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The aim of this talk is to discuss some mathematical work in the direction of
understanding the physical asymptotic behaviour of gravitational radiation in gravitational
collapse or similar astrophysical situations.

It turns out that this is very closely related to the issue of modelling isolated systems in
general relativity.
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GENERAL RELATIVITY

▶ Formulated by Einstein during 1912–1915
▶ Contemporary understanding of gravitational physics
▶ Many new predictions: gravitational waves, black holes,

singularities, cosmology . . .

▶ The objects of study are (3+1)-dimensional Lorentzian manifolds (M, g) with
signature sign(g) = (−,+,+,+) solving the Einstein equations (Λ = 0):
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▶ The objects of study are (3+1)-dimensional Lorentzian manifolds (M, g) with
signature sign(g) = (−,+,+,+) solving the Einstein equations (Λ = 0):

Rµν −
1
2

Rgµν = 2Tµν , (EE)

where Tµν corresponds to matter fields.
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THE INITIAL VALUE PROBLEM IN GR

▶ General relativity is a dynamical theory.
▶ Einstein equations are hyperbolic (in suitable gauge)

and admit well-posed initial value formulation.
▶ Initial data are given by a 3d Riemannian manifold

(Σ, ḡ) together with a symmetric 2-tensor k.

Theorem (Choquet-Bruhat, 1952, (1969 with Geroch), Sbierski 2013).
For suitably regular initial data (Σ, ḡ, k) solving the constraint equations, there exists a unique
maximal globally hyperbolic development (M, g) solving the Einstein equations (EE).
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PENROSE DIAGRAMS

▶ Penrose diagrams are extremely practical tools for visualising the causal structure
of a spacetime. Take e.g. the Minkowski spacetime (R3+1,−dt2 + dr2 + r2dΩS2 ).
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▶ Penrose diagrams are extremely practical tools for visualising the causal structure
of a spacetime. Take e.g. the Minkowski spacetime (R3+1,−dt2 + dr2 + r2dΩS2 ).

▶ In double null coordinates u = t − r, v = t + r, the metric reads −4dudv + r2dΩS2 .
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Mapping the double null coordinates (u, v) to a set of bounded double null
coordinates, (e.g. U = arctan u, V = arctan v) gives:
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I+ corresponds to the set of limit points {v = ∞}, I− corresponds to {u = −∞}.
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THE SCHWARZSCHILD BLACK HOLE EXTERIOR

▶ For M > 0, define (MM, gM) with MM = Rt × (2M,∞)r × S2 and

gM = −
(

1 −
2M

r

)
dt2 +

(
1 −

2M
r

)−1
dr2 + r2dΩS2 . (1)

These are solutions to the Einstein vacuum equations and describe the exterior of
a spherically symmetric black hole of mass M.

▶ Define r∗ = r + 2M log |r/2M − 1|, and let u = t − r∗, v = t + r∗. Then

gM = −4
(

1 −
2M

r

)
dudv + r2dΩS2 . (2)
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FOUR OVERARCHING QUESTIONS

(i) In gravitational collapse, what is the
(measurable?) asymptotic behaviour
of gravitational radiation at late times?

(ii) How is this asymptotic behaviour
along I+ related to asymptotic
behaviour towards I+?

(iii) What is the asymptotic behaviour of
gravitational radiation towards I+?
(To what degree is peeling satisfied?
Is I+ smooth in the sense of Penrose?)

(iv) How is the asymptotic behaviour
towards I+ related to the structure of
gravitational radiation in the infinite
past?
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Aim of this talk is to show how all these questions are related and to provide answers
to these questions within a simple model!
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THE SETUP

Consider the linearised Einstein vacuum equations around the exterior of
Schwarzschild:

gM = −4(1 − 2M/r)dudv + r2(dθ2 + sin2 θdφ2)
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THE EQUATIONS OF LINEARISED GRAVITY
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▶ Miraculously, the two extremal components of the Weyl curvature tensor Ψ0, Ψ4,
then satisfy decoupled wave equations, from which one can moreover control∗

the rest of the system:
T [s]

gM Ψ|s|±s = 0, s = ±2 (Teukolsky)

▶ To ease presentation, we will occasionally focus on the simpler wave equation

□gMϕ(= ∇µ∇µϕ) = 0 (Wave)
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THE QUESTION OF LATE-TIME ASYMPTOTICS

▶ We address the question of late-time tails in the context of an initial value problem:

▶ Given data for ϕ on some hyperboloidal initial hypersurface Σ, what is the
asymptotic behaviour of ϕ near i+?

i+

I+H+

Σ

data for φ

▶ Understanding the asymptotics along H+ is important for understanding
problems related to the Strong Cosmic Censorship Conjecture

▶ On the other hand, one could hope for the asymptotics along I+ to eventually
become physically measurable

Of course, the asymptotics one obtains will depend on the exact assumptions one
makes on data. But what assumptions to make on data?
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CASE (I): INITIAL DATA FOR ϕ ARE OF COMPACT SUPPORT

i+

rφ
` =
?φ `

=
?

Σ

▶ But: Assumption of compact support not compatible with model of isolated
system!
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▶ These late-time tails were originally predicted by Price and are called “Price’s

law” tails [Price, Gundlach, Pullin, Leaver...]
▶ Only recently proved rigorously in independent works by

[Angelopoulos–Aretakis–Gajic] and [Hintz]
▶ Constants Cℓ,C′

ℓ are given by integrals over initial data and are generically
non-zero iff M ̸= 0
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ASIDE: MODELLING ISOLATED SYSTEMS IN GR

▶ Representing isolated systems in GR is a non-trivial endeavour since there is no
fixed background metric on which fields propagate.

▶ One approach to this problem that has historically gained a lot of traction is
Penrose’s proposal to model isolated systems by spacetimes whose conformal
structure is smoothly extendable to I+. Such spacetimes are known as
asymptotically simple spacetimes, or spacetimes with a smooth null infinity.

Implied by this assumption of smooth null infinity is the infamous Sachs peeling
property. Loosely speaking, this states that various zero rest-mass fields have a power
series expansion in 1/r as null infinity is approached along null geodesics.
In particular, the following decay behaviour of the Weyl tensor is implied:

Ψj = O(r−5+j) towards I+,Ψ4−j = O(r−5+j) towards I−
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CASE (II): CONFORMALLY REGULAR/ PEELING INITIAL DATA

In the spirit of Penrose, let us now assume data that are conformally regular and satisfy
peeling, i.e. data that have an expansion in powers of 1/r.

i+

rφ
` =
C
ù −
1−
`+φ `

=
C
′ v̀
−2
`−
2 +

Σ

φ = A0

r
+ A1

r2
+ A2

r3
+ . . .

▶ Proved by [Angelopoulos–Aretakis–Gajic] as well
▶ Decay rates one power slower than in case of localised data
▶ Constants Cℓ,C′

ℓ are linear combinations of MℓA1,Mℓ−1A2 . . . ,Aℓ+1

▶ Faster decay for higher ℓ-modes related to existence of certain conserved charges.
In Minkowski (M = 0):

∂u(r−2ℓ∂v(r2∂v)
ℓ(rϕℓ)) = 0 (3)
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▶ Faster decay for higher ℓ-modes related to existence of certain conserved charges.
In Minkowski (M = 0):

∂u(r−2ℓ∂v(r2∂v)
ℓ(rϕℓ)) = 0 (3)
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SKETCH OF THE PROOF I

▶ Consider first ℓ = 0 = M. Then the conservation law ∂u(r−2ℓ∂v(r2∂v)ℓ(rϕℓ)) = 0
reads ∂u∂v(rϕ0) = 0.

▶ Since we have on data that ∂v(rϕ0) ∼ −A1
r2 ∼ −A1

v2 , we thus get that

∂v(rϕ0) ∼ −A1
v2 everywhere.

▶ This implies the conservation of the ℓ = 0-Newman–Penrose charge:

lim
v→∞

v2∂v(rϕ0)(u, v) =: INP
0 [ϕ](u) ≡ −A1 (4)

i+

Σ

γ
u ∼ v

▶ Can moreover extend this conservation law a bit away from I+:
∂v(rϕ0) ∼ INP

0 [ϕ]v−2 in depicted region.
▶ Finally, integrate this from γ:

rϕ0 − rϕ0|γ ∼ INP
0 [ϕ]

(
1
u
−

1
v

)
v → ∞ : =⇒ rϕ0|I+ ∼

INP
0 [ϕ]

u
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SKETCH OF THE PROOF II

▶ For higher ℓ-modes, can now perform a similar argument, but with rϕ0 replaced
by (r2∂v)ℓ(rϕℓ). (Recall ∂u(r−2ℓ∂v(r2∂v)ℓ(rϕℓ)) = 0 in Minkowski.)

▶ The main observation is that if the data are conformally regular
(ϕ = A0

r + A1
r2 + A2

r3 + . . . ), then

∂v(r2∂v)
ℓ(rϕℓ)|Σ ∼ r−2 ∼ v−2 (6)

for any ℓ > 0, even though extra r-weights are introduced!

i+

Σ

γ
u ∼ v

▶ Can again extend this a bit away from I+: ∂v(r2∂v)ℓ(rϕℓ) ∼ v−2

in depicted region.
▶ Finally, integrate this ℓ+ 1 times from γ, each time picking up a

1/u-factor:

rϕℓ|I+ ∼
INP
ℓ [ϕ]

uℓ+1

Note: The actual “conserved quantity” is not (r2∂v)ℓ(rϕℓ), but

Φℓ :=

ℓ∑
i=0

x(ℓ)i · Mi ·
(

r2∂v

1 − 2M
r

)ℓ−i

(rϕℓ). (7)

To be precise, INP
ℓ [ϕ] := limv→∞ r2∂vΦℓ is conserved along I+.
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ASIDE: GENERALISING TO TEUKOLSKY

The asymptotic analysis for the Teukolsky equation is actually very similar:

▶ It turns out that one can write down very similar conservation laws for it. If
M = 0, then

∂u(r−2ℓ∂v(r2∂v)
ℓ−s(r|s|+s+1Ψ

|s|−s
ℓ )) = 0, s = ±2 (8)

▶ Thus, roughly speaking, the ℓ-th mode of rΨ4 behaves like the ℓ+ 2-nd mode of
rϕ.

▶ Similarly, the ℓ-th mode of r5Ψ0 behaves like the ℓ− 2-nd mode of rϕ. (Recall that
the lowest angular mode for Ψ|s|−s is ℓ = 2 = |s|.)

▶ For instance, for compactly supported data, one would get

rΨ4
ℓ=2|I+ ∼ rϕℓ=4|I+ ∼ u−ℓ−2 = u−6.

For conformally smooth data, one would get

rΨ4
ℓ=2|I+ ∼ rϕℓ=4|I+ ∼ u−ℓ−1 = u−5

This has recently been proved by [Ma–Zhang].
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CASE (III): CONFORMALLY IRREGULAR INITIAL DATA

The assumption of conformal regularity is only motivated by formal ideas, not by
physical arguments.

What happens if we assume data that are not conformally regular?

i+

rφ
` =
?φ `

=
?

Σ

φ = A0

r
+ A∗

r2
log r + . . .

Let’s revisit the previous proof!
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SKETCH OF THE PROOF I
▶ Consider first ℓ = 0 = M. Then the conservation law ∂u(r−2ℓ∂v(r2∂v)(rϕℓ)) = 0

reads ∂u∂v(rϕ0) = 0.
▶ Since we have on data that ∂v(rϕ0) ∼ −A1

r2 ∼ −A1
v2 , we thus get that

∂v(rϕ0) ∼ −A1
v2 everywhere.

▶ If M ̸= 0, no longer have global conservation law. Instead:

∂u∂v(rϕ0) = −
(

1 −
2M

r

)
2M · rϕ0

r3
(9)

▶ If M ̸= 0, no longer have global conservation law. Instead:

v2·∂u∂v(rϕ0) = −
(

1 −
2M

r

)
2M · rϕ0

r3
·v2 → 0 (10)

▶ This implies the conservation of the ℓ = 0-Newman–Penrose charge:

lim
v→∞

v2∂v(rϕ0) =: INP
0 [ϕ] ≡ −A1 (11)

i+

Σ

γ
u ∼ v

▶ Can moreover extend this conservation law a bit away from I+:
∂v(rϕ0) ∼ INP

0 [ϕ]v−2 in depicted region.
▶ Finally, integrate this from γ:

rϕ0 − rϕ0|γ ∼ INP
0 [ϕ]

(
1
u
−

1
v

)
v → ∞ : =⇒ rϕ0|I+ ∼

INP
0 [ϕ]

u
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SKETCH OF THE PROOF I
▶ Consider first ℓ = 0 = M. Then the conservation law ∂u(r−2ℓ∂v(r2∂v)ℓ(rϕℓ)) = 0

reads ∂u∂v(rϕ0) = 0.
▶ Since we have on data that ∂v(rϕ0) ∼ −A1

r2 log r ∼ −A1
v2 log v, we thus get that

∂v(rϕ0) ∼ −A1
v2 log v everywhere.

▶ If M ̸= 0, no longer have global conservation law. Instead:

∂u∂v(rϕ0) = −
(

1 −
2M

r

)
2M · rϕ0

r3
(12)

▶ If M ̸= 0, no longer have global conservation law. Instead:

v2 log−1 v·∂u∂v(rϕ0) = −
(

1 −
2M

r

)
2M · rϕ0

r3
·v2 log−1 v → 0 (13)

▶ This implies the conservation of the modified ℓ = 0-Newman–Penrose charge:

lim
v→∞

v2log−1 v∂v(rϕ0) =: INP,log
0 [ϕ] ≡ −A1 (14)

i+

Σ

γ
u ∼ v

▶ Can moreover extend this conservation law a bit away from I+:
∂v(rϕ0) ∼ INP,log

0 [ϕ]v−2log v in depicted region.
▶ Finally, integrate this from γ:

rϕ0 − rϕ0|γ ∼ INP,log
0 [ϕ]

(
log u

u
−

log v
v

)
v → ∞ : =⇒ rϕ0|I+ ∼

INP,log
0 [ϕ]log u

u
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SKETCH OF THE PROOF II

▶ For higher ℓ-modes, can now perform a similar argument, but with rϕ0 replaced
by (r2∂v)ℓ(rϕℓ). (Recall ∂u(r−2ℓ∂v(r2∂v)ℓ(rϕℓ)) = 0 in Minkowski.)

▶ The main observation is that if the data are conformally regular
(ϕ = A0

r + A1
r2 + A2

r3 + . . . ), then

∂v(r2∂v)
ℓ(rϕℓ)|Σ ∼ r−2 ∼ v−2 (15)

for any ℓ > 0, even though extra r-weights are introduced!

i+

Σ

γ
u ∼ v

▶ Can again extend this a bit away from I+: ∂v(r2∂v)ℓ(rϕℓ) ∼ v−2

in depicted region.
▶ Finally, integrate this ℓ+ 1 times from γ, each time picking up a

1/u-factor:

rϕℓ|I+ ∼
INP
ℓ [ϕ]

uℓ+1
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▶ The main observation is that if the data are conformally irregular
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r + A1
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∂v(r2∂v)
ℓ(rϕℓ)|Σ ∼ rℓr−2 ∼ vℓv−2 (16)

for any ℓ > 0, so extra r-weights are introduced!

i+

Σ

γ
u ∼ v

▶ Can again extend this a bit away from I+:
∂v(r2∂v)ℓ(rϕℓ) ∼ v−2vℓ in depicted region.

▶ Finally, integrate this ℓ+ 1 times from γ, each time picking up a
1/u-factor:

rϕℓ|I+ ∼
uℓ

uℓ+1
=

1
u

The above is a simplification. The actual conserved quantity is

INP,r−ℓ

ℓ [ϕ] := lim
v→∞

r−ℓ · r2∂vΦℓ(u, v) (17)
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CASE (III): CONFORMALLY IRREGULAR INITIAL DATA

What happens if we assume data that are not conformally regular?

i+ rφ
` = {
C
0 u −

1
log u+

C
ù −
1
+

φ `
=

{ C
′
0
v
−`
−2

lo
g v
+

C
′ v̀
−`
−2 +

Σ

φ = A0

r
+ A∗

r2
log r + . . .

▶ Constants Cℓ, C′
ℓ are nonvanishing multiples of A∗ (independent of M!).

▶ Higher ℓ-modes no longer decay faster along I+!

=⇒ If your solution is conformally irregular, then the cause of this irregularity is
precisely what you would measure in the late-time tails!
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▶ Constants Cℓ, C′
ℓ are nonvanishing multiples of A∗ (independent of M!).

▶ Higher ℓ-modes no longer decay faster along I+!

=⇒ If your solution is conformally irregular, then the cause of this irregularity is
precisely what you would measure in the late-time tails!
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SUMMARY

▶ We have seen so far that the precise behaviour along Σ, in particular towards I+,
matters a lot.

▶ Specifically, the degree to which peeling is violated determines what is measured
at late times. (See also [Kroon ’21].)

▶ Aside: In fact, the stronger the violation of peeling, the easier (and more robust)
the argument becomes!
▶ For instance, it is expected that in the non-linear setting, the non-stationary terms will

dominate for higher ℓ-modes (or higher spin fields) if the data are compactly supported.
[Bizoń–Chmaj–Rostworowski, upcoming work by Luk–Oh]

▶ One might expect that if the data are instead sufficiently conformally irregular, then the
linear effects (which are moreover completely Minkowskian) will continue to dominate!

▶ We will now try and understand dynamically what the behaviour towards I+

should be!
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[Bizoń–Chmaj–Rostworowski, upcoming work by Luk–Oh]

▶ One might expect that if the data are instead sufficiently conformally irregular, then the
linear effects (which are moreover completely Minkowskian) will continue to dominate!

▶ We will now try and understand dynamically what the behaviour towards I+

should be!

27 / 42



TABLE OF CONTENTS

1. Background and Overview

2. The Question of Late-Time Asymptotics/Tails

3. The Question of Early-Time Asymptotics/Peeling/Smooth Null Infinity

4. Bringing everything together

28 / 42



FOUR OVERARCHING QUESTIONS

(i) In gravitational collapse, what is the
(measurable?) asymptotic behaviour
of gravitational radiation at late times?

(ii) How is this asymptotic behaviour
along I+ related to asymptotic
behaviour towards I+?

(iii) What is the asymptotic behaviour of
gravitational radiation towards I+?
To what degree is peeling satisfied? Is
I+ smooth in the sense of Penrose?

(iv) How is the asymptotic behaviour
towards I+ related to the structure of
gravitational radiation in the infinite
past?
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THE SCHEMATIC PICTURE

Analytical treatment of N infalling masses too difficult (for now). Instead, capture the
radiation emitted by the N infalling masses using Post-Newtonian Theory
[Walker–Will, Damour, Christodoulou...].
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THE MODEL SETUP

Analytical treatment of N infalling masses too difficult (for now). Instead, capture the
radiation emitted by the N infalling masses using Post-Newtonian Theory
[Walker–Will, Damour, Christodoulou...].

C ”N
ew
s =

0”
??

in
fa
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n
g
m
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se
s

??
I+

▶ Let the masses be enclosed by a null
cone C

▶ On C, impose data for the linearised
vacuum Einstein equations around
Schwarzschild motivated by
perturbative arguments

▶ Impose that no radiation is coming in
from past null infinity, i.e. vanishing
gauge-independent part of the News
along I−

This will give rise to a scattering problem for the linearised Einstein vacuum equations!
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SKETCH OF THE POST-NEWTONIAN PREDICTION

▶ [MTW, Thorne ’80: Multipole expansions of gravitational radiation] Decompose
into multipoles

hTT
jk =

∑
ℓ≥2

ℓ∑
m=−ℓ

[r−1(ℓ)Iℓ,m(t − r)Tℓ,m
jk + . . . ], (18)

where the (ℓ)Iℓ,m are the (ℓ)-th derivatives of the mass multipole moments, which
are general functions of retarded time u = t − r.

▶ Using (higher and higher order) Post-Newtonian approximations, one can now
relate these multipole moments to the Newtonian multipole expressions:

Iℓ,m ∼
∫

τ00XAℓ
d3x ∼ Qℓ

▶ Can then compute the Weyl components. At quadrupolar level (ℓ = 2):

Ψ0
ℓ=2 ∼

Q2(u)
r5

Ψ4
ℓ=2 ∼

d4

du4

Q2(u)
r

Obtain similar expressions for higher ℓ-modes.
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THE MODEL SETUP

Analytical treatment of N infalling masses too difficult (for now). Instead, capture the
radiation emitted by the N infalling masses using Post-Newtonian Theory
[Walker–Will, Damour, Christodoulou...].
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I+

▶ Let the masses be enclosed by a null
cone C

▶ On C, impose data for the linearised
vacuum Einstein equations around
Schwarzschild: Ψ0 ∼ Au2/r5 ∼ Ar−3.

▶ Impose that no radiation is coming in
from past null infinity, i.e. vanishing
gauge-independent part of the News
along I−. In particular:
∂v(rΨ0)|I− = 0

Very roughly, can now uniquely solve this scattering problem (joint work with H.
Masaood)!
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THE APPROXIMATE CONSERVATION LAW FOR THE TEUKOLSKY
EQUATION

The asymptotic analysis of the solutions arising from this scattering problem again
makes crucial use of certain approximate conservation laws for the Teukolsky
equations. Each fixed angular mode Ψ0

ℓ satisfies:

∂u

( 1 − 2M
r

r2

)ℓ

∂v

(
r2∂v

1 − 2M
r

)ℓ

(r5Ψ0
ℓ) + . . .


= MCℓr−2ℓ−3

(
r2∂v

1 − 2M
r

)ℓ

(r5Ψ0
ℓ) + . . . , (19)

where . . . denotes lower order terms that I will ignore for the sake of presentation.

In particular, for the lowest angular mode ℓ = 2, we schematically have:

∂u(r−4∂v(r5Ψ0)) = Mr−7 · r5Ψ0.
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ANALYSIS OF THE CORRESPONDING SOLUTION

▶ For simplicity, focus on ℓ = 2, and recall that schematically

∂u(r−4∂v(r5Ψ0)) = Mr−7 · r5Ψ0. (20)

▶ (Not entirely) standard energy estimates give the very weak preliminary estimate
|Ψ0| ≲ r−1

▶ Insert this into (20) and integrate from u = −∞:

|r−4∂v(r5Ψ0)| ≲
∫ u

−∞

M
r

du ≲
M
r

▶ In turn, integrate this from C, to obtain that

|r5Ψ0 − r5Ψ0|C | ≲
∫

r dv ≲ r
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▶ In turn, integrate this from C, to obtain that

|r5Ψ0 − r5Ψ0|C | ≲
∫

r2 dv ≲ r3

▶ This improves the initial bound |Ψ0| ≲ r−1 to |Ψ0| ≲ r−2. Can iterate the two
integrations above to obtain the sharp decay:
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▶ In turn, integrate this from C, to obtain that

|r5Ψ0 − r5Ψ0|C | ≲
∫

r0 dv ≲ r1

In particular, we now have r5Ψ0 = Au2 + . . . . Finally, inserting this back into (20)
gives

r−4∂v(r5Ψ0) =

∫ u

−∞

MAu2

r7
+· · · =

MA
4r4

+· · · =⇒ r5Ψ0 = Au2+
MAr

4
+. . . (21)
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▶ The backscatter of radiation near spatial infinity leads to I+ not being smooth if
there is mass near spatial infinity: Ψ0

ℓ=2 ∼ MAr−4 as r → ∞ along constant u

▶ By again considering quantities which roughly look like (r2∂v)ℓ−2(r5Ψ0
ℓ), we

obtain the same rate for all other ℓ-modes
▶ Similar arguments (but with a slight twist) also apply to Ψ4: Obtain near I+ that

Ψ4 = 1
r + 1

r2 + 1
r3 + MA log r

r4 + . . .

▶ Finally, we remark that the limit limr→∞,u=const r4Ψ0 is conserved along I+, and
entirely determines the leading order late-time asymptotics.
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FOUR OVERARCHING QUESTIONS

(i) In gravitational collapse, what is the
(measurable?) asymptotic behaviour
of gravitational radiation at late times?

(ii) How is this asymptotic behaviour
along I+ related to asymptotic
behaviour towards I+?

(iii) What is the asymptotic behaviour of
gravitational radiation towards I+?
To what degree is peeling satisfied? Is
I+ smooth in the sense of Penrose?

(iv) How is the asymptotic behaviour
towards I+ related to the structure of
gravitational radiation in the infinite
past?

in
fa
ll
in
g
m
as
se
s

i+

I+H+

I−

i−

i0

(iv)

Σ

co
ll
ap

se

(i)

(iii)

(ii)

38 / 42
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SITUATION FOR GRAVITATIONAL PERTURBATIONS

Upcoming work (Gajic-K. ’22,
K.–Masaood ’22,’23).
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Ψ 4
∼
|u| −4

Ψ
0 ∼

r
−4

▶ Under physical setup (infalling
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WHAT WE HAVEN’T TALKED ABOUT AND WHAT IS TO COME

▶ We focussed only on gauge-invariant quantities Ψ0 and Ψ4. Rest of the system?
Scattering construction? Questions of gauge? Can you Bondi normalise the
solutions?

▶ For instance, rΨ4|I+ ∼ u−3 =⇒ N ∼ u−2, with N the Bondi News (which
appears in the Bondi mass loss formula as ∂uM = −

∫
S2 |N|2)

▶ The fact that each ℓ-mode contributes at the same order in decay leads to
mathematical difficulties as well as difficulties with the perturbative approach

▶ Asymptotics near spatial infinity interesting for many applications, e.g. antipodal
matching

▶ Many tools to address the full, non-linear problem are now available
▶ Can we replace the Post-Newtonian part of the argument by mathematically

understanding certain matter models?
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FURTHER THINGS TO THINK ABOUT

▶ Given these rates for the Weyl tensor, what is the optimal regularity with which
one can conformally compactify?

▶ Can one put the Post-Newtonian methods on a firmer footing?
▶ Can ’classical soft theorem’ methods reproduce these results?

Thank you so much for your attention :)
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