BMS algebra in 3d and 4d BF theory

Christophe Goeller

based on 2011.09873 (with Marc Geiller and Nelson Merino), 2012.05263 (with Marc Geiller), to-be-published in the following weeks (with Marc Geiller, Florian Girelli and Peter Tsimiklis)

15, September 2022
Second Carroll workshop, Mons

Introduction

Symmetries are a centerpiece in understanding (gauge) theories with boundaries
\rightarrow What are the fundamental degrees of freedom/new physics arising at the boundary?

Introduction

```
Symmetries are a centerpiece in understanding (gauge) theories with boundaries
```

\rightarrow What are the fundamental degrees of freedom/new physics arising at the boundary?
Not so simple model: 4D gravity.

- Can be understood as a $B F$ theory with additional constraint: Plebaǹski formulation Buffenoir, Henneaux, Plebaǹski, Noui, Roche...
- I will focus on $4 D$ BF theory instead of gravity.

Introduction

```
Symmetries are a centerpiece in understanding (gauge) theories with boundaries
```

\rightarrow What are the fundamental degrees of freedom/new physics arising at the boundary?
Not so simple model: 4D gravity.

- Can be understood as a $B F$ theory with additional constraint: Plebaǹski formulation Buffenoir, Henneaux, Plebaǹski, Noui, Roche...
- I will focus on $4 D$ BF theory instead of gravity.

Simple model: 3D gravity. Topological but not trivial theory!

- Lots of interesting features: black hole, coupling to point particle, massive gravity, relation to quantum groups, rather well-understood quantization...

Bañados, Carlip, Deser, Freidel, Girelli, Jackiw, Noui, Ponzano, Regge, Teitelboim, Witten, Zanelli...

- I will be interested in the $B F$ formulation of 3 D gravity.

Introduction

 Symmetries are a centerpiece in understanding (gauge) theories with boundaries\rightarrow What are the fundamental degrees of freedom/new physics arising at the boundary?
Not so simple model: 4D gravity.

- Can be understood as a $B F$ theory with additional constraint: Plebaǹski formulation Buffenoir, Henneaux, Plebaǹski, Noui, Roche...
- I will focus on $4 D$ BF theory instead of gravity.

Simple model: 3D gravity. Topological but not trivial theory!

- Lots of interesting features: black hole, coupling to point particle, massive gravity, relation to quantum groups, rather well-understood quantization...

Bañados, Carlip, Deser, Freidel, Girelli, Jackiw, Noui, Ponzano, Regge, Teitelboim, Witten, Zanelli...

- I will be interested in the $B F$ formulation of 3 D gravity.

> Structure of the boundary symmetry algebra?
> at finite distance and without imposing anything on the fields

Gravity as a 3D BF theory

- Theory of first order gravity with Lie algebra $(\mathfrak{s u}(2))$ valued
triad 1-form e and connection 1-form ω with curvature $F[\omega]=\mathrm{d} \omega+\frac{1}{2}[\omega \wedge \omega]$
- The Lagrangian reads

$$
L[e, \omega]:=2 e \wedge F+\frac{\lambda}{3} e \wedge[e \wedge e]
$$

Variation of the Lagrangian?

$$
\delta L=\mathrm{d}(2 \delta \omega \wedge e)+\delta e \wedge(2 F+\lambda[e \wedge e])+2 \delta \omega \wedge \mathrm{~d}_{\omega} e
$$

$2 F+\lambda[e \wedge e] \hat{=} 0$

$$
\mathrm{d}_{\omega} e \hat{=} \begin{aligned}
& \text { on-shell of torsion } \\
& \text { equation: } \omega \hat{=} \Gamma
\end{aligned} 2 R \hat{=}-\lambda[e \wedge e]
$$

Gravity as a 3D BF theory

- What about the symmetries?

Lorentz transfo $\delta_{\alpha}^{j}, \alpha$ any Lie element $\delta_{\alpha}^{j} e:=[e, \alpha] \quad$ and $\quad \delta_{\alpha}^{j} \omega:=\mathrm{d}_{\omega} \alpha$
"Translation" transfo, $\delta_{\varphi}^{t}, \varphi$ any Lie element

$$
\delta_{\varphi}^{t} e:=\mathrm{d}_{\omega} \varphi \quad \text { and } \quad \delta_{\varphi}^{t} \omega:=\lambda[e, \varphi]
$$

Gravity as a 3D BF theory

- What about the symmetries?

Lorentz transfo $\delta_{\alpha}^{j}, \alpha$ any Lie element $\delta_{\alpha}^{j} e:=[e, \alpha] \quad$ and $\quad \delta_{\alpha}^{j} \omega:=\mathrm{d}_{\omega} \alpha$
"Translation" transfo, $\delta_{\varphi}^{t}, \varphi$ any Lie element

$$
\delta_{\varphi}^{t} e:=\mathrm{d}_{\omega} \varphi \quad \text { and } \quad \delta_{\varphi}^{t} \omega:=\lambda[e, \varphi]
$$

- The underlying algebraic structure is the 6 -dimensional algebra

$$
\left[J_{i}, T_{j}\right]=\epsilon_{i j}{ }^{k} T_{k} \quad\left[J_{i}, J_{j}\right]=\epsilon_{i j}{ }^{k} J_{k} \quad\left[T_{i}, T_{j}\right]=-\lambda \epsilon_{i j}{ }^{k} J_{k}
$$

Gravity as a 3D BF theory

- What about the symmetries?

Lorentz transfo $\delta_{\alpha}^{j}, \alpha$ any Lie element

$$
\delta_{\alpha}^{j} e:=[e, \alpha] \quad \text { and } \quad \delta_{\alpha}^{j} \omega:=\mathrm{d}_{\omega} \alpha
$$

"Translation" transfo, $\delta_{\varphi}^{t}, \varphi$ any Lie element

$$
\delta_{\varphi}^{t} e:=\mathrm{d}_{\omega} \varphi \quad \text { and } \quad \delta_{\varphi}^{t} \omega:=\lambda[e, \varphi]
$$

- The underlying algebraic structure is the 6 -dimensional algebra

$$
\left[J_{i}, T_{j}\right]=\epsilon_{i j}{ }^{k} T_{k} \quad\left[J_{i}, J_{j}\right]=\epsilon_{i j}{ }^{k} J_{k} \quad\left[T_{i}, T_{j}\right]=-\lambda \epsilon_{i j}{ }^{k} J_{k}
$$

- By its very definition, the theory is also invariant under diffeomorphism, more on that in a minute

$$
\delta_{\xi}^{d}(e, \omega):=\mathcal{L}_{\xi}(e, \omega)
$$

Gravity as a 3D BF theory

- What about the symmetries?

Lorentz transfo $\delta_{\alpha}^{j}, \alpha$ any Lie element

$$
\delta_{\alpha}^{j} e:=[e, \alpha] \quad \text { and } \quad \delta_{\alpha}^{j} \omega:=\mathrm{d}_{\omega} \alpha
$$

"Translation" transfo, $\delta_{\varphi}^{t}, \varphi$ any Lie element

$$
\delta_{\varphi}^{t} e:=\mathrm{d}_{\omega} \varphi \quad \text { and } \quad \delta_{\varphi}^{t} \omega:=\lambda[e, \varphi]
$$

- The underlying algebraic structure is the 6 -dimensional algebra

$$
\left[J_{i}, T_{j}\right]=\epsilon_{i j}{ }^{k} T_{k} \quad\left[J_{i}, J_{j}\right]=\epsilon_{i j}{ }^{k} J_{k} \quad\left[T_{i}, T_{j}\right]=-\lambda \epsilon_{i j}{ }^{k} J_{k}
$$

- By its very definition, the theory is also invariant under diffeomorphism, more on that in a minute

$$
\delta_{\xi}^{d}(e, \omega):=\mathcal{L}_{\xi}(e, \omega)
$$

- Charges via the covariant phase space formalism, we need the symplectic structure

$$
\Omega=-2 \int_{\Sigma} \delta \omega \wedge \delta e
$$

Fundamental symmetry algebra of 3D BF

- From the general formula in the covariant phase space formalism, we can easily deduce the Lorentz and translation perhaps-not-integrable charges

$$
\phi \mathcal{J}(\alpha) \hat{=} \oint_{S} \alpha \delta e \quad \text { and } \quad \phi \mathcal{T}(\varphi) \hat{=} \oint_{S} \varphi \delta \omega
$$

Fundamental symmetry algebra of 3D BF

- From the general formula in the covariant phase space formalism, we can easily deduce the Lorentz and translation perhaps-not-integrable charges

$$
\phi \mathcal{J}(\alpha) \hat{=} \oint_{S} \alpha \delta e \quad \text { and } \quad \phi \mathcal{T}(\varphi) \hat{=} \oint_{S} \varphi \delta \omega
$$

Integrability without conditions on the fields

$$
\alpha \text { and } \varphi \text { do not depend on the fields: } \delta \alpha=\delta \varphi=0
$$

These conditions give the charges

$$
\mathcal{J}(\alpha) \hat{=} \int_{S} \alpha e \quad \text { and } \quad \mathcal{T}(\varphi) \hat{=} \int_{S} \varphi \omega
$$

associated to the 6 -dimensional algebra

$$
\begin{aligned}
& \{\mathcal{J}(\alpha), \mathcal{T}(\varphi)\}=\mathcal{T}([\alpha, \varphi])-2 \oint_{S} \alpha \mathrm{~d} \varphi \\
& \{\mathcal{J}(\alpha), \mathcal{J}(\beta)\}=\mathcal{J}([\alpha, \beta]) \\
& \{\mathcal{T}(\varphi), \mathcal{T}(\chi)\}=-\lambda \mathcal{J}([\varphi, \chi])
\end{aligned}
$$

About diffeomorphisms?

- Talking about diffeomorphisms, we think Lie derivatives

$$
\delta_{\xi}^{d}(e, \omega):=\mathcal{L}_{\xi}(e, \omega)
$$

About diffeomorphisms?

- Talking about diffeomorphisms, we think Lie derivatives

$$
\delta_{\xi}^{d}(e, \omega):=\mathcal{L}_{\xi}(e, \omega)
$$

- They can also be understood as field-dependent gauge transformations

$$
\left.\left.\delta_{\xi}^{d} e=\left(\delta_{\xi\lrcorner \omega}^{j}+\delta_{\xi\lrcorner e}^{t}\right) e+\xi\right\lrcorner \mathrm{d}_{\omega} e \quad \delta_{\xi}^{d} \omega=\left(\delta_{\xi\lrcorner \omega}^{j}+\delta_{\xi\lrcorner e}^{t}\right) \omega+\frac{1}{2} \xi\right\lrcorner(2 F e-\lambda[e \wedge e])
$$

About diffeomorphisms?

- Talking about diffeomorphisms, we think Lie derivatives

$$
\delta_{\xi}^{d}(e, \omega):=\mathcal{L}_{\xi}(e, \omega)
$$

- They can also be understood as field-dependent gauge transformations

$$
\left.\left.\delta_{\xi}^{d} e=\left(\delta_{\xi\lrcorner \omega}^{j}+\delta_{\xi\lrcorner e}^{t}\right) e+\xi\right\lrcorner \mathrm{d}_{\omega} e \quad \delta_{\xi}^{d} \omega=\left(\delta_{\xi\lrcorner \omega}^{j}+\delta_{\xi\lrcorner e}^{t}\right) \omega+\frac{1}{2} \xi\right\lrcorner(2 F e-\lambda[e \wedge e])
$$

The diffeo charge is generally not integrable, even with $\delta \xi=0$

$$
\left.\left.\left.\left.\phi \mathcal{D}(\xi) \hat{=} \oint_{S} \delta(2(\xi\lrcorner \omega) e\right)-\xi\right\lrcorner \theta=\not \subset \mathcal{J}(\xi\lrcorner \omega\right)+\not{ }^{\mathcal{T}}(\xi\lrcorner e\right)
$$

Integrability without conditions on the fields

$$
\xi=\left(0,0, \xi^{\varphi}\right) \text { is a tangent vector to } S
$$

and the one-dimensional algebra of diffeo is

$$
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\}=-\mathcal{D}([\xi, \zeta])
$$

BMS in 3D BF theory

Let's forget about the Lie derivative. Diffeo (with $\delta \xi=0$) are "just" particular generators of the sub-algebra of quadratic charges within the envelopping algebra of $(\mathcal{J}, \mathcal{T})$

$$
\mathcal{D}(\xi)=\mathcal{J}(\xi\lrcorner \omega)+\mathcal{T}(\xi\lrcorner e)
$$

BMS in 3D BF theory

Let's forget about the Lie derivative. Diffeo (with $\delta \xi=0$) are "just" particular generators of the sub-algebra of quadratic charges within the envelopping algebra of $(\mathcal{J}, \mathcal{T})$

$$
\mathcal{D}(\xi)=\mathcal{J}(\xi\lrcorner \omega)+\mathcal{T}(\xi\lrcorner e)
$$

- What is the most general quadratic charge one can consider?
$\rightarrow(a, b, c, d)$ such that $\phi \mathcal{H}(\xi)=\delta \mathcal{H}(\xi)$ and the corresponding algebra is closed

BMS in 3D BF theory

Let's forget about the Lie derivative. Diffeo (with $\delta \xi=0$) are "just" particular generators of the sub-algebra of quadratic charges within the envelopping algebra of $(\mathcal{J}, \mathcal{T})$

$$
\mathcal{D}(\xi)=\mathcal{J}(\xi\lrcorner \omega)+\mathcal{T}(\xi\lrcorner e)
$$

- What is the most general quadratic charge one can consider?

$$
\phi \mathcal{H}(\xi)=a \not \subset \mathcal{J}(\xi\lrcorner \omega)+b \not \subset \mathcal{J}(\xi\lrcorner e)+c \not \subset \mathcal{T}(\xi\lrcorner \omega)+d \not \subset \mathcal{T}(\xi\lrcorner e)
$$

$\rightarrow(a, b, c, d)$ such that $\phi \mathcal{H}(\xi)=\delta \mathcal{H}(\xi)$ and the corresponding algebra is closed

$$
\left.\left.\mathcal{D}^{*}(\xi)=-\lambda \mathcal{J}(\xi\lrcorner e\right)+\mathcal{T}(\xi\lrcorner \omega\right) \quad \text { with action } \delta_{\xi}^{d^{*}} e=\mathcal{L}_{\xi} \omega, \quad \delta_{\xi}^{d^{*}} \omega=-\lambda \mathcal{L}_{\xi} e
$$

Their algebra is

$$
\begin{aligned}
&\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\}=-\mathcal{D}([\xi, \zeta]) \\
&\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\}=-\mathcal{D}^{*}([\xi, \zeta]) \\
&\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\}=-\lambda \mathcal{D}([\xi, \zeta]) \\
& \mathfrak{w i t t} \oplus \mathfrak{w i t t}
\end{aligned} \quad \lambda \rightarrow 0 \quad \begin{aligned}
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\} & =-\mathcal{D}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\} & =-\mathcal{D}^{*}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\} & =0
\end{aligned}
$$

4D BF theory

- 4D BF theory

$$
L=\langle\mathcal{B} \wedge \mathcal{F}\rangle-\kappa\langle\mathcal{B} \wedge \mathcal{B}\rangle
$$

with Lie algebra valued 2 -form \mathcal{B} and connection 1-form \mathcal{A}

- What about the symmetries?

Lorentz transfo $\delta_{\alpha}^{j}, \alpha$ any Lie element

$$
\delta_{\alpha}^{j} \mathcal{B}=[\mathcal{B}, \alpha] \quad \text { and } \quad \delta_{\alpha}^{j} \mathcal{A}=\mathrm{d}_{\mathcal{A}} \alpha
$$

Translation transfo, $\delta_{\varphi}^{t}, \varphi$ any Lie valued 1-form

$$
\delta_{\varphi}^{t} \mathcal{B}=\mathrm{d}_{\mathcal{A} \varphi} \quad \text { and } \quad \delta_{\varphi}^{t} \mathcal{A}=2 \kappa \varphi
$$

- Charges?

$$
\not \subset \mathcal{J}(\alpha)=\oint_{S}\langle\alpha, \delta \mathcal{B}\rangle \quad \text { and } \quad \not \subset \mathcal{T}(\varphi)=-\oint_{S}\langle\varphi \wedge \delta \mathcal{A}\rangle
$$

4D BF theory

- 4 D BF theory

$$
L=\langle\mathcal{B} \wedge \mathcal{F}\rangle-\kappa\langle\mathcal{B} \wedge \mathcal{B}\rangle
$$

with Lie algebra valued 2 -form \mathcal{B} and connection 1-form \mathcal{A}

- What about the symmetries?

Lorentz transfo $\delta_{\alpha}^{j}, \alpha$ any Lie element

$$
\delta_{\alpha}^{j} \mathcal{B}=[\mathcal{B}, \alpha] \quad \text { and } \quad \delta_{\alpha}^{j} \mathcal{A}=\mathrm{d}_{\mathcal{A}} \alpha
$$

Translation transfo, $\delta_{\varphi}^{t}, \varphi$ any Lie valued 1-form

$$
\delta_{\varphi}^{t} \mathcal{B}=\mathrm{d}_{\mathcal{A} \varphi} \quad \text { and } \quad \delta_{\varphi}^{t} \mathcal{A}=2 \kappa \varphi
$$

- Charges?

$$
\not \subset \mathcal{J}(\alpha)=\oint_{S}\langle\alpha, \delta \mathcal{B}\rangle \quad \text { and } \quad \nless \mathcal{T}(\varphi)=-\oint_{S}\langle\varphi \wedge \delta \mathcal{A}\rangle
$$

- Diffeos are again field-dependent gauge transformations

$$
\left.\left.\not \subset \mathcal{D}(\xi)=\not)^{\mathcal{J}}(\xi\lrcorner \mathcal{A}\right)+\not \subset \mathcal{T}(\xi\lrcorner \mathcal{B}\right), \quad\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\}=-\mathcal{D}([\xi, \zeta])
$$

4D BF theory

- 4 D BF theory

$$
L=\langle\mathcal{B} \wedge \mathcal{F}\rangle-\kappa\langle\mathcal{B} \wedge \mathcal{B}\rangle
$$

with Lie algebra valued 2 -form \mathcal{B} and connection 1-form \mathcal{A}

- What about the symmetries?

Lorentz transfo $\delta_{\alpha}^{j}, \alpha$ any Lie element

$$
\delta_{\alpha}^{j} \mathcal{B}=[\mathcal{B}, \alpha] \quad \text { and } \quad \delta_{\alpha}^{j} \mathcal{A}=\mathrm{d}_{\mathcal{A}} \alpha
$$

Translation transfo, $\delta_{\varphi}^{t}, \varphi$ any Lie valued 1-form

$$
\delta_{\varphi}^{t} \mathcal{B}=\mathrm{d}_{\mathcal{A}} \varphi \quad \text { and } \quad \delta_{\varphi}^{t} \mathcal{A}=2 \kappa \varphi
$$

- Charges?

$$
\phi \mathcal{J}(\alpha)=\oint_{S}\langle\alpha, \delta \mathcal{B}\rangle \quad \text { and } \quad \not \subset \mathcal{T}(\varphi)=-\oint_{S}\langle\varphi \wedge \delta \mathcal{A}\rangle
$$

- Diffeos are again field-dependent gauge transformations

$$
\phi \mathcal{D}(\xi)=\not \subset \mathcal{J}(\xi\lrcorner \mathcal{A})+\not \subset \mathcal{T}(\xi\lrcorner \mathcal{B}), \quad\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\}=-\mathcal{D}([\xi, \zeta])
$$

- \mathcal{A} and \mathcal{B} are forms of different degrees! We cannot "swap" the argument of $(\mathcal{J}, \mathcal{T})$ as in 3d

BMS like structure in 4D BF?

- "(boost+rotation)" decomposition of $g=\mathfrak{s o}(4), \mathfrak{s o}(3,1), \mathfrak{s o}(2,2), \mathfrak{i s o}(2,1), \mathfrak{i s o}(3)$

$$
\left[J_{i}, J_{j}\right]=\epsilon_{i j}{ }^{k} J_{k}, \quad\left[P_{i}, P_{j}\right]=\lambda \epsilon_{i j}{ }^{k} J_{k}, \quad\left[J_{i}, P_{j}\right]=\epsilon_{i j}{ }^{k} P_{k}
$$

with pairings

$$
\left\langle P_{i}, J_{j}\right\rangle=\mu_{1} \eta_{i j}
$$

$$
\left\langle P_{i}, P_{j}\right\rangle=\mu_{2} \lambda \eta_{i j}
$$

$$
\left\langle J_{i}, J_{j}\right\rangle=\mu_{2} \eta_{i j}
$$

BMS like structure in 4D BF?

- "(boost+rotation)" decomposition of $g=\mathfrak{s o}(4), \mathfrak{s o}(3,1), \mathfrak{s o}(2,2), \mathfrak{i s o}(2,1), \mathfrak{i s o}(3)$

$$
\left[J_{i}, J_{j}\right]=\epsilon_{i j}{ }^{k} J_{k}, \quad\left[P_{i}, P_{j}\right]=\lambda \epsilon_{i j}{ }^{k} J_{k}, \quad\left[J_{i}, P_{j}\right]=\epsilon_{i j}{ }^{k} P_{k}
$$

with pairings

$$
\left\langle P_{i}, J_{j}\right\rangle=\mu_{1} \eta_{i j}
$$

$$
\left\langle P_{i}, P_{j}\right\rangle=\mu_{2} \lambda \eta_{i j}
$$

$$
\left\langle J_{i}, J_{j}\right\rangle=\mu_{2} \eta_{i j}
$$

- Fields decomposition $\mathcal{A}=A_{1}^{i} J_{i}+A_{2}^{i} P_{i} \quad$ and $\quad \mathcal{B}=B_{1}^{i} J_{i}+B_{2}^{i} P_{i}$
- Charges?

$$
\not \mathcal{J}_{1}\left(\alpha_{1}\right)=\oint_{S} \alpha_{1} \delta \mathcal{B}_{1} \quad \phi \mathcal{J}_{2}\left(\alpha_{2}\right)=\oint_{S} \alpha_{2} \delta \mathcal{B}_{2} \quad \phi \mathcal{T}_{1}\left(\varphi_{1}\right)=\oint_{S} \varphi_{1} \wedge \delta \mathcal{A}_{1} \quad \phi \mathcal{T}_{2}\left(\varphi_{2}\right)=-\oint_{S} \varphi_{2} \wedge \delta \mathcal{A}_{2}
$$

BMS like structure in 4D BF?

- "(boost+rotation)" decomposition of $g=\mathfrak{s o}(4), \mathfrak{s o}(3,1), \mathfrak{s o}(2,2), \mathfrak{i s o}(2,1)$, $\mathfrak{i s o}(3)$

$$
\left[J_{i}, J_{j}\right]=\epsilon_{i j}^{k} J_{k}, \quad\left[P_{i}, P_{j}\right]=\lambda \epsilon_{i j}^{k} J_{k}, \quad\left[J_{i}, P_{j}\right]=\epsilon_{i j}^{k} P_{k}
$$

with pairings

$$
\left\langle P_{i}, J_{j}\right\rangle=\mu_{1} \eta_{i j}
$$

$$
\left\langle P_{i}, P_{j}\right\rangle=\mu_{2} \lambda \eta_{i j}
$$

$$
\left\langle J_{i}, J_{j}\right\rangle=\mu_{2} \eta_{i j}
$$

- Fields decomposition $\mathcal{A}=A_{1}^{i} J_{i}+A_{2}^{i} P_{i} \quad$ and $\quad \mathcal{B}=B_{1}^{i} J_{i}+B_{2}^{i} P_{i}$
- Charges?

$$
\phi \mathcal{J}_{1}\left(\alpha_{1}\right)=\oint_{S} \alpha_{1} \delta \mathcal{B}_{1} \quad \phi \mathcal{J}_{2}\left(\alpha_{2}\right)=\oint_{S} \alpha_{2} \delta \mathcal{B}_{2} \quad \phi \mathcal{T}_{1}\left(\varphi_{1}\right)=\oint_{S} \varphi_{1} \wedge \delta \mathcal{A}_{1} \quad \phi \mathcal{T}_{2}\left(\varphi_{2}\right)=-\oint_{S} \varphi_{2} \wedge \delta \mathcal{A}_{2}
$$

- What about diffeos/quadratic charges

$$
\begin{aligned}
\phi \mathcal{H}(\xi)= & \left.\left.\left.\left.a \mathcal{J}_{1}(\xi\lrcorner A_{1}\right)+b \mathcal{J}_{2}(\xi\lrcorner A_{2}\right)+e \mathcal{T}_{1}(\xi\lrcorner B_{1}\right)+f \mathcal{T}_{2}(\xi\lrcorner B_{2}\right) \\
& \left.\left.\left.\left.+c \mathcal{J}_{1}(\xi\lrcorner A_{2}\right)+d \mathcal{J}_{2}(\xi\lrcorner A_{1}\right)+g \mathcal{T}_{1}(\xi\lrcorner B_{2}\right)+h \mathcal{T}_{2}(\xi\lrcorner B_{1}\right)
\end{aligned}
$$

$\rightarrow(a, b, c, d, e, f, g, h)$ such that $\phi \mathcal{H}(\xi)=\delta \mathcal{H}(\xi)$ and the corresponding algebra is closed?

BMS like structure in 4D BF?

- "(boost+rotation)" decomposition of $g=\mathfrak{s o}(4), \mathfrak{s o}(3,1), \mathfrak{s o}(2,2), \mathfrak{i s o}(2,1)$, $\mathfrak{i s o}(3)$

$$
\left[J_{i}, J_{j}\right]=\epsilon_{i j}^{k} J_{k}, \quad\left[P_{i}, P_{j}\right]=\lambda \epsilon_{i j}^{k} J_{k}, \quad\left[J_{i}, P_{j}\right]=\epsilon_{i j}^{k} P_{k}
$$

with pairings

$$
\left\langle P_{i}, J_{j}\right\rangle=\mu_{1} \eta_{i j}, \quad\left\langle P_{i}, P_{j}\right\rangle=\mu_{2} \lambda \eta_{i j}, \quad\left\langle J_{i}, J_{j}\right\rangle=\mu_{2} \eta_{i j}
$$

- Fields decomposition $\mathcal{A}=A_{1}^{i} J_{i}+A_{2}^{i} P_{i} \quad$ and $\quad \mathcal{B}=B_{1}^{i} J_{i}+B_{2}^{i} P_{i}$
- Charges?

$$
\begin{gathered}
\phi \mathcal{J}_{1}\left(\alpha_{1}\right)=\oint_{S} \alpha_{1} \delta \mathcal{B}_{1} \quad \phi \mathcal{J}_{2}\left(\alpha_{2}\right)=\oint_{S} \alpha_{2} \delta \mathcal{B}_{2} \quad \phi \mathcal{T}_{1}\left(\varphi_{1}\right)=\oint_{S} \varphi_{1} \wedge \delta \mathcal{A}_{1} \quad \phi \mathcal{T}_{2}\left(\varphi_{2}\right)=-\oint_{S} \varphi_{2} \wedge \delta \mathcal{A}_{2} \\
\begin{array}{l}
\left.\left.\left.\left.\mathcal{D}(\xi)=\mathcal{J}_{1}(\xi\lrcorner A\right)+\mathcal{J}_{2}(\xi\lrcorner C\right)+\mathcal{T}_{1}(\xi\lrcorner B\right)+\mathcal{T}_{2}(\xi\lrcorner \Sigma\right) \\
\left.\left.\left.\left.\mathcal{D}^{*}(\xi)=\lambda \mathcal{I}_{1}(\xi\lrcorner C\right)+\mathcal{J}_{2}(\xi\lrcorner A\right)+\lambda \mathcal{T}_{1}(\xi\lrcorner \Sigma\right)+\mathcal{T}_{2}(\xi\lrcorner B\right)
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\} & =-\mathcal{D}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\} & =-\mathcal{D}^{*}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\} & =-\lambda \mathcal{D}([\xi, \zeta])
\end{aligned} \longrightarrow \lambda \rightarrow 0 \quad \begin{aligned}
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\} & =-\mathcal{D}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\} & =-\mathcal{D}^{*}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\} & =0
\end{aligned}
$$

Conclusion

$$
\begin{aligned}
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\} & =-\mathcal{D}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\} & =-\mathcal{D}^{*}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\} & =-\lambda \mathcal{D}([\xi, \zeta])
\end{aligned} \quad \lambda \rightarrow 0 \quad \begin{aligned}
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\} & =-\mathcal{D}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\} & =-\mathcal{D}^{*}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\} & =0
\end{aligned}
$$

- Obtained without any choice for the boundary and conditions on the fields
- Central charges?
\rightarrow in 3d: construction can be understood via a classical Sugawara construction. Central charges can be obtained using a twisted Sugawara construction
\rightarrow in 4d: not so clear..
- Additional relations between the choice of gauge group and the algebra of quadratics?
- What about higher-order charges? Relation to W_{N} algebra (in 3d)?
- 4D gravity: BF theory + constraints (Plebański formulation). Understanding constraints at the level of symmetry algebra and holographic theory reconstruction.

Conclusion

$$
\begin{aligned}
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\} & =-\mathcal{D}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\} & =-\mathcal{D}^{*}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\} & =-\lambda \mathcal{D}([\xi, \zeta])
\end{aligned} \ggg>\begin{aligned}
\{\mathcal{D}(\xi), \mathcal{D}(\zeta)\} & =-\mathcal{D}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}(\zeta)\right\} & =-\mathcal{D}^{*}([\xi, \zeta]) \\
\left\{\mathcal{D}^{*}(\xi), \mathcal{D}^{*}(\zeta)\right\} & =0
\end{aligned}
$$

- Obtained without any choice for the boundary and conditions on the fields
- Central charges?
\rightarrow in 3d: construction can be understood via a classical Sugawara construction. Central charges can be obtained using a twisted Sugawara construction
\rightarrow in 4d: not so clear..
- Additional relations between the choice of gauge group and the algebra of quadratics?
- What about higher-order charges? Relation to W_{N} algebra (in 3d)?
- 4D gravity: BF theory + constraints (Plebański formulation). Understanding constraints at the level of symmetry algebra and holographic theory reconstruction.

> Thank you for your attention!

