj

hihj , i ̸= j .

▶ Matrix-tree theorem then gives

⟨hk+1 . . . hn⟩tree = det ′H
n∏

i=k+1

hi , Hij =
[ij]

σi − σj
, i ̸= j etc.

; M(hi , h̃i) =

∫
(S1)n×(RP3)k

det ′H det ′H̃
n∏

j=k+1

hjdσj

k∏
i=1

h̃i(Zi)D3Zidσi .

This is now equivalent to the Cachazo-Skinner formula.



Relation to Einstein-Hilbert action at k = 2
[Adamo, M, Sharma, 2103.1239

At k = 2, det ′H̃ and Mobius symmetry trivialises σ integrals so

M[h, h̃1, h̃2] =

∫
d2µ1d2µ2 ei[µ1 1]+i[µ2 2]Sos

D [h,Z1,Z2]

▶ Writing xαα̇ = (µα̇
1 , µ

α̇
2 ) this a space-time integral

M[h, h̃1, h̃2] =

∫
d4x eik1·x+ik2·xSos

D [h, µ1, µ2]

Proposition
Let Ω(x) := Sos

D [h, µ1, µ2]. Then Ω is the Plebanskis first
potential (Kahler scalar) for the SD background metric

ds2 = ∂2Ω

∂µα̇
1 ∂µ

β̇
2

dµα̇
1 dµβ̇

2 .

The second variation of the Einstein-Hilbert action

δ2SEH[h, h̃1, h̃2] =

∫
d4xei(k1+k2)·x Ω(x) =M[h, h̃1, h̃2]

(Follows from Plebanski gravity action. )



Conclusions and open problems

▶ We have rigidity of conformally-flat SD split signature
vacuum metrics with I = S1 × S1 × R/Z2.

▶ Have construction for split signature SD vacuum metrics
on S2 × S2 with I ≃ S1 × S1 × R depending on smooth
sections h of O(2) over RP3 defining deformed real slice.

▶ Similar results follow for Λ ̸= 0 where h↔ 2 + 1 signature
conformal structure of I = S2 × S1.

▶ Reconstruction via open holomorphic discs leads to chiral
open sigma model that computes gravity amplitudes.

▶ MHV formula gives theory underlying tree formalism of
Bern et. al. from 1998.

▶ Framework gives full expression of Lw1+∞ symmetries.
Slogan: SD gravity phase space = LwC

1+∞/Lw1+∞
▶ Split signature twistors avoid ‘lightray transform’ or

Čech-Dolbeult manifesting Lw1+∞ directly.


