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Broad motivations

Despite the wide array of no-go theorems against interacting massless
theories in Minkowski spacetime (of dimension 4 and higher),

the cardinal importance of �at spacetime for physical applications

and the old issue of string theory symmetries in the tensionless limit

can be taken as broad motivation for studying higher-spin symmetries in
�at spacetime.
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Higher-spin motivations

Two tantalising questions:

1 What might be an analogue of the singleton in �at spacetime?

2 What might be higher-spin symmetry algebra in �at spacetime?
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Higher-spin motivations

Two tantalising questions:

1 What might be an analogue of the singleton in �at spacetime?

2 What might be higher-spin symmetry algebra in �at spacetime?

Some candidates:

Higher-spin symmetry algebras in �at spacetime are known in
dimension 3 (Afshar-Bagchi-Fareghbal-Grumiller-Rosseel, 2013;
Gonzalez-Matulich-Pino-Troncoso, 2013; ...)

Flat limit of AdS higher-spin algebra (Campoleoni-Pekar, 2021)
implicitly de�nes a Carrollian limit of the singleton on I
(XB-Campoleoni-Pekar, to appear)

Wick-rotated singleton

Sachs representation
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Kinematical tools

Two main tools available:

1 BMS representation theory

BMS4: Seminal works

Sachs (1962)
Series of papers by McCarthy (1972-1975)

BMS3: Barnich & Oblak (2014-2015)

BMS>4: ?

2 BMS intrinsic geometry

Seminal works (Penrose, Geroch, Ashtekar, . . . )

Modern view as conformal Carroll (Duval-Gibbons-Horvathy, 2014)
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Goals

Two main goals:

1 Discuss two BMS analogues of Rac (= scalar singleton)

1. Wick-rotated Rac

+ looks natural and familiar
� seems not unitarisable
� is not faithful representation of BMS (nor Poincaré) only of Lorentz

2. Sachs representation

� qualitatively ≠ Rac (less degenerate)
+ faithful and unitary representation of BMS
+ corresponds to irrep of Poincaré (massless scalar, radiation solutions)
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Goals

Two main goals:

1 Discuss two BMS analogues of Rac (= scalar singleton)

2 Construct the corresponding higher-spin extension(s)
of (extended and generalised) BMS algebra(s)

Contains the higher-spin extension of Poincaré algebra (XB, 2010)
Make contact with BMS Killing tensors obtained from the
asymptotic symmetries of free massless higher-spin �elds
(Campoleoni-Francia-Heissenberg, 2017-2020)

Linear structure → Algebra structure

X. Bekaert Higher-spin extensions of BMS algebra



Introduction
Geometric toolkit

Higher-spin extensions
Conclusion

Motivations
Goals
Outline

Outline

1 Introduction
Motivations
Goals
Outline

2 Geometric toolkit
Principal bundle geometry
Carrollian geometry
Conformal Carrollian geometry
Generalised BMS geometry

3 Higher-spin extensions
Higher-spin recipe
Sachs representation

4 Conclusion
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Principal bundle
geometry
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Fundamental vector �eld

Fundamental vector �eld: (essentially) equivalent data

Nowhere vanishing vector �eld ξ = ξµ∂µ ≠ 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ
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Fundamental vector �eld

Fundamental vector �eld: (essentially) equivalent data

Nowhere vanishing vector �eld ξ = ξµ∂µ ≠ 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ

The curves are the integral lines of the fundamental vector �eld;
they are also the orbits of the R-action on M .

The space M̄ of such orbits is the base manifold of the principal
bundle

M̄ = M /R
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Fundamental vector �eld

Fundamental vector �eld: (essentially) equivalent data

Nowhere vanishing vector �eld ξ = ξµ∂µ ≠ 0 on a manifold M

Congruence of parametrised curves from R to M

Principal R-bundle M with fundamental vector �eld ξ

Local expression: there exist a coordinate system (u,xa) such that

Fundamental vector �eld ξ = ∂
∂u

Curves xa = xa0 parametrised by u

R-action u→ u − u0 (u0 ∈ R)
Fibration π ∶ M ↠ M̄ ∶ (u,xa)↦ xa
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Fundamental vector �eld

Example: Future null in�nity I +
d+1 at the conformal boundary of

compacti�ed Minkowski spacetime

Coordinates (u,xa) on I +
d+1 ≅ R × Sd

Fundamental vector �eld ξ = ∂
∂u

is null
Null rays generating the cone
R-action u→ u − u0 (u0 ∈ R)
Fibration π ∶ I +

d+1 ↠ Sd ∶ (u,xa)↦ xa
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Projection on the base manifold

Consider a principal R-bundle π ∶ M ↠ M̄
with fundamental vector �eld ξ.

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
where f ∈ C∞(M )

Super-projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
with Lξf = 0

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Remark: Vertical vector �elds, i.e. X = hξ with h ∈ C∞(M ), are
necessarily projectable.
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Projection on the base manifold

Consider a principal R-bundle π ∶ M ↠ M̄
with fundamental vector �eld ξ.

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
where f ∈ C∞(M )

Super-projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
with Lξf = 0

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Remark: Projectable vector �elds are in�nitesimal automorphisms of the
�bre bundle

u′ = u + εF (u,x) , x′ = x + εG(x) .
The latter can be interpreted as �Carrollian di�eomorphisms�.
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Projection on the base manifold

Consider a principal R-bundle π ∶ M ↠ M̄
with fundamental vector �eld ξ.

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
where f ∈ C∞(M )

Super-projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
with Lξf = 0

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Remark: Invariant vector �elds are in�nitesimal automorphisms of the
principal R-bundle,

u′ = u + εF (x) , x′ = x + εG(x) .
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Projection on the base manifold

Consider a principal R-bundle π ∶ M ↠ M̄
with fundamental vector �eld ξ.

Projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
where f ∈ C∞(M )

Super-projectable vector �eld: X ∈ X(M ) such that LξX = f ξ
with Lξf = 0

Invariant vector �eld: X ∈ X(M ) such that LξX = 0

Example: Invariant vertical vector �elds (X = hξ with Lξh = 0) generate
vertical automorphisms of the principal R-bundle

u′ = u + f(x) , x′ = x ,

which are interpreted as �supertranslations� in the BMS context.
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Pullback from the base manifold

Consider a principal R-bundle π ∶ M ↠ M̄
with fundamental vector �eld ξ.

Invariant di�erential one-form: A ∈ Ω1(M ) such that LξA = 0

Horizontal di�erential one-form: A ∈ Ω1(M ) such that A ⋅ ξ = 0

Basic di�erential one-form: invariant & horizontal
⇔ A = π∗Ā with Ā ∈ Ω1(M̄ )

These de�nitions generalise to covariant tensor �elds (e.g. the Carrollian
metric).
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Carrollian geometry
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Carrollian structure :

Field of observers

&

Carrollian metric
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Timelike metric structure

Field of observers: fundamental vector �eld ξ = ξµ∂µ ≠ 0 on the
spacetime manifold M �bred over the absolute space M̄ .

Provides a distinction between the type of vectors in Carroll geometry:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V µ = f ξµ with {
f ≠ 0 Timelike (or Vertical)

f > 0 Future-oriented

V µ ≠ f ξµ Spacelike
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Timelike metric structure

Field of observers: fundamental vector �eld ξ = ξµ∂µ ≠ 0 on the
spacetime manifold M �bred over the absolute space M̄ .

An a�ne parameter u of this congruence of Carroll worldlines (i.e.
ξ = ∂/∂u) is a Carroll time.
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Spacelike metric structure

Carrollian metric: Positive semi-de�nite metric γ on the spacetime M
whose kernel is spanned by the fundamental vector �eld

{
γµνV

µW ν ⩾ 0

γµνV
µ = 0 ⇔ V µ = f ξµ

Remark: There is a one-to-one correspondence between

invariant Carrollian metrics γµν on M and

Riemannian metrics γ̄ab on the base M̄

since an invariant Carrollian metric is basic, γ = π∗γ̄.
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Spacelike metric structure

An invariant Carrollian metric allows to measure distances and angles on
the base manifold M̄ .
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Carrollian structure

De�nition (Henneaux, 1979)

(Invariant) Carrollian structure: two data

1 Field of observers

2 (Invariant) Carrollian metric

One will focus on invariant Carrollian structures, so this assumption will
sometimes be implicitly assumed from now on.

Example : Future null in�nity I + in Bondi frame

Coordinates (u,xa) on I + ≅ R × Sd

Null vector �eld ξ = ∂
∂u

Carrollian metric = pullback of the metric on the unit sphere

ds2 = γab(x)dxadxb = d`2Sd
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Carrollian isometries

Carrollian isometry: di�eomorphism of M preserving the

1 Field of observers ξ′ = ξ
2 Carrollian metric γ′ = γ

Remark: For an invariant Carrollian structure, these Carrollian isometries
project onto isometries of the Riemannian metric on the base.
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Carrollian isometries

Carrollian isometry: di�eomorphism of M preserving the

1 Field of observers ξ′ = ξ
2 Carrollian metric γ′ = γ

Remark: The algebra of Carrollian isometry generators has a structure of
semi-direct sum

carr isom(M ) ≅ isom(M̄ ) A C∞(M̄ )
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Bondi-Metzner-Sachs

as

Conformal Carroll
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Conformal Carrollian structure

De�nition (Penrose, 1965; Geroch, 1977)

Conformal Carrollian structure: equivalence class of Carrollian
structures with respect to the equivalence relation

1 Field of observers ξ ∼ Ω−1ξ

2 (Invariant) Carrollian metrics γ ∼ Ω2γ (with LξΩ = 0)
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Conformal Carrollian isometries

Conformal Carrollian isometry: di�eomorphism of M such that

1 (Conformal rescaling) ξ′ = Ω−1ξ

2 (Conformal isometry) γ′ = Ω2γ

with LξΩ = 0.
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Conformal Carrollian isometries

Conformal Carrollian isometry: di�eomorphism of M such that

1 (Conformal rescaling) ξ′ = Ω−1ξ

2 (Conformal isometry) γ′ = Ω2γ

with LξΩ = 0.

Example: For null in�nity I

Theorem ( (Penrose, 1965) revisited (Duval-Gibbons-Horvathy, 2014) )

BMS transformations = Conformal Carrollian isometries
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Conformal Carroll-Killing vector �eld

Conformal Carroll-Killing vector �eld: X ∈ X(M ) such that

1 (super-projectable) LXξ = f ξ with Lξf = 0

2 (conformal Killing) LXγ = −2f γ
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Conformal Carroll-Killing vector �eld

Consider an invariant conformal Carrollian structure.

The projection X̄ = π∗(X) on the base M̄ of a conformal Carroll-Killing
vector �eld X on M is a conformal Killing vector �eld X̄ on M̄ .

Conformal Carroll-Killing vector �eld: X ∈ X(M ) such that

1 (super-projectable) LXξ = f ξ with Lξf = 0

2 (conformal Killing) LX̄ γ̄ = −2f̄ γ̄
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Conformal Carroll-Killing vector �eld

The conformal Carroll-Killing vector �elds on Id+1 ≅ R × Sd span the
(extended) BMS algebra

(e)bmsd+2 = conf(Sd) A C∞(Sd)

where the elements of C∞(Sd) transform as densities of weight −1/d
under conf(Sd).
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Generalised BMS
geometry
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Campiglia-Laddha structure

Let (M , ξ) be a principal R-bundle and assume M is orientable. Then
an invariant volume form is a nowhere-vanishing top-form
ε ∈ Ωd+1(M ) such that Lξε = 0.

Campiglia-Laddha structure: equivalence class [ξ, ε] of pairs (ξ, ε)
with respect to the equivalence relation

1 Field of observers ξ ∼ Ω−1ξ

2 (Invariant) volume forms ε ∼ Ωd+1ε (with LξΩ = 0)
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Generalised BMS transformations

Generalised conformal maps: di�eomorphism of M such that

1 ξ′ = Ω−1ξ

2 ε′ = Ωd+1ε

with LξΩ = 0.

Example: The generalised conformal maps on Id+1 ≅ R × Sd span the
generalised BMS algebra

gbmsd+2 = X(Sd) A C∞(Sd)

where the elements of C∞(Sd) transform as densities of weight −1/d.
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Generalised BMS transformations

This leads to the hierarchy

iso(d + 1,1) ⊂ bmsd+2 ⊆ gbmsd+2 ⊂ Xspro(Id+1) ⊂ Xpro(Id+1)

X. Bekaert Higher-spin extensions of BMS algebra



Introduction
Geometric toolkit

Higher-spin extensions
Conclusion

Higher-spin recipe
Sachs representation

Higher-spin extension
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Higher-spin recipe
Sachs representation

Towards higher-spin extension

Higher-spin recipe:

Vector �eld → Di�erential operator

X(M )→ D(M )

Higher-spin algebra
≡ universal enveloping algebra / annihilator

of a representation

(g, V ) Ð→ hg(V ) ≡ U(g) /Annihilator(V)

X. Bekaert Higher-spin extensions of BMS algebra



Introduction
Geometric toolkit

Higher-spin extensions
Conclusion

Higher-spin recipe
Sachs representation

Towards higher-spin extension

Main idea:

Consider Sachs representation V of BMS algebra g
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Higher-spin recipe
Sachs representation

Carrollian Hermitian form

Consider a Campiglia-Laddha structure [ξ, ε]. Pick a representative (ξ, ε)
and introduce the Hermitian form

⟪ψ1 ∣ ψ2⟫ = i∫
M

ψ∗1 dψ2 ∧ V = i∫
M

ψ∗1 Lξψ2 ε

where V = π∗ε̄ is the pullback of the volume form ε̄ of the base M̄ .
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Higher-spin recipe
Sachs representation

The many faces of Sachs representation

De�nition (Intrinsic)

Sachs: unitary representation spanned by square-integrable densities
ψ ∈ C∞(Id+1) of weight 1/2 and positive Carrollian energy endowed with
the Hermitian product

⟪ψ1 ∣ ψ2⟫ = i∫
I

ψ∗1 dψ2 ∧ V = i∫
I

ψ∗1 Lξψ2 ε

Local expression: Sachs (1962)

⟪ψ1 ∣ ψ2⟫ = i∫ duddx
√
γ ψ∗1

∂ψ2

∂u
= ⟨ψ1 ∣ Ĥ ∣ ψ2⟩
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Higher-spin recipe
Sachs representation

The many faces of Sachs representation

De�nition (Intrinsic)

Sachs: unitary representation spanned by square-integrable densities
ψ ∈ C∞(Id+1) of weight 1/2 and positive Carrollian energy endowed with
the Hermitian product

⟪ψ1 ∣ ψ2⟫ = i∫
I

ψ∗1 dψ2 ∧ V = i∫
I

ψ∗1 Lξψ2 ε

Carrollian physics interpretation:

Matrix element of Carroll Hamiltonian ⟪ψ1 ∣ ψ2⟫ = ⟨ψ1 ∣ Ĥ ∣ ψ2⟩

X. Bekaert Higher-spin extensions of BMS algebra



Introduction
Geometric toolkit

Higher-spin extensions
Conclusion

Higher-spin recipe
Sachs representation

The many faces of Sachs representation

De�nition (Asymptotic)

Sachs: representation spanned by boundary data of radiation solutions to
d'Alembert equation in position space

⎧⎪⎪⎨⎪⎪⎩

◻Φ(r, u,x) = 0

ψ(u,x) = lim
r→∞[ r d

2 Φ(r, u,x) ]

where (r, u, xa) are Bondi coordinates on Minkowski spacetime Rd+1,1.

X. Bekaert Higher-spin extensions of BMS algebra



Introduction
Geometric toolkit

Higher-spin extensions
Conclusion

Higher-spin recipe
Sachs representation

The many faces of Sachs representation

De�nition (Celestial/Carrollian)

Sachs: Fourier transform over the energy of solutions to d'Alembert
equation in impulsion space

ψ(u,x) =
+∞

∫
−∞

dE√
2π
E

d
2−1 e−iEuΦ(E,x) ,

where E = ∣q∣ > 0 and x = q/∣q∣ ∈ Sd.
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Higher-spin recipe
Sachs representation

The many faces of Sachs representation

Remarks: In this way, the usual Hermitian form for the spin-zero
massless UIR of Poincaré

⟨Φ1∣Φ2⟩ = ∫
Rd+1

dd+1q

∣q∣ Φ∗
1(q)Φ2(q)

identi�es with the Carrollian Hermitian form

⟨Φ1∣Φ2⟩ = ⟪ψ1 ∣ ψ2⟫ = i∫ duddx
√
γ ψ∗1

∂ψ2

∂u
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Higher-spin recipe
Sachs representation

The many faces of Sachs representation

Note that the Carrollian Hermitian form is manifestly invariant under the
groups:

Poincaré: Obvious from the identi�cation

(Extended) BMS: This con�rms that any UIR of Poincaré lifts to an
UIR of BMS [corollary of McCarthy (1974-1975)].

Generalised BMS: The only necessary data is a Campiglia-Laddha
structure [ξ, ε].
Carrollian di�eomorphisms: The kinematic structure on null in�nity
is weak enough to automatically admit this huge symmetry
enhancement.
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Higher-spin recipe
Sachs representation

Symmetries of Sachs representation

Consider a Campiglia-Laddha structure [ξ, ε]. Pick a representative (ξ, ε)
and introduce the non-degenerate Hermitian form

⟨ψ1∣ψ2⟩ ∶= ∫
M
ψ∗1 ψ2 ε ∀ψ ∈ C∞(M )

which is nothing but the standard inner product of complex-valued
�wavefunctions� on M with volume form ε.

Ô⇒ Hermitian conjugation with respect to this Hermitian form

⟨D�ψ1, ψ2⟩ ∶= ⟨ψ1,Dψ2⟩

for any di�erential operator D ∈ D(M ). In particular for vector �eld
X ∈ X(M )

X� = −X∗ − div(X∗) , with LXε = div(X) ε .
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Higher-spin recipe
Sachs representation

Symmetries of Sachs representation

The Carrollian Hermitian form can then be written as

⟪ψ1∣ψ2⟫ = i ⟨ψ1∣ ξ ∣ψ2⟩ .

De�nition (Hermiticity condition)

Symmetries of the Carrollian Hermitian form: di�erential operator
D ∈ D(M ) such that the in�nitesimal transformations δψ = iDψ preserve
the Carrollian Hermitian form for all ψ, i.e. a di�erential operator that is
Hermitian in the sense

ξ ○D =D� ○ ξ .
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Higher-spin recipe
Sachs representation

Symmetries of Sachs representation

Examples:

a zeroth order operator is Hermitian in the above sense i� it is a real
invariant function.

a �rst-order operator X̂ =X + h is a Hermitian symmetry
i� X is a purely imaginary projectable vector �eld
while Im(h) = 1

2
divX and Re(h) is an invariant function.

Remark: Thus we recover that all bundle automorphisms preserve the
Carrollian Hermitian form provided wavefunctions are Carrollian densities
with weight 1/2. (This includes all super-projectable vector �elds, which
in turn includes all generalised conformal vector �elds and of course all
Carrollian conformal vector �elds.)
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Symmetries of Sachs representation

Theorem (Algebra of Hermitian symmetries)

The Lie algebra Hsym(M ) of all symmetries of the Carrollian Hermitian
form is isomorphic to the semi-direct sum

Hsym(M ) ≅H(M̄ ) A Hvsym(M )

of the Lie algebra H(M̄ ) of di�erential operators on the base that are
Hermitian with respect to

(ψ̄1∣ψ̄2) ∶= ∫
M̄
ψ̄∗1 ψ̄2 ε̄ ∀ψ̄ ∈ C∞(M̄ ),

and the Lie ideal Hvsym(M ) of all vertical higher symmetries.
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Symmetries of Sachs representation

Theorem (Algebra of super-projectable Hermitian symmetries)

The Lie algebra Hspro(M ) of super-projectable higher symmetries of the
Carrollian Hermitian form is a tensor product

Hspro(M ) ≅H(M̄ )⊗U+(igl(1))

where U+(igl(1)) is the real form of the universal enveloping algebra
which is spanned by Weyl-ordered polynomials in i ξ and i η where η is an
Euler vector �eld.
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Higher-spin extension of each symmetry algebra

Higher-spin recipe:

higher-spin algebras ≡ universal enveloping algebra / annihilator

hg = U(g) /Ann(Sachs)
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Higher-spin extension of each symmetry algebra

Any real Lie algebra g in the hierarchy

iso(d + 1,1) ⊂ bmsd+2 ⊆ gbmsd+2

admits a higher-spin extension hg, built as the real Lie subalgebra of
higher symmetries of the Sachs representation spanned by Weyl-ordered
products of the generators of g.

This leads to the table of inclusions

hiso(d + 1,1) ⊂ hbmsd+2 ⊆ hgbmsd+2 ⊂ Dspro(Id+1)
∪ ∪ ∪ ∪

iso(d + 1,1) ⊂ bmsd+2 ⊆ gbmsd+2 ⊂ Xspro(Id+1)
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Higher-spin algebras as asymptotic symmetries

Our two candidate higher-spin algebras of asymptotic symmetries are

the partially-massless Minkowski algebra hiso(d + 1,1)
the generalised BMS higher-spin algebra hgbmsd+2

They are, respectively, higher-spin extensions of Poincaré and generalised
BMS algebras based on Sachs representation.
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Higher-spin algebras as asymptotic symmetries

Remark: Trace conditions are a recurring problem of tentative
higher-spin algebras in Minkowski spacetime, because they preclude the
interpretation of traceful tensors as algebras of global symmetries of
massless gauge �elds.

This suggests to look for �exotic� higher-spin gravity theories, e.g.
�partially-massless-like� gauge �elds on Minkowski spacetime
(Campoleoni-Pekar, 2021).

Unfortunately, exotic theories on Minkowski spacetime including such
partially-massless-like �elds do not seem to be unitary (in fact,
partially-massless �elds are only unitary on dS, not on AdS).

X. Bekaert Higher-spin extensions of BMS algebra



Introduction
Geometric toolkit

Higher-spin extensions
Conclusion

Higher-spin recipe
Sachs representation

Higher-spin algebras as asymptotic symmetries

Nevertheless, it is tempting to conjecture that an exotic higher-spin
gravity around Minkowski space, whose spectrum is a tower of
partially-massless-like �elds of all spins and all odd depths, admits as
algebra of asymptotic symmetries

the partially-massless Minkowski algebra

the generalised BMS higher-spin algebra

for suitable fall-o� conditions that generalise (respectively) to higher
depths

the strong fall-o�s in (Campoleoni-Francia-Heissenberg, 2017)

the weak ones in (Campoleoni-Francia-Heissenberg, 2020)

of the massless case.
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Conclusion
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Summary of results

Identi�cation of Sachs representation
as a possible analogue (in Minkowski spacetime)
to the scalar singleton (in Anti de Sitter spacetime)

Sachs Hermitian product

Geometric and manifestly BMS-invariant formulation
Relation with Wigner Hermitian product

De�nition of possible higher-spin extensions
of generalised BMS algebra

Relation with known asymptotic symmetries
of higher-spin gauge �elds
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Thank you for your attention
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Thank you to the organizers for this
wonderful Carrollian workshop!
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Credits

All illustrations of Alice are from
John Tenniel (1820-1914)
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