

Unbearable Effectiveness of Carroll CFTs

Arjun Bagchi IIT Kanpur

Non Lorentzian Limits

Lightcone opens up

* We are familiar with Galilean limits. * Here we would be interested in the diametrically opposite one, the Carroll limit.

Lightcone closes down

Holography

Flat Holography

Cosmology

Carrollian CFTs

Black Holes

Tensionless/null strings

Carroll strings

We will give a brief overview of a few of these:

* Flat holography

* Tensionless strings

* Carroll Fermions

Flat Holography

Carroll and Conformal Carroll Symmetry: The algebraic way

- * Carroll algebra: Inonu-Wigner contraction of Poincare algebra when c
 ightarrow 0
- * This can be achieved by $x^i \to x^i, \quad t \to \epsilon t, \quad \epsilon \to 0$
- * Carroll generators: $H = \partial_t$, $P_i = \partial_i$, $C_i = x_i \partial_t$, $J_{ij} = x_i \partial_j x_j \partial_i$.
- * Crucially: $[C_i, C_j] = 0$. Reflects non-Lorentzian nature of the algebra.
- * Conformal Carroll algebra: $[D, P_i] = -P_i, [D, H] = -H[D, K_i] = K_i, [D, K_0] = K_0,$
- * Can be given an infinite dimensional lift in all dimensions.

* The algebra: $[J_{ij}, J_{kl}] = 4\delta_{[i[k}J_{l]j]}, [J_{ij}, P_k] = 2\delta_{k[j}P_{i]}, [J_{ij}, C_k] = 2\delta_{k[j}C_{i]}, [C_i, P_j] = -\delta_{ij}H.$

* Conformal extension: $D = t\partial_t + x_i\partial_i$, $K_0 = x_ix_i\partial_t$, $K_i = 2x_i(t\partial_t + x_j\partial_j) - x_jx_j\partial_i$.

 $[K_0, P_i] = -2C_i [K_i, H] = -2C_i, [K_i, P_j] = -2\delta_{ij}D - 2J_{ij}.$

Carroll & Conformal Carroll Symmetry: The geometric way

- * Start with Minkowski spacetime: $ds^2 = -c^2 dt^2 + (dx^i)^2$ and send speed of light to zero.
- * Metric degenerates

$$\begin{split} \eta_{\mu\nu} &= \begin{pmatrix} -c^2 & 0 \\ 0 & I_{d-1} \end{pmatrix} \rightarrow \tilde{h}_{\mu\nu} = \begin{pmatrix} 0 & 0 \\ 0 & I_{d-1} \end{pmatrix}, \ \eta^{\mu\nu} = \begin{pmatrix} -1/c^2 & 0 \\ 0 & I_{d-1} \end{pmatrix} \ -c^2 \eta^{\mu\nu} \rightarrow \Theta^{\mu\nu} = \begin{pmatrix} 1 & 0 \\ 0 & 0_{d-1} \end{pmatrix} \\ \text{o:} \quad \Theta^{\mu\nu} &= \theta^{\mu}\theta^{\nu} \qquad \tilde{h}_{\mu\nu}\theta^{\nu} = 0. \end{split}$$
Henneaux 1979
Farroll manifold is defined by a quadruple $(\mathcal{C}, \tilde{h}, \theta, \nabla)$
Duval, Gibbons, Horvathy 2014

* Als

- * A C
 - \mathcal{C} is a d dimensional manifold, on which one can choose a coordinate chart (t, x^i) .

 - θ is a non-vanishing vector field which generates the kernel of \tilde{h} .
 - ∇ is a symmetric affine connection that parallel transports both $\tilde{h}_{\mu\nu}$ and θ^{ν} .

* Carroll Lie algebra:
$$\mathcal{L}_{\xi}\tilde{h}_{\mu\nu}=0, \quad \mathcal{L}_{\xi}\theta=0.$$
 C

• \tilde{h} is a covariant, symmetric, positive, tensor field of rank d-1 and of signature $(0, +1, \ldots, +1)$. d-1

Conformal Carroll Lie algebra: $\mathcal{L}_{\xi} \widetilde{h} = \lambda \widetilde{h}, \quad \mathcal{L}_{\xi} \theta = -\frac{\lambda}{2} \theta.$

Flat space and BMS symmetries

- * Asymptotic symmetries of flat space at null infinity is given by the Bondi-Metzner-Sachs (BMS) group.
- * In 3 and 4 dimensions, the BMS group is infinite dimensional.
- * In 3 dimensions, the BMS_3 algebra reads:

$$[L_n, L_m] = (n - m)L_{m+n} + \frac{c_L}{12}\delta_{n+m,0}(n^3 - n)$$
$$[L_n, M_m] = (n - m)M_{m+n} + \frac{c_M}{12}\delta_{n+m,0}(n^3 - n)$$
$$[M_n, M_m] = 0.$$

- * M's: supertranslations. Angle dependent translations along the null direction.
- L's: superrotations. Diffeos of the circle at infinity.
- * For Einstein gravity, $c_L = 0$, $c_M = \frac{3}{C}$

Penrose Diagram of Minkowski spacetime

Barnich, Compere 2006

Asymptotic Symmetries of 4d Flat Spacetime

* In 4d, the BMS_4 algebra is a bit more involved.

$$[L_n, L_m] = (n - m)L_{n+m}, \quad [\bar{L}_n, \bar{L}_m] = (n - m)\bar{L}_{n+m}$$
$$[L_n, M_{r,s}] = \left(\frac{n+1}{2} - r\right)M_{n+r,s}, \quad [\bar{L}_n, M_{r,s}] = \left(\frac{n+1}{2} - s\right)M_{r,n+s}$$
$$[M_{r,s}, M_{t,u}] = 0.$$

* Two Virasoros and supertranslations with two legs.

* Complications regarding central charges, which we will studiously avoid for now.

Conformal Carroll algebra in d-dimensions is isomorphic to the BMS algebra in (d+1) dimensions

AB 2010; Duval, Gibbons, Horvathy 2014.

From AdS to Flatspace

- * Can obtain flat space by taking the radius of AdS to infinity.
- * Start with 2 copies of Virasoro algebra that form asymptotic symmetries of AdS3.

$$\begin{bmatrix} \mathcal{L}_n, \mathcal{L}_m \end{bmatrix} = (n-m)\mathcal{L}_{n+m} + \frac{c}{12}\delta_{n+m,0}(n^3-n).$$
$$\begin{bmatrix} \bar{\mathcal{L}}_n, \bar{\mathcal{L}}_m \end{bmatrix} = (n-m)\bar{\mathcal{L}}_{n+m} + \frac{\bar{c}}{12}\delta_{n+m,0}(n^3-n).$$
$$\begin{bmatrix} \mathcal{L}_n, \bar{\mathcal{L}}_m \end{bmatrix} = 0$$

- * The central terms of the left and right copies:
- * We take the following limit: $L_n = \mathcal{L}_n \bar{\mathcal{L}}_{-n}$,
- * Easy to see that this contracts 2 copies of Virasoro algebra to BMS3 algebra.
- * The central terms $c_L = c \bar{c} = 0$ and c_N
- * Flatspace limit in bulk = Carroll limit on boundary. AB, Fareghbal 201

$$c = \bar{c} = \frac{3\ell}{2G}$$
$$M_n = \epsilon(\mathcal{L}_n + \bar{\mathcal{L}}_{-n})$$

$$c_M = \epsilon(c + \bar{c}) = rac{3}{G}$$

AB, Fareghbal 2012

Barnich, Compere 2006

Carrollian road to Minkowskian holography

- * Field theory dual to Minkowski spacetimes should inherit its asymptotic symmetries.
- * For D-dim Minkowski spacetimes, the dual theory should be a (D-1)-dim field theory living on the null boundary of flatspace. It should be a (D-1)-dimensional Carrollian CFT.
- * We would have two separate tools to study these field theories.
 - * The intrinsic way: use only symmetries of BMS.
 - * The limiting way: use the Carrollian limit from relativistic CFTs.
- * We will be attempting to understand aspects of flatspace from a field theory on \mathcal{I}_+ .

Carrollian Holography: some checks of proposal

- *
- Multipoint correlation functions of EM tensor in boundary and bulk. * * Novel phase transitions from zero-point functions. [AB, Detournay, Grumiller, Simon'13]. * Matching of higher point correlations [AB, Grumiller, Merbis '15].
- *
- Holographic Reconstruction of 3d flatspace [Hartong 15]. *
- *
- *
- Asymptotic Structure constants from boundary and bulk [AB, Nandi, Saha, Zodinmawia '20] *
- Generalisations * * Flat Space Chiral Gravity: CS Gravity dual to chiral half of CFT. [AB, Detournay, Grumiller '12] * Higher spin theories in flat space. [Afshar, AB, Fareghbal, Grumiller, Rosseel '1'3; Gonzalez, Matulich, Pino, Troncoso '13]
- Fluid-Gravity correspondence for flat space [Ciambelli, Marteau, Petkou, Petropoulos, Siampos '18]. *

Asymptotic density of states from field theory and bulk [AB, Detournay, Fareghbal, Simon 2012; Barnich 2012; AB, Basu 2013.]

Construction and matching of Entanglement Entropy [AB, Basu, Grumiller, Riegler '14; Jiang, Song, Wen '17; Hijano-Rabideau '17].

Construction of bulk-boundary dictionary, matching of correlation functions of primary operators [Hijano-Rabideau 17; Hijano 18]

BMS Characters & matching with 1-loop partition function [Oblak '15; Barnich, Gonzalez, Oblak, Maloney '15; AB, Saha, Zodinmawia '19]

Ancient History

AB, Detournay, Fareghbal, Simon 2012. See also Barnich 2012.

- * Important early checks of AdS/CFT: CFT reproduces Black Hole entropy.
- * Entropy of BTZ black holes = Entropy from Cardy formula in CFT2.
- * Can we do something similar for holography in flat spacetimes?
- Yes! AB, Detournay, Fareghbal, Simon 2012. (See also Barnich 2012)
- * We will quickly review this old work to remind people of one of the early successes of this programme.

S=Area/4G for Flat Holography?

Asymptotic symmetry group of $AdS_3 = Vir \otimes Vir$. Asymptotic symmetry algebra: $[\mathcal{L}_n, \mathcal{L}_m] = (r$ similarly for $\overline{\mathcal{L}}_n$. Here $c = \overline{c} = \frac{3\ell}{2G}$. [Brown, Henneaux 1986.]

Flat space arises as a limit of AdS when the AdS radius is taken to infinity. This is a contraction from the algebraic sense.

BMS algebra is generated by a simple contraction of the linear combinations of $\mathcal{L}_n, \mathcal{L}_n.$

$$L_n = \mathcal{L}_n - \bar{\mathcal{L}}_{-n}, \quad M_n = \frac{1}{\ell} (\mathcal{L}_n + \bar{\mathcal{L}}_{-n})$$
(3)

where ℓ is the AdS radius.

$$egin{array}{rll} [L_n,L_m]&=&(n-m)L_{n+m}\ [L_n,M_m]&=&(n-m)M_{n+r}\ [M_n,M_m]&=&0. \end{array}$$

Naturally generates the central charges: c_{LN} $c_{LL}=c-\overline{c}=0$ as $c=\overline{c}=rac{3\ell}{2G}$.

$$(n-m)\mathcal{L}_{n+m}+rac{c}{12}\delta_{n+m,0}(n^3-n)$$
 and

 $h_n + c_{LL}\delta_{n+m,0}(n^3 - n)$. Phase space of AdS3 solutions $m + c_{LM}\delta_{n+m,0}(n^3-n).$ (4)

$$A = rac{1}{\ell}(c+ar{c}) = rac{3}{G}$$
 and

- * Take the radius of AdS to infinity. No Black holes in 3d flat spacetimes. What is happening?
- * Outer horizon goes to infinite $\frac{1}{\sqrt{2}G}$ $\ell ds_{\text{PSC}}^2 = r \hat{r}_{+}^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2} dt_{r^2}^2 + r^2 dt_{\ell}^2 \sqrt{2 G M_{r^2} - \ell \hat{r}_{-}^2} dt_{r^2}^2} dt_{r^2}^2} dt_{r^2}^2 + r^2 dt_{r^2$

$$f_{\text{Hinstee}}^{r} \rightarrow r_{0} = \sqrt{\frac{2G}{M}} \sqrt{\frac{2G}{M}} \sqrt{\frac{2G}{M}} \frac{1}{\sqrt{\frac{2G}{M}}} \frac{1}{\sqrt{\frac{2G}{M}}}$$

* Inner horizon survives. Cosmological solution with horizon. Flat Space Cosmology. $ds_{\text{FSC}}^2 = \hat{r}_+^2 dt^2 - \frac{r^2 dr^2}{\hat{r}_+^2 (r^2 r^2 r_0^2)} + r^2 d\phi^2 - 2\hat{r}_+ r_0 dt d\phi$ $ds_{\text{FSC}}^2 = \hat{r}_+^2 dt^2 \frac{\hat{r}_+^2 (r^2 r^2 r_0^2)}{\hat{r}_+^2 (r^2 - r_0^2)} + r^2 d\phi^2 - 2\hat{r}_+ r_0 dt d\phi$ cosmological solutions

Phase space of Min_3 solutions

of ρ which behaves like the temperature. Now, modular traveformætiom poserigi The states ha Label states of the 2d Carroll In the GCFT basis the property * Partition function $f(\sigma + \rho) = \frac{\sigma}{c(\sigma + \rho)} = \frac{\sigma}{c$ Canrole mady with the Wang of Greater con BMS primary sterra Demand invariance derz 40 Eler States in

*

*

The S-transforn $S^{(0)} = \ln d(\Delta, \xi) = 2\pi$ and b = -c = 1

- Carroll Weights: $\xi = \xi$ levels, states in level is the level zero stat
- his form of the S-transformation has be $S_{FSC} = S_{FSC}$ the full contracted modular transformatic c_M J

$$\begin{split} & \underset{A}{\operatorname{Mn}} = (n - m) M_{m+n} + \frac{c_M}{12} \delta_{n+m,0} (n^3 - n) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n^3 - n) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n^3 - n) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n^3 - n) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n^3 - n) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) M_{n+n} + \frac{c_M}{12} \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \delta_{n+m,0} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ & \underset{A}{\operatorname{Mn}} = \sum_{n \mid \Delta, \xi} (n - m) \\ &$$

Flat Holography: Aspects of dual theory

- Symmetry of 2d Carroll CFT: $[L_n, L_m] =$ $[L_n, M_m] =$ $[M_n, M_m]$
- Label states of the theory with $L_0|\Delta$,
- We will build highest weight representations.
- **BMS Primaries:** $L_n |\Delta, \xi\rangle_p = M_n |\Delta, \xi\rangle_p = 0, \ \forall n > 0.$

$$= (n-m)L_{m+n} + \frac{c_L}{12}\delta_{n+m,0}(n^3 - n)$$

= $(n-m)M_{m+n} + \frac{c_M}{12}\delta_{n+m,0}(n^3 - n)$
= 0.

$$\langle \xi \rangle = \Delta |\Delta, \xi \rangle, \ M_0 |\Delta, \xi \rangle = \xi |\Delta, \xi \rangle$$

• BMS modules are built out of these primary states by acting with raising operators.

• A general descent is of the form $L_{-1}^{k_1}L_{-2}^{k_2}...L_{-l}^{k_l}M_{-1}^{q_1}M_{-2}^{q_2}...M_{-r}^{q_r}|\Delta,\xi\rangle \equiv L_{\overrightarrow{k}}M_{\overrightarrow{q}}|\Delta,\xi\rangle$

Carroll CFT: Partition functions.

- Can define the theory on a cylinder. $L_n =$
- The mapping from the plane to the cylinder:
- We can identify the end of the cylinder to define the theory on the torus.
- Partition function: $Z_{\text{CarrollCFT}} = \text{Tr} \exp \{2\pi i (\sigma L_0 + \rho M_0)\}$
- Relation between weights: $\Delta = h \overline{h}, \ \xi = \epsilon(h + \overline{h}).$
- > Here $2\sigma = \zeta \overline{\zeta}, \quad 2\rho = \zeta + \overline{\zeta}$
- > We work with the assumption that $Z_{\rm CFT} o Z_{\rm CarrollCFT}$ as $\epsilon o 0$
- To keep the partition function finite, we need to scale

$$ie^{in\phi}(\partial_{\phi} + in\tau\partial_{\tau}), \quad M_n = ie^{in\phi}\partial_{\tau}$$

 $x = e^{i\phi}, \quad t = i\tau e^{i\phi}$

Look at Carroll limit of CFTs. 2d CFT partition function: $Z_{\rm CFT} = {
m Tr} \; e^{2\pi i \zeta L_0} e^{-2\pi i \bar{\zeta} \bar{L}_0}$ $\blacktriangleright \text{ In a convenient basis: } Z_{\text{CFT}} = \sum d_{\text{CFT}}(h,\bar{h})e^{2\pi i(\zeta h - \bar{\zeta}\bar{h})} = \sum d(\Delta,\xi)e^{2\pi i(\sigma\Delta - \frac{\rho}{\epsilon}\xi)}$

 $\rho \rightarrow \epsilon \rho$

Modular invariance in 2d Carroll CFTs

- * BMS Partition function: $Z_{BMS} = \sum d(\Delta,$
- * Any notion of BMS modular invariance? We again investigate the limit.
- * Modular transformation in the original CF
- * In the BMS basis: $\sigma + \rho \rightarrow \frac{a(\sigma + \rho) + b}{c(\sigma + \rho) + d} = \frac{a\sigma}{c\sigma}$
- * The contracted modular transformation re
- * This is what we will call the Carroll modular transformation.
- [ala Detournay-Hartman-Hofmann for warped CFT. See e.g. Song et al 2017]

$$(\xi)e^{2\pi i(\sigma\Delta-\rho\xi)}$$

F:
$$\zeta \rightarrow \frac{a\zeta + b}{c\zeta + d}$$
 with $ad - bc = 1$
 $\frac{\sigma + b}{\sigma + d} + \frac{(ad - bc)\rho}{(c\sigma + d)^2} + \frac{(ad - bc)c\rho^2}{(c\sigma + d)^3} + \dots$
eads: $\sigma \rightarrow \frac{a\sigma + b}{c\sigma + d}, \quad \rho \rightarrow \frac{\rho}{(c\sigma + d)^2}$

* Intrinsic interpretation=> S-transformation: Exchange of circles on the Euclidean torus.

Invariance of Partition function

* Demand partition function is invariant under Carroll modular transformation and find consequences.

$$Z_{\rm BMS}^{0}(\sigma,\rho) = \text{Tr } e^{2\pi i \sigma (L_{0} - \frac{c_{L}}{2})} e^{2\pi i \rho (M_{0} - \frac{c_{M}}{2})} = e^{\pi i (\sigma c_{L} + \rho c_{M})} Z_{\rm BMS}(\sigma,\rho)$$
ransformation: $(\sigma,\rho) \rightarrow \left(-\frac{1}{\sigma},\frac{\rho}{\sigma^{2}}\right)$
of the above quantity: $Z_{\rm BMS}^{0}(\sigma,\rho) = Z_{\rm BMS}^{0}\left(-\frac{1}{\sigma},\frac{\rho}{\sigma^{2}}\right)$
lates to: $Z_{\rm BMS}(\sigma,\rho) = e^{2\pi i \sigma \frac{c_{L}}{2}} e^{2\pi i \rho \frac{c_{M}}{2}} e^{-2\pi i (-\frac{1}{\sigma})\frac{c_{L}}{2}} e^{-2\pi i (\frac{\rho}{\sigma^{2}})\frac{c_{M}}{2}} Z_{\rm BMS}\left(-\frac{1}{\sigma},\frac{\rho}{\sigma^{2}}\right)$

- * Carroll S-ti
- * Invariance
- * This transl
- * The density of states can be found with an inverse Laplace transformation $d(\Delta,\xi) = \int d\sigma d\rho \ e^{2\pi i \tilde{f}(\sigma,\rho)} Z\left(-\frac{1}{\sigma},\frac{\rho}{\sigma^2}\right).$ where $\tilde{f}(\sigma,\rho) = \frac{c_L\sigma}{2} + \frac{c_M\rho}{2} + \frac{c_L}{2\sigma} - \frac{c_M\rho}{2\sigma^2} - \Delta\sigma - \xi\rho.$

* In the limit of large charges, this integration can be done with a saddle point approximation.

- In the large charge limit, $\tilde{f}(\sigma, \rho) \rightarrow f(\sigma, \rho)$
- Value at the extremum is $f^{max}(\sigma, \rho) =$
- BMS-Cardy formula is given by

$$S^{(0)} = \ln d(\Delta, \xi) = 2\pi \left(c_L \sqrt{\frac{\xi}{2c_M}} + \Delta \sqrt{\frac{c_M}{2\xi}} \right).$$

• One can calculate leading logarithmic corrections to this.

$$S = 2\pi \left(c_L \sqrt{\frac{\xi}{2c_M}} + \Delta \sqrt{\frac{c_M}{2\xi}} \right) - \frac{3}{2} \log \left(\frac{\xi}{c_M^{1/3}} \right) + \text{constant} = S^{(0)} + S^{(1)}.$$
 Bagchi, Basu 20

BMS Cardy formula

$$\sigma, \rho) = \frac{c_L}{2\sigma} - \frac{c_M \rho}{2\sigma^2} - \Delta \sigma - \xi \rho.$$
$$-i \left(c_L \sqrt{\frac{\xi}{2c_M}} + \Delta \sqrt{\frac{c_M}{2\xi}} \right).$$

Bagchi, Detournay, Fareghbal, Simon 2012.

FSC entropy from dual theory

- The weights for the FSC: $\xi = GM + \frac{c_M}{24} \sim GM, \quad \Delta = J$
- Putting this back into the BMS-Cardy formula, we get $S_{\rm FSC} = \frac{\pi J}{\sqrt{2GM}}$

which is precisely what we obtained from the gravitational analysis.

• The log-correction is of the form $S_{\rm FSC}^{(1)} = -$

• Total entropy:
$$S_{\text{FSC}} = \frac{2\pi r_0}{4G} - \frac{3}{2}\log(\frac{2\pi r_0}{4G})$$

Here $_{\kappa} = \frac{\hat{r}^2}{2} = \frac{8GM}{1000}$ is the surface gravity of FSC. r_0

Can also be obtained in the limit from the "inner" Cardy formula.

Bagchi, Detournay, Fareghbal, Simon 2012; Barnich 2012

$$\frac{3}{2}\log(2GM)$$

 $-\frac{3}{2}\log\kappa + \text{ constant}$

Bagchi, Basu 2013.

Riegler 2014; Fareghbal, Naseh 2014.

What's new? Bulk Scattering from Carroll CFTs

- In asymptotically flat spaces, S-matrices are the observables of interest. *
- * Especially true in d >= 4, where one has propagating POF.
- Can we connect Carroll CFT correlations to S-matrix? YES!
- * Interesting branches of correlators. "Weird" branch gives correct answer.
- * We show this for d=3 boundary theory and d=4 bulk.
- Inspired by Pasterski-Shao map for Celestial CFTs. Use modified Mellin transformations. *
- * More details: See talk by SUPIPTA PUTTA tomorrow!
- Also talks by Laura, Romain, Adrien in this conference for another perspective. *

AB, Banerjee, Basu, Dutta 2022 (PRL)

3d Carrollian CFTs

Algebra on
$$\mathscr{I}^+$$
: $[L_n, L_m] = (n - m)L_{n+m}, \quad [\bar{L}_n, \bar{L}_m] = (n - m)\bar{L}_{n+m}$
 $[L_n, M_{r,s}] = \left(\frac{n+1}{2} - r\right)M_{n+r,s}, \quad [\bar{L}_n, M_{r,s}] = \left(\frac{n+1}{2} - s\right)M_{r,n+s} \qquad [M_{r,s}, M_{t,u}] = 0.$

Representation (vector fields): $L_n = -z^{n+1}\partial_z - \frac{1}{2}$

Labelling of operators: $[L_0, \Phi(0)] = h\Phi(0),$ Assume existence of Conformal Carroll prima Highest weight representations: $[L_n, \Phi(0)] = 0$,

Transformation rules for Carrollian primaries: δ_L

$$\frac{1}{2}(n+1)z^n u \partial_u \quad \bar{L}_n = -\bar{z}^{n+1}\partial_z - \frac{1}{2}(n+1)\bar{z}^n u \partial_u \quad M_{r,s} = z^r$$

Here z: stereographic coordinate on sphere, u: null direction.

$$[ar{L}_0,\Phi(0)]=ar{h}\Phi(0).$$
ries on \mathscr{I}^+

$$[\bar{L}_n, \Phi(0)] = 0, \quad \forall n > 0, \quad [M_{r,s}, \Phi(0)] = 0, \quad \forall r, s$$

$$\mathcal{L}_n \Phi_{h,\bar{h}}(u,z,\bar{z}) = \epsilon \left[z^{n+1} \partial_z + (n+1) z^n \left(h + \frac{1}{2} u \partial_u \right) \right] \Phi_{h,\bar{h}}$$

 $\delta_{M_{r,s}}\Phi_{h,\bar{h}}(u,z,\bar{z}) = \epsilon z^r \bar{z}^s \partial_u \Phi_{h,\bar{h}}(u,z,\bar{z}).$

Scattering in 4d flatspace: Connections to 2d CFT

Consider massless particles. 4-momenta parametrised as:

 $p^{\mu} = \omega \left(1 + z\bar{z}, z + \bar{z}, -i(z - z) \right)$

Mellin transformation: We also introduce a symbol ϵ which is equal to ± 1 if the particle is (outgoing) incoming.

$$\mathcal{M}\left(\{z_i, \bar{z}_i, h_i, \bar{h}_i, \epsilon_i\}\right) = \prod_{i=1}^n \int_0^\infty d\omega_i \omega_i^{\Delta_i - 1} S\left(\{\epsilon_i \omega_i, z_i, \bar{z}_i, \sigma_i\}\right), \ \Delta \in \mathbb{C}, \ \sigma \in \frac{\mathbb{Z}}{2}$$

S is the S-matrix element for n massless particle scattering.

Also:
$$h = \frac{\Delta + \sigma}{2}, \ \bar{h} = \frac{\Delta - \sigma}{2}$$

transforms like a correlation function of n primary operators of a 2d CFT.

$$(\bar{z}), 1 - z\bar{z}), \ p^{\mu}p_{\mu} = 0$$

Using Lorentz transformation properties of the S-matrix, it can be shown that the LHS

[Pasterski-Shao(-Strominger), 2016]

4d Scattering: Modified Mellin Transformation

Under supertranslations: $u \rightarrow u' = u + f(z, z)$ **Under superrotations:** $u \to u' = \left(\frac{dw}{dz}\right)^{\frac{1}{2}} \left(\frac{d\bar{w}}{d\bar{z}}\right)$ Modified Mellin transformation:

Now defined in a 3d space with coordinates (u, z, \overline{z}). Transforms covariantly under BMS transformations

Used in Celestial holography since original Mellin transformation is not convergent due to bad UV behaviour of gravitation scattering amplitudes.

$$(\bar{z}), \ z \to z' = z, \ \bar{z} \to \bar{z}' = \bar{z}$$

 $(\bar{z})^{\frac{1}{2}} u, \ z \to z' = w(z), \ \bar{z} \to \bar{z}' = \bar{w}(\bar{z})$

$^{\infty} d\omega_i \omega_i^{\Delta_i - 1} e^{-i\epsilon_i \omega_i u_i} S\left(\left\{\epsilon_i \omega_i, z_i, \bar{z}_i, \sigma_i\right\}\right), \ \Delta \in \mathbb{C}$

[Banerjee 2017, Banerjee-Ghosh-Paul 2020]

4d Scattering: Modified Mellin Transformation

Pefine: $\phi_{h,\bar{h}}^{\epsilon}(u,z,\bar{z}) = \int_{0}^{\infty} d\omega \ \omega^{\Delta-1} e^{-i\epsilon\omega u} a(\epsilon\omega,z,\bar{z},\sigma).$

particle with helicity σ when ($\epsilon = -1$) $\epsilon = 1$. In terms of these fields we can write

The field $\phi_{h,\bar{h}}^{\epsilon}(u,z,\bar{z})$ transforms under BMS transformations as: Supertranslation: $\phi_{h,\bar{h}}^{\epsilon}(u,z,\bar{z}) \rightarrow \phi_{h,\bar{h}}^{\epsilon}(u+f)$ **Superrotation:** $\phi_{h,\bar{h}}^{\epsilon}(u,z,\bar{z}) \rightarrow \left(\frac{dw}{dz}\right)^{h} \left(\frac{d\bar{w}}{d\bar{z}}\right)^{h}$ This is a central observation of what is to follow.

where $a(\epsilon \omega, z, \bar{z}, \sigma)$ is the momentum space (creation) annihilation operator of a massless $\tilde{\mathcal{M}}\left(\{u_i, z_i, \bar{z}_i, h_i, \bar{h}_i, \epsilon_i\}\right) = \langle \prod \phi_{h_i, \bar{h}_i}^{\epsilon_i} (u_i, z_i, \bar{z}_i) \rangle.$

$$i=1$$

$$f(z,ar{z}),z,ar{z})$$

$$ar{h}$$

$$\phi_{h,\bar{h}}^{\epsilon}(u',z',\bar{z}')$$

- These are exactly the same as the Carrollian CFT primaries that were defined earlier.

Proposal: Scattering Amplitude = Carroll CFT Correlator

It is natural to identify the time-dependent correlation functions of primary fields in a Carrollian CFT with the modified Mellin transformation:

 $\tilde{\mathcal{M}}\left(\{u_i, z_i, \bar{z}_i, h_i, \bar{h}_i, \epsilon_i\}\right) = \prod_i \langle \phi_{h_i, \bar{h}_i}^{\epsilon_i}(u_i, z_i, \bar{z}_i) \rangle.$

amplitudes in the Mellin basis.

The time-dependent correlators of a 3d Carroll CFT compute the 4d scattering

What have we learnt so far?

- * Carrollian physics emerges in the vanishing speed of light limit of Lorentzian physics.
- * Carrollian CFTs are natural holographic duals of flat spacetimes as they inherit the asymptotic symmetries of the bulk theory.
- Over the years, a lot of evidence has been gathered about especially the duality between 3d flatspace and 2d Carroll CFTs.
- In particular, a BMS-Cardy formula in a 2d Carroll CFT reproduces the entropy of the cosmological horizon of Flatspace Cosmologies, providing one of the most important checks of the holographic analysis in flatspace.
- * A stumbling block was the formulation of scattering in Carroll CFTs.

What have we learnt so far?

- * The S-matrix is the most important observable for Quantum gravity in flatspace.
- * Carroll CFT correlation functions have two branches. One of them is timeindependent and gives correlations of a 2d CFT. The other one gives spatial delta functions and depends on the null time direction.
- * Using modified Mellin transformations, can show this delta-function branch has the correct properties for reproducing scattering amplitudes in the bulk.
- * So scattering amplitudes are connected to Carroll CFT correlations in a rather non-trivial and non-obvious way.

Open questions: Flat Holography

- * Why is the "electric" leg important for scattering?
- * Going beyond 2 and 3 point functions. 4 point? Can we construct an interacting theory and make the connection concrete? Input from gravity?
- * Limit from AdS/CFT for flatspace scattering? Does not seem to work at first sight.
- * Bootstrap for Carroll CFT for d>2. [Bootstrap for d=2 (AB, Gary, Zodinmawia 2016)]
- * Connection to the picture of Laura, Romain, Adrien. Celestial Holography as a "restriction" of Carrollian Holography?
- * Addressing the question of S=A/4G for d=4.
- * Vacuum degeneracy and memory in Carroll CFTs.

Tensionless Strings

Null Strings?! What? Why?

- * Massless point particles move on null geodesics. Worldlines are null.
- * Null strings: extended analogues of massless point particles. Massless point particles => Tensionless strings.
- * Tensionless or null strings: studied since Schild in 1970's.
- * Tension $T = \frac{1}{2\pi \alpha'} \rightarrow 0$: point particle limit of string theory => Classical gravity.

* Tensionless regime: $T = \frac{1}{2\pi \alpha'} \rightarrow \infty$: ultra-high energy, ultra-quantum gravity!

Null strings are vital for:

A. Strings at very high temperatures: Hagedorn Phase.

- B. Strings near spacetime singularities: Strings near Black holes, near the Big Bang.
- C. Connections to higher spin theory.

the (super) Virasoro algebra.

* Classical tensionless strings: properties can be derived intrinsically or as a limit of usual tensile strings.

Quantum tensionless strings: many surprising new results. *

Summary of Results

* 2d Conformal Carrollian (or BMS3) and its supersymmetric cousins arise on the worldsheet of the tensionless string replacing the two copies of

Classical Tensionless Strings

Isberg, Lindstrom, Sundborg, Theodoridis 1993 AB 2013; AB, Chakrabortty, Parekh 2015.

Going tensionless

Start with Nambu-Goto action:

$$S = -T \int d^2 \xi \sqrt{-\det \gamma_{\alpha\beta}}.$$

To take the tensionless limit, first switch to Hamiltonian framework.

- Generalised momenta: $P_m = T\sqrt{-\gamma}\gamma^{0\alpha}\partial_{\alpha}X_m$.
- Constraints: $P^2 + T^2 \gamma \gamma^{00} = 0$, $P_m \partial_\sigma X^m = 0$.
- Hamiltonian: $\mathcal{H}_T = \mathcal{H}_C + \rho^i (\text{constraints})_i = \lambda (P^2 + T^2 \gamma \gamma^{00}) + \rho P_m \partial_\sigma X^m.$

Action after integrating out momenta:

$$S = \frac{1}{2} \int d^2 \xi \, \frac{1}{2\lambda} \left[\dot{X}^2 - 2\rho \dot{X}^m \partial_\sigma X_m + \rho^2 \partial_\sigma X^m \partial_\sigma X_m - 4\lambda^2 T^2 \gamma \gamma^{00} \right]$$

Identifying

 $q^{\alpha\beta} \equiv$ $\setminus P$

action takes the familiar Weyl-invariant form

$$S = -\frac{T}{2} \int d^2 \xi \sqrt{-g} g^{\alpha\beta} \partial_\alpha X^m \partial_\beta X^n \eta_{mn}.$$

Isberg, Lindstrom, Sundborg, Theodoridis 1993

$$\begin{array}{ccc} \cdot 1 & \rho \\ \rho & -\rho^2 + 4\lambda^2 T^2 \end{array} \right),$$

(2)

Going Tensionless ...

- Tensionless limit can now be taken systematically.
- $\blacktriangleright T \to 0 \Rightarrow$

• Metric is degenerate. det g = 0.

density

 V^{α}

• Action in $T \rightarrow 0$ limit

 $S = \int d^2 \xi$

- Starting point of tensionless strings.
- Need not refer to any parent theory. Treat this as action of fundamental objects.

Isberg, Lindstrom, Sundborg, Theodoridis 1993

$$g^{\alpha\beta} = \begin{pmatrix} -1 & \rho \\ \rho & -\rho^2 \end{pmatrix}.$$

• Replace degenerate metric density $T\sqrt{-g}g^{\alpha\beta}$ by a rank-1 matrix $V^{\alpha}V^{\beta}$ where V^{α} is a vector

$$\alpha \equiv \frac{1}{\sqrt{2}\lambda}(1,\rho)$$
 (4)

$$V^{\alpha}V^{\beta}\partial_{\alpha}X^{m}\partial_{\beta}X^{n}\eta_{mn}.$$

(5)

Completing the square?

Usual Tensile String Theory

Your favourite thing in Tensile String Theory

Gauge and Residual Gauge Symmetries

Tensionless action is invariant under world-sheet diffeomorphisms. Fixing gauge: "Conformal" gauge: $V^{\alpha} = (v, 0)$ (v: constant). **Tensionless:** Similar residual symmetry left over after gauge fixing.

Tensionless residual symmetries: for $V^{\alpha} = (v, 0), \quad \varepsilon^{\alpha} = \{f'(\sigma)\tau + g(\sigma), f(\sigma)\}$ Define: $L(f) = f'(\sigma)\tau \partial_{\tau} + f(\sigma)\partial_{\sigma}$, $M(g) = g(\sigma)\partial_{\tau}$. Expand: $f = \sum a_n e^{in\sigma}$, $g = \sum b_n e^{in\sigma}$

$$L(f) = \sum_{n} a_{n} e^{in\sigma} \left(\partial_{\sigma} + in\tau \partial_{\tau}\right) = \sum_{n} a_{n} L_{n}, \quad M(g)$$

$$\begin{bmatrix} L_m, L_n \end{bmatrix} = (m-n)L_{m+n} + \frac{c_L}{12}(m^3 - m)\delta_{m+n,0}, \quad [M_m, M_n] = 0.$$

$$\begin{bmatrix} L_m, M_n \end{bmatrix} = (m-n)M_{m+n} + \frac{c_M}{12}(m^3 - m)\delta_{m+n,0}.$$

- Tensile: Residual symmetry after fixing conformal gauge = Vir \otimes Vir. Central to understanding string theory.
- For world-sheet diffeomorphism: $\xi^{\alpha} \to \xi^{\alpha} + \varepsilon^{\alpha}$, change in vector density: $\delta_{\varepsilon}V^{\alpha} = -V \cdot \partial \varepsilon^{\alpha} + \varepsilon \cdot \partial V^{\alpha} + \frac{1}{2}(\partial \cdot \varepsilon)V^{\alpha}$ $f(g) = \sum_{n} b_{n} e^{in\sigma} \partial_{\tau} = \sum_{n} b_{n} M_{n}.$

Tensionless Limit from the Worldsheet

Tensile string: Residual symmetry in conformal g

$$\begin{bmatrix} \mathcal{L}_m, \mathcal{L}_n \end{bmatrix} = (m-n)\mathcal{L}_{m+n} + \frac{c}{12}$$
$$\begin{bmatrix} \mathcal{L}_m, \bar{\mathcal{L}}_n \end{bmatrix} = 0, \quad \begin{bmatrix} \bar{\mathcal{L}}_m, \bar{\mathcal{L}}_n \end{bmatrix} = (m-n)\mathcal{L}_m$$

World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the cylinder.

 $\mathcal{L}_n = i e^{i n \omega} \partial_{\omega}, \quad \overline{\mathcal{L}}_n = i e^{i n \overline{\omega}} \partial_{\overline{\omega}},$

where $\omega, \bar{\omega} = \tau \pm \sigma$. Vector fields generate centre-less Virasoros.

- Tensionless limit \Rightarrow length of string becomes infinite ($\sigma \rightarrow \infty$).
- Ends of closed string identified \Rightarrow limit best viewed as ($\sigma \rightarrow \sigma, \tau \rightarrow \epsilon \tau, \epsilon \rightarrow 0$).

gauge
$$g_{\alpha\beta} = e^{\phi}\eta_{\alpha\beta}$$
:

 $-m(m^2-1)\delta_{m+n,0}$ $[\mathcal{L}_m, \bar{\mathcal{L}}_n] = 0, \quad [\bar{\mathcal{L}}_m, \bar{\mathcal{L}}_n] = (m-n)\bar{\mathcal{L}}_{m+n} + \frac{\bar{c}}{12}m(m^2-1)\delta_{m+n,0}$

A Bagchi 2013

Tensionless Limit from the Worldsheet

- Tensionless limit on the worldsheet: $\sigma \rightarrow$
- Worldsheet velocities $v = \frac{\sigma}{\tau} \to \infty$. Effectively, where $v = \frac{\sigma}{\tau} \to \infty$.
- Hence worldsheet speed of light $\rightarrow 0$. Carrollian limit.
- Degenerate worldsheet metric.
- Riemannian tensile worldsheet \rightarrow Carrollian tensionless worldsheet.

A Bagchi 2013

$$\overline{\mathcal{L}}_{-n}, \quad M_n = \epsilon(\mathcal{L}_n + \overline{\mathcal{L}}_{-n}).$$

- $L_n = ie^{in\sigma}(\partial_{\sigma} + in\tau\partial_{\tau}), \quad M_n = ie^{in\sigma}\partial_{\tau}.$

$$[m] = (m - n)M_{m+n} [M_m, M_n] = 0.$$

$$\sigma, \tau \to \epsilon \tau, \epsilon \to 0$$

ctively, $\frac{v}{c} \to \infty$

Tensionless EM Tensor and constraints

Spectrum of tensile string theory (in conformal gauge in flat space)

- Quantise worldsheet theory as a theory free scalar fields. Constraint: vanishing of EOM of metric (which is fixed to be flat). • Op form: Physical states vanish under action of modes of E-M tensor.

EM tensor for 2d CFT on cylinder:
$$T_{cyl} = z^2 T_{plane} - T_{cyl} = z^2 T_{plane}$$

$$T_{(1)} = \lim_{\epsilon \to 0} \left(T_{cyl} - \overline{T}_{cyl} \right) = \sum_{n} (L_n - in\tau M_n) e^{in\sigma} - \frac{c_L}{24}$$

Ultra-relativistic EM tensor

$$T_{(2)} = \lim_{\epsilon \to 0} \epsilon \left(T_{cyl} + \bar{T}_{cyl} \right) = \sum_{n} M_n e^{in\sigma} - \frac{c_M}{24}$$

• Classical constraint on the tensionless string: $T_{(1)} = 0$, $T_{(2)} = 0$.

Quantum version: physical spectrum of tensionless strings restricted by

 $\langle phys|T_{(1)}|phys'\rangle =$

$$-\frac{c}{24} = \sum_{n} \mathcal{L}_{n} e^{in\omega} - \frac{c}{24}; \quad \bar{T}_{cyl} = \sum_{n} \bar{\mathcal{L}}_{n} e^{in\bar{\omega}} - \frac{c}{24}$$

$$= 0, \quad \langle \text{phys}|T_{(2)}|\text{phys}' \rangle = 0.$$

A Bagchi 2013

Intrinsic Analysis: EOM and Mode Expansions

- Equation of motion in $V^a = (v, 0)$ gauge: $\ddot{X}^{\mu} = 0$

• Equation of motion in
$$V = (v, 0)$$
 gauge: $X^{\nu} = 0$.
• Solution: $X^{\mu}(\sigma, \tau) = x^{\mu} + \sqrt{2c'}A_{0}^{\mu}\sigma + \sqrt{2c'}B_{0}^{\mu}\tau + i\sqrt{2c'}\sum_{n\neq 0}\frac{1}{n}\left(A_{n}^{\mu} - in\tau B_{n}^{\mu}\right)e^{in\sigma}$
• Closed string b.c.: $X^{\mu}(\sigma, \tau) = X^{\mu}(\sigma + 2\pi, \tau) \Rightarrow A_{0}^{\mu} = 0$.
• Constraints: $\dot{X}^{2} = 2c'\sum_{m,n} B_{-m} \cdot B_{m+n} e^{in\sigma} = 0$, $\dot{X} \cdot X' = 2c'\sum_{m,n} (A_{-m} - in\tau B_{-m}) \cdot B_{m+n} e^{in\sigma} = 0$
• Define: $L_{n} = \sum_{m} A_{-m} \cdot B_{m+n}$, $M_{n} = \sum_{m} B_{-m} \cdot B_{m+n}$
• Classical constraints in terms of modes: $\sum_{n} (L_{n} - in\tau M_{n}) e^{in\sigma} = 0 = T_{(1)}$, $\sum_{n} M_{n} e^{in\sigma} = 0 = T_{(2)}$.

• The algebra of the modes $\{A_m^{\mu}, A_n^{\nu}\} = 0$,

$$\{L_m, L_n\} = -i(m-n)L_{m+n}, \{L_m, M_n\} = -i(m-n)M_{m+n}, \{M_m, M_n\} = 0.$$

Quantization: $\{,\}_{PB} \rightarrow -\frac{i}{\hbar}[,]$ leads to the BMS₃ Algebra.

AB, Chakrabortty, Parekh 2015

Familiar form obtained earlier from purely algebraic considerations.

$$\{B_m^{\mu}, B_n^{\nu}\} = 0, \quad \{A_m^{\mu}, B_n^{\nu}\} = -im\delta_{m+n,0} \eta^{\mu\nu}.$$

The worldsheet symmetry algebra of tensionless strings, now constructed from the quadratics of the modes:

Limiting Analysis: EOM and Mode Expansions

- Tensile string mode expansion: $X^{\mu}(\sigma, \tau) = x^{\mu} + 2\tau$
- The limiting procedure: $\tau \to \epsilon \tau$, $\sigma \to \sigma$, $\alpha' = c' / \epsilon$ with $\epsilon \to 0$ $X^{\mu}(\sigma,\tau) = x^{\mu} + 2\sqrt{\frac{2c'}{\epsilon}}\alpha_0^{\mu}\epsilon\tau + i\sqrt{\frac{2c'}{\epsilon}}\sum_{n\neq 0}\frac{1}{n}[\tilde{\alpha}_n^{\mu}e^{-in}$ $= x^{\mu} + 2\sqrt{2c'}(\sqrt{\epsilon})\alpha_0^{\mu}\tau + i\sqrt{2c'}\sum_{n\neq 0}\frac{1}{n}\left[\frac{\alpha_n^{\mu}-1}{\sqrt{2c'}}\right]$
- Thus we get a relation between the tensionless and tensile modes:

$$A_n^{\mu} = \frac{1}{\sqrt{\epsilon}} (\alpha_n^{\mu} - \tilde{\alpha}_{-n}^{\mu}), \quad B_n^{\mu} = \sqrt{\epsilon} (\alpha_n^{\mu} + \tilde{\alpha}_{-n}^{\mu}).$$

The equivalent of the Virasoro contraints

AB, Chakrabortty, Parekh 2015

$$\sqrt{2\alpha'}\alpha_0^{\mu}\tau + i\sqrt{2\alpha'}\sum_{n\neq 0}\frac{1}{n}[\tilde{\alpha}_n^{\mu}e^{-in(\tau+\sigma)} + \alpha_n^{\mu}e^{-in(\tau-\sigma)}].$$

$$^{n\sigma}(1-in\epsilon\tau)+\alpha_{n}^{\mu}e^{in\sigma}(1-in\epsilon\tau)],$$

$$\frac{-\tilde{\alpha}_{-n}^{\mu}}{\sqrt{\epsilon}} - in\tau\sqrt{\epsilon}(\alpha_{n}^{\mu} + \tilde{\alpha}_{-n}^{\mu})\right] e^{in\sigma}$$

 $L_n = \mathcal{L}_n - \bar{\mathcal{L}}_{-n}, \quad M_n = \epsilon \left[\mathcal{L}_n + \bar{\mathcal{L}}_{-n}\right]$

Quantum Tensionless Strings

- * Novel closed to open string transition as the tension goes to zero. [AB, Banerjee, Parekh (PRL) 2019]
- different quantum mechanical theories arising out of the same classical theory. [AB, Banerjee, Chakrabortty, Dutta, Parekh 2020]
- on the other theory. All acceptable limits of quantum tensile strings. [AB, Mandlik, Sharma 2021]
- * Interpretation in terms of Rindler physics on the worldsheet. [AB, Banerjee, Chakrabortty (PRL) 2021]
- near blackhole event horizons. [AB, Banerjee, Chakrabortty, Chatterjee 2021]

A summary of quantum results

* Careful canonical quantisation leads to not one, but three different vacua which give rise to

* Lightcone analysis: spacetime Lorentz algebra closes for two theories for D=26. No restriction

* Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless

A Tale of Three

- we consider canonical quantisation of tensionless string theories.
- As we saw earlier Classical constraint on the tensionless string: $T_{(1)} = 0$, $T_{(2)} = 0$. •

This amounts to

$$\langle phys|L_n|phys'\rangle = 0, \quad \langle$$

- - 1. $F_n | phys \rangle = 0$ (n > 0),
 - 2. $F_n | phys \rangle = 0 \quad (n \neq 0),$

AB, Banerjee, Chakrabortty, Dutta, Parekh. 2001.00354

From a single classical theory, several inequivalent quantum theories may emerge. This happens when

Quantum version: physical spectrum of tensionless strings restricted by $\langle phys|T_{(1)}|phys'\rangle = 0$, $\langle phys|T_{(2)}|phys'\rangle = 0$.

 $\langle phys|M_n|phys'\rangle = 0.$

• For each type of oscillator F obeying $\langle phys|F_n|phys'\rangle = 0$, there can be three types of solutions.

3. $F_n |phys\rangle \neq 0$, but $\langle phys' | F_n | phys \rangle = 0$.

A Tale of Three

Here $F_n = (L_n, M_n)$. Hence seemingly nine conditions:

$$L_{m}|phys\rangle = 0, \ (m > 0), \ \begin{cases} M_{n}|phys\rangle = 0, \ (n > 0) \\ M_{n}|phys\rangle = 0, \ (n \neq 0) \\ M_{n}|phys\rangle = 0, \ (m \neq 0), \ \begin{cases} M_{n}|phys\rangle = 0, \ (n > 0) \\ M_{n}|phys\rangle = 0, \ (n \neq 0) \\ M_{n}|phys\rangle \neq 0, \ (\forall n) \end{cases} ; \ L_{m}|phys\rangle \neq 0, \ (\forall m), \ \begin{cases} M_{n}|phys\rangle = 0, \ (m \neq 0), \ M_{n}|phys\rangle = 0, \ (m \neq 0), \ M_{n}|phys\rangle \neq 0, \ (\forall n) \end{cases} ; \ L_{m}|phys\rangle \neq 0, \ (\forall m), \ \begin{cases} M_{n}|phys\rangle = 0, \ (M_{n}|phys\rangle = 0, \ (M_$$

- consistent solutions.
- These are three inequivalent vacua, leading to three inequivalent quantum theories. •
 - **Induced vacuum:** Theory obtained from the limit of usual tensile strings. 0
 - Flipped vacuum: Leads to ambitwistor strings. (See e.g. Casali, Tourkine, (Herfray) 2016-17) 0
 - 0

AB, Banerjee, Chakrabortty, Dutta, Parekh. 2001.00354

But the underlying BMS algebra also has to be satisfied. It turns out that only three of the nine choices lead to

Oscillator vacuum: Interesting new vacuum. Contains hints of huge underlying gauge symmetry.

Critical Dimensions

Tensionless corners of Quantum Tensile String Theory

AB, Mandlik, Sharma. 2105.09682

Other results

- * Tensionless superstrings: Two varieties depending on the underlying Superconformal Carrollian algebra.
- Homogeneous Tensionless Superstrings: Fermions scale in same way. Previous construction: Lindstrom, Sundborg, Theodoridis 1991. Limiting point of view: AB, Chakrabortty, Parekh 2016.
- * Inhomogeneous Tensionless Superstrings: Fermions scale differently. New tensionless string! AB, Banerjee, Chakrabortty, Parekh 2017-18.
- Possible counting of BTZ microstates with winding null strings on the horizon. AB, Grumiller, Sheikh-Jabbari (in progress)

Open questions: Tensionless Strings

- * Analogous calculation of beta-function=0. Consistent backgrounds?
- Linking up to Gross-Mende high energy string scattering from worldsheet symmetries.
- * Attacking the Hagedorn transition from the Carroll perspective. Emergent degrees of freedom?
- * Strings near black holes, strings falling into black holes?
- * Extend "Tale of Three" to superstrings. Different superstring theories?
- Intricate web of tensionless superstring dualities?

What else is cooking?

Garroll Fermions

AB, Basu, Islam, Mondal (d>2, work in progress) AB, Banerjee, Dutta, Mondal (d=2, work in progress)

Carroll Clifford algebra

- * Two metrics for (flat) Carrollian th
- * Two different Clifford algebra?

$$\left\{\tilde{\gamma}_{\mu},\tilde{\gamma}_{\nu}\right\}=2\tilde{h}_{\mu\nu},\quad\left\{\tilde{\gamma}^{\mu},\tilde{\gamma}^{\nu}\right\}=2\Theta^{\mu\nu}$$

- * Both consistent?
- * $\tilde{\Sigma}_{ab} \equiv rac{1}{4} [ilde{\gamma}_a, ilde{\gamma}_b]$: should obey the equivalent of the Lorentz algebra, i.e.

the algebra of Carroll boosts and rotations.

- * Lower gammas do this.
- representation of the algebra.

Deories:
$$\eta_{\mu\nu} \to \tilde{h}_{\mu\nu} = \begin{pmatrix} 0 & 0 \\ 0 & I_{d-1} \end{pmatrix}, \ -c^2 \eta^{\mu\nu} \to \Theta^{\mu\nu} = \begin{pmatrix} 1 & 0 \\ 0 & 0_{d-1} \end{pmatrix}$$

* For upper gammas: rotation matrices are identically zero. Not a faithful

- * Can build higher dimensional gammas from lower dimensional ones.
- * Adjoint of a Carroll spinor: $\bar{\Psi} = \Psi^{\dagger} \Lambda$, where $\Lambda = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$
- * Defined Λ such that $\overline{\Psi}\Psi$ is a Carroll scalar.
- * An action with lower gammas: $S_{
 m lower} =$
- * Carroll symmetry manifest.
- (Carroll version of Coriolis algebra)
- * Possible applications to magic superconductivity in 2+1 dimensional graphene.

$$\int dt d^3x \left(\bar{\Psi}\tilde{\gamma}_0\partial_t\Psi - m\bar{\Psi}\Psi\right)$$

* Massless case: Conformal Carroll. Has infinite dimensional supertranslations as well.

- * Also can construct higher dimensional gammas from lower dimensional ones.
- * One can use Upper Gammas to construct theories for d=2, since we don't have rotations here.

* Action:
$$S^{2d}_{ ext{upper}} = \int dt dx \; (\bar{\Psi} \tilde{\gamma}^0 \delta) \; dt dx \; (\bar$$

- * Relations to earlier actions for the tensionless superstrings.
- * BMS3 arises as symmetries.

 $\partial_t \Psi + \bar{\Psi} \tilde{\gamma}^1 \partial_x \Psi$

Confusions with Fermions

- * Why do the upper gammas not make sense for d>2?
- * Carroll Clifford algebras look like "electric" and "magnetic" ones arising from the original Clifford algebra. $\Gamma = \gamma_{lower} + c\gamma_{upper} + \dots$
- * The naive limit $c \rightarrow 0$ does not seem to make sense. $\{\Gamma, \Gamma\} = 2g = 2(g^0 + c^2g^1 + \ldots) \Rightarrow \{\gamma_{lower}, \gamma_{upper}\} = 0$

But this does not work in the explicit representations we have.

- * Clearly a lot to understand about Carroll fermions.

Thank you!

