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Figure 1. Collapsing/Expanding lightcone under Carrollian/Galilean limits.

may appear on the worldsheet when one considers the tension of the string going to zero,

i.e. a null string theory. First put forward by Schild [36], and later reinvented in [37], the

idea of null or tensionless strings have gathered momentum recently considering the 2d

null worldsheet is a Carrollian manifold. Consequently the residual gauge symmetry turns

out to be governed by the BMS3 algebra. There have been a number of studies associated

to aspects of bosonic [38–40], and supersymmetric [41, 42] tensionless strings which use ex-

plicit Carrollian formulation to study peculiarities of such string theories both at classical

and quantum levels. One also should note that Carrollian strings can also appear when

the target spacetime has some Carrollian structure or an embedded null hypersurface. It

has been shown very recently [43, 44] that a string worldsheet moving into near horizon

spacetime associated to a black hole inherits an induced Carrollian structure and e↵ectively

turns tensionless.

Carrollian and conformal Carrollian symmetries have also recently arisen in the context

of black hole horizons [45], cosmology and dark energy [46], and in the study of fractons

in condensed matter [47]. More and more intriguing new avenues governed by this ex-

otic symmetry are being uncovered as one considers interesting corners of relativistically

invariant theories.

It is thus evident that Conformal Carroll or equivalently BMS algebras are important

as symmetry principles in various physical situations. Our present endeavour is to present

a more physical perspective on how these symmetries arise. In this work, we will focus

on two dimensional theories that are invariant under the BMS3 or equivalently the 2d

Conformal Carroll algebra. These 2d Carrollian Conformal Field Theories (CCFTs) or

BMSFTs appear as a c ! 0 Inönü-Wigner contraction of 2d relativistic CFTs. This points
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Non Lorentzian Limits

We are familiar with Galilean limits.  

Here we would be interested in the diametrically opposite one, the Carroll limit. 
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Carroll and Conformal Carroll Symmetry: The algebraic way
Carroll algebra: Inonu-Wigner contraction of Poincare algebra when  

This can be achieved by  

Carroll generators:  

The algebra:  

Crucially:                    . Reflects non-Lorentzian nature of the algebra. 

Conformal extension:  

Conformal Carroll algebra: 

Can be given an infinite dimensional lift in all dimensions.  

2.1 Contraction, transformations and algebra

Carroll group arises from an Inonu-Wigner contraction from the Poincare group. This is

performed by taking the limit c ! 0 of the Poincare group. This is equivalent to the scaling

xi ! xi, t ! ✏t, ✏ ! 0 (2.1)

where i = (1, ..., (d � 1)). Under this limit the Carroll generators are re-scaled in the

following way,

H ⌘ ✏P0, Pi ⌘ PLorentz
i , Ci ⌘ ✏J0i, Jij ⌘ JLorentz

ij . (2.2)

The explicit form of the generators are given by,

H = @t, Pi = @i, Ci = xi@t, Jij = xi@j � xj@i. (2.3)

Here H,Pi, Ci, Jij are time translation, spatial translations, Carroll boosts and (d � 1)

spatial rotations respectively. These generators generate the Carroll transformation on

space-time coordinate

t
0
= t+ a� ~v.~x, ~x

0
= R~x+~b (2.4)

where the parameters of the group (a,~b,~v,R) describes time-translation, space-translation,

Carroll boosts and SO(d � 1) rotation respectively. Taking c ! 0 limit on the Poincare

transformation one can also arrives at this same transformation. The Lie algebra of the

Carroll group is given by following non-zero commutation relations

[Jij , Jkl] = 4�[i[kJl]j], [Jij , Pk] = 2�k[jPi], [Jij , Ck] = 2�k[jCi], [Ci, Pj ] = ��ijH. (2.5)

Crucially, the commutation relation between the Carroll boosts becomes [Ci, Cj ] = 0,

reflecting the non-Lorentzian nature of the algebra. If we generalise to the conformal Carroll

symmetry we have additional generators, Dilatation (D), temporal (K0) and spatial (Ki)

special Conformal Carroll transformation:

D = t@t + xi@i, K0 = xixi@t, Ki = 2xi(t@t + xj@j)� xjxj@i. (2.6)

The additional non-vanishing commutation relations are

[D,Pi] = �Pi, [D,H] = �H [D,Ki] = Ki, [D,K0] = K0, (2.7)

[K0, Pi] = �2Ci [Ki, H] = �2Ci, [Ki, Pj ] = �2�ijD � 2Jij . (2.8)

This is the finite Conformal Carrollian Algebra (f-CCA).

expand.

As discussed in the introduction, CCA is isomorphic to the BMS algebra in one higher

dimension

CCarrd = bmsd+1. (2.9)

The BMS algebra is the symmetry of the null boundary of asymptotically flat spacetime
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Carroll & Conformal Carroll Symmetry: The geometric way
Start with Minkowski spacetime:                                       and send speed of light to zero.  

Metric degenerates 
 
 

Also:  

A Carroll manifold is defined by a quadruple  

Carroll Lie algebra:                                         Conformal Carroll Lie algebra: 

in (d+ 1) dimensions. The topology of null boundary is Ru ⌦ Sd, where Ru is a null line.

In keeping with this isomorphism, it has been observed that it is possible to give the finite

dimensional CCA discussed above an infinite-dimensional extension as shown in [26]. The

exact details are actually dimension dependent. The infinite extension in d = 2 gives the

BMS3 algebra:

[Ln, Lm] = (n�m)Ln+m +
cL
12

(n3
� n)�n+m,0,

[Ln,Mm] = (n�m)Mn+m +
cM
12

(n3
� n)�n+m,0,

[Mn,Mm] = 0 (2.10)

Here the supertranslations Mn are the generators of angle-dependent translations of the

null direction u and Ln, the superrotations, generate the di↵eomorphism of the circle at

infinity. There is a similar enhancement possible for d = 3 which gives rise to the BMS4
algebra. Even for d � 4 it is possible to give an infinite extension for the supertranslations

[]. For d = 4 this is

Mm1,m2,m3 = xm1ym2zm3@t (2.11)

These close to form an infinite Abelian ideal along with the (finite) conformal generators

on the sphere. It is possible to have an extension to the full di↵eomorphism group on the

sphere with other boundary conditions, but we will not be interested in this and other

generalisations of the BMS group in this paper.

2.2 Carroll Geometry

Let us now give a more geometric picture of Carroll symmetry and review some of the

non-Lorentzian structures that arise in this context.

We begin by considering the Carroll limit of ordinary Minkowski spacetime to get a first idea

of the degenrate structures we would encounter. Consider the d-dimensional Minkowski

space with line element:

ds2 = �c2dt2 + (dxi)2 (2.12)

Then the covariant metric and its contravariant inverse are:

⌘µ⌫ =

 
�c2 0

0 Id�1

!
⌘µ⌫ =

 
�1/c2 0

0 Id�1

!
(2.13)

Now taking the Carroll limit (c ! 0) we get a degenerate covariant spatial metric h̃µ⌫ with

one zero eigenvalue and a degenerate contravariant temporal metric ⇥µ⌫ with one non-zero

eigenvalue:

⌘µ⌫ ! h̃µ⌫ =

 
0 0

0 Id�1

!
, �c2⌘µ⌫ ! ⇥µ⌫ =

 
1 0

0 0d�1

!
(2.14)

These two are the invariant tensors for the Carroll group. As ⇥µ⌫ is basically 1⇥1 matrix,
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dimensional CCA discussed above an infinite-dimensional extension as shown in [26]. The

exact details are actually dimension dependent. The infinite extension in d = 2 gives the

BMS3 algebra:

[Ln, Lm] = (n�m)Ln+m +
cL
12

(n3
� n)�n+m,0,

[Ln,Mm] = (n�m)Mn+m +
cM
12

(n3
� n)�n+m,0,

[Mn,Mm] = 0 (2.10)

Here the supertranslations Mn are the generators of angle-dependent translations of the

null direction u and Ln, the superrotations, generate the di↵eomorphism of the circle at

infinity. There is a similar enhancement possible for d = 3 which gives rise to the BMS4
algebra. Even for d � 4 it is possible to give an infinite extension for the supertranslations

[]. For d = 4 this is

Mm1,m2,m3 = xm1ym2zm3@t (2.11)

These close to form an infinite Abelian ideal along with the (finite) conformal generators

on the sphere. It is possible to have an extension to the full di↵eomorphism group on the

sphere with other boundary conditions, but we will not be interested in this and other

generalisations of the BMS group in this paper.
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we can define vector ✓µ such that

⇥µ⌫ = ✓µ✓⌫ (2.15)

and degeneracy implies

h̃µ⌫✓
⌫ = 0. (2.16)

Having had a brief encounter with the degeneracy we will encounter in the limit, let us now

see how we can formalise this structure from an instrinsically Carrollian point of view. To

this end, we now review Carroll geometry following [27]. A Carroll structure is a quadruplet

(C, h̃, ✓,r), where

• C is a d dimensional manifold, on which one can choose a coordinate chart (t, xi).

• h̃ is a covariant, symmetric, positive, tensor field of rank d � 1 and of signature

(0,+1, . . . ,+1| {z }
d�1

).

• ✓ is a non-vanishing vector field which generates the kernel of h̃ .

• r is a symmetric a�ne connection that parallel transports both h̃µ⌫ and ✓⌫ .

This d dimensional Carrollian manifold can be described by a fibre bundle with the (d �

1) dimensional spatial directions forming the base space and and the temporal direction

forming a 1d fibre is on top of this. Of this class of manifolds, we will be most interested

in the flat Carrollian manifold:

C = R|{z}
fibre

⇥R
d�1

| {z }
base

, h̃ = �ijdx
i
⌦ dxj , ✓ = @t (2.17)

Carroll Lie algebra is identified with those vector fields ⇠ = ⇠a@a of C, which satisfy the

isometry conditions:

L⇠h̃µ⌫ = 0, L⇠✓ = 0. (2.18)

Solving these one obtain (for details the reader is pointed to Appendix A)

⇠i = !i
jx

j + bi, ⇠0 = a+ f(xk) (2.19)

So the isometry group of Carroll structure is infinite-dimensional. Further requiring metric

compatibility with the connection defined by r, the function f(xk) is restricted to be

linear and the Carroll algebra becomes finite dimensional and is given by (2.5). To include

Conformal Carroll isometries, one has to modify the isometry eq. (2.18) to the condition

for conformal isometries in the Carroll background:

L⇠h̃ = �h̃, L⇠✓ = �
�

2
✓. (2.20)

for some function � on C. Give details. Compute algebra.
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Flat space and BMS symmetries 
Asymptotic symmetries of flat space at null infinity is given by the Bondi-Metzner-
Sachs (BMS) group.  

In 3 and 4 dimensions, the BMS group is infinite dimensional.  

In 3 dimensions, the BMS_3 algebra reads:  

M’s: supertranslations. Angle dependent translations along the null direction.  

L’s: superrotations. Diffeos of the circle at infinity.  

For Einstein gravity,
Penrose Diagram of Minkowski spacetime

[Ln, Lm] = (n�m)Lm+n +
cL
12

�n+m,0(n
3 � n)

[Ln,Mm] = (n�m)Mm+n +
cM
12

�n+m,0(n
3 � n)

[Mn,Mm] = 0.

cL = 0, cM =
3

G
Barnich, Compere 2006



Asymptotic Symmetries of 4d Flat Spacetime

In 4d, the BMS_4 algebra is a bit more involved.  

Two Virasoros and supertranslations with two legs.  

Complications regarding central charges, which we will studiously avoid for now. 

has already produced many novel results about asymptotic symmetries and scattering

amplitudes [20–30, 32] in four dimensions. The reader is pointed to the excellent recent

reviews [35–37] for more details on Celestial holography.

Another school of thought has been the attempt to build duals of asymptotitcally flat

spacetime in terms of a one-dimensional lower field theory that enjoys BMS symmetry.

These field theories are conformal theories living on the null boundary of spacetime and

can be understood as Carroll contractions of usual relativistic CFTs, which takes the speed

of light c to zero [39, 40]. We shall call this approach Carroll holography. The success of

this formulation has principally been in the three dimensional bulk and two dimensional

field theories, where various checks have been performed between the boundary and the

bulk, including the matching of entropy [41–43], stress-tensor correlations [44], entangle-

ment entropy [45–47]. Some other important advances are [48–53] and higher dimensional

explorations include [54–56]. Crucially, the understanding of scattering processes has been

lacking in this formulation.

In this paper, we will provide a bridge between the two formulations. We will show that

using BMS or Conformal Carroll symmetries in a 3d field theory living on null infinity,

one can formulate the scattering problem in 4d asymptotically flat spacetimes. We will

further demonstrate the plausibility of our proposal by constructing an explicit realisation

of Carrollian CFTs in terms of a 3d massless Carroll scalar with some desired features.

Note added: When this paper was being readied for submission, [57] appeared on the

arXiv. Although both papers attempt to link Carroll and Celestial holography, our ap-

proaches are complementary.

2 BMS and Carroll CFTs

As is now well known, and has been known since the 1960s, the symmetries of interest in

asymptotically flat spacetimes in d = 4 actually extends beyond the Poincare group to an

infinite dimensional group discovered initially by Bondi, van der Burgh, Metzner and Sachs

[1]. The BMS symmetry algebra of 4d flat spacetime at its null boundary I ± is given by:

[Ln, Lm] = (n�m)Ln+m, [L̄n, L̄m] = (n�m)L̄n+m (2.1a)

[Ln,Mr,s] =

✓
n+ 1

2
� r

◆
Mn+r,s, [L̄n,Mr,s] =

✓
n+ 1

2
� s

◆
Mr,n+s (2.1b)

[Mr,s,Mt,u] = 0. (2.1c)

Here Mr,s are the generators of infinite dimensional angle dependent translations at I ±

known as supertranslations. The original BMS group was given by these infinite dimen-

sional supertranslations on top of the usual Lorentz group denoted here by the generators

{L0, L±1, L̄0, L̄±1}. Following [5, 6], there has been an e↵ort to consider the full conformal

group on the sphere at infinity and hence all modes of the Ln generators, the so-called

super-rotations2.
2
There exists other extensions e.g.[30, 31].
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The Connection

In 2d Celestial CFT superrotation or local conformal transformations on the celestial sphere

are generated by a stress tensor which is the shadow transform of the subleading soft

graviton [7, 8, 13]. After shadow transformation the subleading soft graviton theorem [7]

becomes the well known Ward identity for stress tensor in a 2d CFT.

Let us now discuss 3d Carrollian CFT. We are interested in defining a 3d conformal field

theory on I + which is topologically Ru⇥S2, where Ru is a null line and S2 is the sphere at
infinity. The null line makes the induced metric of I + degenerate. Hence the Riemannian

structure is replaced by a so-called Carrollian structures on the intrinsic geometries of

these hypersurfaces. CFTs living on I ± are naturally expected to be invariant under the

conformal isometries of these Carrollian structures. We refer the reader to Appendix B

for more details on Carrollian and conformal Carrollian isometries. Rather intriguingly,

conformal Carrollian symmetries have been shown to be isomorphic to BMS symmetries

in one higher dimension [39, 50]

CCarrd = bmsd+1. (2.2)

Hence a 3d Carrollian CFT naturally realises the extended infinite-dimensional BMS4 sym-

metry. These 3d Carrollian CFTs would be our field theories of interest, which we will

show to be a potential candidate for a holographic description of scattering amplitudes in

4d asymptotically flat spacetimes.

For these 3d theories, a particular useful representation of vector fields to consider is [54]:

Ln = �z
n+1

@z �
1

2
(n+ 1)znu@u L̄n = �z̄

n+1
@z �

1

2
(n+ 1)z̄nu@u Mr,s = z

r
z̄
s
@u (2.3)

Here z, z̄ are stereographic coordinates on the sphere. We will label the Carroll conformal

fields � living on I + with their weights under L0 and L̄0:

[L0,�(0)] = h�(0), [L̄0,�(0)] = h̄�(0). (2.4)

We will assume the existence of Carrollian primary fields living on I +. The primary

conditions are [33, 54]:

[Ln,�(0)] = 0, [L̄n,�(0)] = 0, 8n > 0, [Mr,s,�(0)] = 0, 8r, s > 0. (2.5)

In particular, it is important to stress that the last condition is an additional requirement

on these fields, which is unlike a 2d CFT. Also for the supertranslations, any one of r or s

being greater than zero annihilates the primary field. The transformation rules of the three

dimensional Carrollian primary fields �h,h̄(u, z, z̄) at an arbitrary point on I + under the

infinitesimal BMS transformations are given by

�Ln�h,h̄(u, z, z̄) = ✏


z
n+1

@z + (n+ 1)zn
✓
h+

1

2
u@u

◆�
�h,h̄(u, z, z̄), (2.6a)

�Mr,s�h,h̄(u, z, z̄) = ✏z
r
z̄
s
@u�h,h̄(u, z, z̄). (2.6b)

There is a similar relation for the antiholomorphic piece.

Let us now discuss how the structure of a Carrolian CFT that we have discussed above fits

into the framework of Celestial Holography.
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Conformal Carroll algebra in d-dimensions is isomorphic to the BMS algebra in (d+1) dimensions 

AB 2010;  
Duval, Gibbons, Horvathy 2014. 



From AdS to Flatspace
Can obtain flat space by taking the radius of AdS to infinity.  

Start with 2 copies of Virasoro algebra that form asymptotic symmetries of AdS3.  

The central terms of the left and right copies:  

We take the following limit:  

Easy to see that this contracts 2 copies of Virasoro algebra to BMS3 algebra.  

The central terms 

Flatspace limit in bulk = Carroll limit on boundary. 

[Ln,Lm] = (n�m)Ln+m +
c

12
�n+m,0(n

3 � n).

[L̄n, L̄m] = (n�m)L̄n+m +
c̄

12
�n+m,0(n

3 � n).

[Ln, L̄m] = 0

c = c̄ =
3`

2G

Ln = Ln � L̄�n, Mn = ✏(Ln + L̄�n) where ✏ =
G

`
! 0

<latexit sha1_base64="HmoMBKjMp6d5ZzDhEsJiYq3EoHM="></latexit>

cL = c� c̄ = 0 and cM = ✏(c+ c̄) =
3

G
AB, Fareghbal 2012 

Barnich, Compere 2006



Carrollian road to Minkowskian holography
Field theory dual to Minkowski spacetimes should inherit its asymptotic symmetries.  

For D-dim Minkowski spacetimes, the dual theory should be a (D-1)-dim field theory 
living on the null boundary of flatspace. It should be a (D-1)-dimensional Carrollian CFT.  

We would have two separate tools to study these field theories.  

The intrinsic way: use only symmetries of BMS. 

The limiting way: use the Carrollian limit from relativistic CFTs.  

We will be attempting to understand aspects of flatspace from a field theory on      .  I+



Carrollian Holography: some checks of proposal
Asymptotic density of states from field theory and bulk [AB, Detournay, Fareghbal, Simon 2012; Barnich 2012; AB, Basu 2013.] 

Multipoint correlation functions of EM tensor in boundary and bulk . 
* Novel phase transitions from zero-point functions. [AB, Detournay, Grumiller, Simon’13]. 
* Matching of higher point correlations [AB, Grumiller, Merbis ’15]. 

Construction and matching of Entanglement Entropy  [AB, Basu, Grumiller, Riegler ’14; Jiang, Song, Wen ’17; Hijano-Rabideau ’17].  

Holographic Reconstruction of 3d flatspace  [Hartong ’15].  

Construction of bulk-boundary dictionary, matching of correlation functions of primary operators [Hijano-Rabideau ’17; Hijano ’18] 

BMS Characters & matching with 1-loop partition function [Oblak ’15; Barnich, Gonzalez, Oblak, Maloney ’15; AB, Saha, Zodinmawia ’19] 

Asymptotic Structure constants from boundary and bulk  [AB, Nandi, Saha, Zodinmawia ’20] 

Generalisations 
* Flat Space Chiral Gravity: CS Gravity dual to chiral half of CFT. [AB, Detournay, Grumiller ’12] 
* Higher spin theories in flat space. [Afshar, AB, Fareghbal, Grumiller, Rosseel ’13; Gonzalez, Matulich, Pino, Troncoso ’13] 

Fluid-Gravity correspondence for flat space [Ciambelli, Marteau, Petkou, Petropoulos, Siampos ’18]. 



Ancient History
AB, Detournay, Fareghbal, Simon 2012.

See also Barnich 2012.



S=Area/4G for Flat Holography?
Important early checks of AdS/CFT: CFT reproduces Black Hole entropy.  

Entropy of BTZ black holes = Entropy from Cardy formula in CFT2.  

Can we do something similar for holography in flat spacetimes?  

Yes! AB, Detournay, Fareghbal, Simon 2012. (See also Barnich 2012) 

We will quickly review this old work to remind people of one of the early 
successes of this programme. 



BTZ Black holes and 2d CFT
The non-extremal BTZ black hole is given by 
 

Bekenstein-Hawking entropy: 

Cardy formula for 2d CFTs: 

Central terms for AdS3 and weights:  

So ultimately:   

10

a cone with deficit angle �⇤̄ = 2⇥(1� |�|), while for �2 = 1 and J = 0, the geometry corresponds to global Minkowski
spacetime. For �2 > 1, the geometries possess an angular excess. This family may have arbitrarily negative values of
M .

We now pass to study the case of positive M , and define 8GM = �2. It is convenient to separate the analysis for
r < 4G|J|

|�| and r > 4G|J|
|�| . In the first region, we make the transformation r̄2 = � r2

�2 + 16G2J2

�4 which produce the line
element,

ds2 =

�
��dt+

4GJ

�
d⌅

⇥2

+ dr̄2 � �2r̄2d⌅2. (61)

Therefore, inside this region, the direction ⇧⇥ is always time-like, generating closed time-like curves. It is a bounded

time machine. For r > 4G|J|
� , the suitable transformation is r̄2 = r2

�2 � 16G2J2

�4 , and the metric turns out to be

ds2 = �dT 2 +

�
4GJ

�

⇥2

dX2 + �2T 2d⌅2, (62)

where we have defined T = r̄, X = �2

4GJ t+ ⌅ and and we have made the identification X ⇥ X + 2⇥ and ⌅ ⇥ ⌅+ 2⇥.
The outcoming spacetime is a cosmology whose spatial section is a 2-torus with radii 4GJ

� and �T . Note that here the
parameter M may not be identified with a mass. It is conjugate to a space-like translation generator, and corresponds
to a momentum. When J = 0, the metric becomes ds2 = �dT 2 + dX2 + �2T 2d⌅2 with an unwrapped X-coordinate.
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FIG. 2. Zero mode solutions of 2+1 gravity. Figure (a) depicts the case of non-vanishing cosmological constant. The slope �
is given by tan� = 1

l . Figure (b) shows the limit l ! 1, when � vanishes. No solutions are lost in the limit, but the horizon
of the BTZ black holes gets pushed to infinity, hence the time coordinate becomes spatial everywhere and the line element
describes the non-static, cosmological solution (62).
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Revisiting the BTZ black hole

Asymptotic Symmetries and Flat-spacetimes Understanding the flat limit The Curious Case of Flat BTZ Cosmic Evolution from Phase Transitions

REVISITING THE BTZ BLACK HOLE.

BTZ Basics: The bulk side.

I The BTZ black hole solution to AdS3 is given by

ds
2 = �

(r
2
� r

2
+)(r

2
� r

2
�)

r2`2
dt

2 +
r

2`2

(r2 � r
2
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`r2
dt

◆2
.

I Here r± =
p

2G`(`M + J) ±
p

2G`(`M � J);
I M and J are the mass and angular momentum of the black hole.
I Bekenstein-Hawking entropy of the BTZ:

SBH =
Area of Horizon

4G
=

⇡r+

2G
. (5)

I BTZ black holes are locally AdS3 and can be constructed by globally identifying symmetry
directions. ) they are orbifolds of AdS3.
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REVISITING THE BTZ BLACK HOLE ...

BTZ Basics: The dual side.

I The central charges of 2-dimensional dual CFT are c = c̄ = 3`
2G

.

I The eigenvalues of L0 and L̄0 are respectively

h =
1
2
(`M + J) +

c

24
, h̄ =

1
2
(`M � J) +

c̄

24
(6)

I Magic of 2d CFT: Can count states just by the infinite symmetry algebra without knowing the
exact details of the dual.

I Cardy’s formula:

SCFT = 2⇡
✓s

c h

6
+

s
c̄ h̄

6

◆
. (7)

I Plugging back, we get [Strominger 1997]
SBH = SCFT (8)
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Introduction

Asymptotic Symmetries and Flat-spacetimes

Understanding the flat limit

The Curious Case of the Flat BTZ

Flat-space Chiral Gravity

Flat-Space limit of AdS3

I Asymptotic symmetry group of AdS3 = Vir ⌦ Vir.

I Asymptotic symmetry algebra: [Ln, Lm] = (n � m)Ln+m + c
12 �n+m,0(n3 � n) and

similarly for L̄n. Here c = c̄ = 3`
2G . [Brown, Henneaux 1986.]

I Flat space arises as a limit of AdS when the AdS radius is taken to infinity. This
is a contraction from the algebraic sense.

I BMS algebra is generated by a simple contraction of the linear combinations of
Ln, L̄n.

Ln = Ln � L̄�n, Mn =
1

`
(Ln + L̄�n) (3)

where ` is the AdS radius.

[Ln, Lm] = (n � m)Ln+m + cLL�n+m,0(n
3

� n).
[Ln,Mm] = (n � m)Mn+m + cLM�n+m,0(n

3
� n).

[Mn,Mm] = 0. (4)

I Naturally generates the central charges: cLM = 1
` (c + c̄) = 3

G and

cLL = c � c̄ = 0 as c = c̄ = 3`
2G .

A Bagchi (IISERP) Understanding Holography.

2d CFT: Governed by two copies of Virasoro algebra
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6
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◆
. (7)

I Plugging back, we get [Strominger 1997]
SBH = SCFT (8)
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Introduction

Asymptotic Symmetries and Flat-spacetimes

Understanding the flat limit

The Curious Case of the Flat BTZ

Flat-space Chiral Gravity

Flat-Space limit of AdS3

I Asymptotic symmetry group of AdS3 = Vir ⌦ Vir.

I Asymptotic symmetry algebra: [Ln, Lm] = (n � m)Ln+m + c
12 �n+m,0(n3 � n) and

similarly for L̄n. Here c = c̄ = 3`
2G . [Brown, Henneaux 1986.]

I Flat space arises as a limit of AdS when the AdS radius is taken to infinity. This
is a contraction from the algebraic sense.

I BMS algebra is generated by a simple contraction of the linear combinations of
Ln, L̄n.

Ln = Ln � L̄�n, Mn =
1

`
(Ln + L̄�n) (3)

where ` is the AdS radius.

[Ln, Lm] = (n � m)Ln+m + cLL�n+m,0(n
3

� n).
[Ln,Mm] = (n � m)Mn+m + cLM�n+m,0(n

3
� n).

[Mn,Mm] = 0. (4)

I Naturally generates the central charges: cLM = 1
` (c + c̄) = 3

G and

cLL = c � c̄ = 0 as c = c̄ = 3`
2G .

A Bagchi (IISERP) Understanding Holography.

2d CFT: Governed by two copies of Virasoro algebra

Phase space of AdS3 solutions



Flat Space Cosmologies
Take the radius of AdS to infinity. No Black holes in 3d flat spacetimes. What is 
happening?  

Outer horizon goes to infinity. Left with inside of BTZ black hole.  
 

Inner horizon survives. Cosmological solution with horizon. Flat Space Cosmology.  

Entropy: 

Flattening the BTZ black hole

BTZ Black holes

Flat Space Cosmologies

➤ Flat limit 

➤ Outer radius pushed out to infinity. Only inside of original BTZ exists. Radial 
and temporal directions interchange. Cosmology!  

➤ Flatspace Cosmology (FSC):  

➤ BTZ inner horizon survives the limit. This becomes a cosmological horizon. 
[Cornalba-Costa 2002] 

➤ Associated entropy: 

` ! 1 : r+ ! `
p
2GM = `r̂+, r� ! r0 =

r
2G

M
J.

ds2FSC = r̂2+dt
2 � r2 dr2

r̂2+(r
2 � r20)

+ r2d�2 � 2r̂+r0dtd�

SFSC =
Area of horizon

4G
=

⇡r0
2G

=
⇡Jp
2GM

Figures from 1204.3288 by Barnich et al. 
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BMS-Cardy formula and Entropy matching
Label states of the 2d Carroll CFT:  

Partition function: 

Carroll modular transformations: 

Demand invariance of Z to derive BMS-Cardy formula   

Carroll Weights:                                 Central Charges:  

Putting things together: 

flat holography: aspects of dual theory

• Symmetry of 2d Carroll CFT: 
 
 

• Label states of the theory with  

• We will build highest weight representations.  

• BMS Primaries:  

• BMS modules are built out of these primary states by acting with raising operators.  

• A general descent is of the form

[Ln, Lm] = (n�m)Lm+n +
cL
12

�n+m,0(n
3 � n)

[Ln,Mm] = (n�m)Mm+n +
cM
12

�n+m,0(n
3 � n)

[Mn,Mm] = 0.

L0|�, ⇠i = �|�, ⇠i, M0|�, ⇠i = ⇠|�, ⇠i

Ln|�, ⇠ip = Mn|�, ⇠ip = 0, 8n > 0.

3 Highest Weight Characters for BMS

The BMS3 algebra is given by

[Ln, Lm] = (n�m)Ln+m + cL�n+m,0(n
3 � n)

[Ln,Mm] = (n�m)Mn+m + cM�n+m,0(n
3 � n),

[Mn,Mm] = 0. (3.1)

We will consider the highest weight representation of the above algerba. In this represen-

tation we have the BMS primary states, which are eigenstates of L0 and M0 [12, 42]

L0|�, ⇠i = �|�, ⇠i, M0|�, ⇠i = ⇠|�, ⇠i. (3.2)

We want the states |�, ⇠i to have the lowest value of � for a given ⇠. Since acting Ln and

Mn on |�, ⇠i lower the eigenvalue of L0 by n

L0Ln|�, ⇠i = (�� n)Ln|�, ⇠i, L0Mn|�, ⇠i = (�� n)Mn|�, ⇠i, (3.3)

we would impose that

Ln|�, ⇠i = Mn|�, ⇠i = 0 8n > 0. (3.4)

The states |�, ⇠i has a correspondence with the BMS primary fields. Particularly, they are

created by acting the primary field ��,⇠ on the vacuum

��,⇠(0, 0)|0i = |�, ⇠i. (3.5)

We can increase the eigenvalue of L0 by acting the raising operator L�n and M�n on the

BMS primary states. The set of all states obtained from |�, ⇠i is called the BMS module

for |�, ⇠i. States in the module has the general form

Lk1
�1L

k2
�2....L

kl
�l
M q1

�1M
q2
�2....M

qr
�r

|�, ⇠i ⌘ L�!
k
M�!

q |�, ⇠i, (3.6)

where
�!
k = (k1, k2, ...., kl) and �!q = (q1, q2, ...., qr). The module are divided into di↵erent

levels, states in level N have �+N for their L0 eigenvalue. The BMS primary state |�, ⇠i
is the level zero state. For a state L�!

k
M�!

q |�, ⇠i it can be checked that its level is given by

N =
X

i

iki +
X

j

jqj . (3.7)

3.1 Character for BMS3

A torus can be obtained by gluing two ends of a cylinder. We can also twist the cylinder

by an angle and then glue the two ends. Then the partition function for QFT on a torus

twisted by an angle ✓ is given by

Tr e��H+i✓P (3.8)

where H is the Hamiltonian which generate transformation along the length of the torus

and P generate transformation along the circumference of the torus.
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Modular invariance in Carroll CFTs

• BMS Partition function:  

• Any notion of BMS modular invariance? Exchange of circles on the Euclidean torus? 

• We again investigate the limit.  

• Modular transformation in the original CFT:  

• In the BMS basis:  

• The contracted modular transformation reads:  

• This is what we will call the Carroll modular transformation. 

ZBMS =
X

d(�, ⇠)e2⇡i(���⇢⇠)

which can be simplified to

G(2)
GCFT-cyl(�1, ⌧1,�2, ⌧2) = C1

✓
2 sin(

�12

2
)

◆�2hL

e�hM⌧12 cot(�12/2) (2.22)

Interestingly, this is the same answer as one would have got by scaling the 2d CFT 2pt-function

in the ultra-relativistic limit [23] (without having to do the extra rescalings to render the answer

finite as we needed to do in [23]).

2.2.3 Partition Function and Modular Invariance

In the flat-space limit described above, (hL, hM ) are mapped to the original eigenvalues of L0, L̄0,

(h, h̄) by

hL = h� h̄, hM = ✏(h+ h̄). (2.23)

In the analysis of the Cardy-like formula, we start with the CFT partition function and re-write it

in the “GCFT-basis”.

ZCFT = Tr e2⇡⇣L0e�2⇡⇣̄L̄0 =
X

dCFT(h, h̄)e
2⇡i(⇣h�⇣̄h̄) =

X
d(hL, hM)e

2⇡i(⌘hL+
⇢
✏ hM) (2.24)

⇣, ⇣̄ are the modular parameters of the original 2d CFT. Above we have relabelled

2⌘ = ⇣ + ⇣̄. 2⇢ = ⇣ � ⇣̄ (2.25)

We demand that the partition function of the parent CFT reduce to the GCFT partition function

smoothly. This implies that ⇢ has to scale for (2.24) to stay finite in the limit.

ZCFT

✏!0���! ZGCFT ) ⇢ ! ✏⇢ (2.26)

We note here that ⇢ is the variable associated with M0. M0 is the generator of spacetime time

translations and hence the Hamiltonian. This is scaled in the limit and it necessitates the scaling

of ⇢ which behaves like the temperature.

Now, modular transformation in original CFT read:

⇣ ! a⇣ + b

c⇣ + d
with ad� bc = 1 (2.27)

In the GCFT basis this translates to:

⌘ + ⇢ ! a(⌘ + ⇢) + b

c(⌘ + ⇢) + d
! a⌘ + b

c⌘ + d
+

(ad� bc)⇢

(c⌘ + d)2
+

(ad� bc)c⇢2

(c⌘ + d)3
+ . . . (2.28)

In the limit, with the scaling of ⇢, the contracted version of the modular transformation reads

⌘ ! a⌘ + b

c⌘ + d
⇢ ! ⇢

(c⌘ + d)2
(2.29)

The S-transformation in the original CFT is ⇣ ! � 1
⇣
and ⇣̄ ! � 1

⇣̄
. This corresponds to a = d = 0

and b = �c = 1. So this means that the S-transformation in 2d GCFT reads

(⌘, ⇢) !
✓
�1

⌘
,
⇢

⌘2

◆
(2.30)

This form of the S-transformation has been previously derived in [26]. The interesting feature of

the full contracted modular transformation is that the second modular parameter ⇢ is a SL(2,Z)
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� ! a� + b

c� + d
, ⇢ ! ⇢

(c� + d)2

� + ⇢ ! a(� + ⇢) + b

c(� + ⇢) + d
=

a� + b

c� + d
+

(ad� bc)⇢

(c� + d)2
+

(ad� bc)c⇢2

(c� + d)3
+ . . .

⇠ = GM, � = J.

<latexit sha1_base64="yxfnp7aYhZsd/sN7CS9aly34TZk="></latexit>

ZCarrollCFT = Tr exp {2⇡i (�L0 + ⇢M0)}

<latexit sha1_base64="E+LKpRj6HxW4gLE0Rh4DZtKkAx8="></latexit>

BMS Cardy formula
• In the large charge limit,  

• Value at the extremum is  

• BMS-Cardy formula is given by 
 
 
 
 

• One can calculate leading logarithmic corrections to this. 

f̃(�, ⇢) ! f(�, ⇢) =
cL
2�

� cM⇢

2�2
��� � ⇠⇢.

fmax(�, ⇢) = �i

✓
cL

r
⇠

2cM
+�

r
cM
2⇠

◆
.

S(0) = ln d(�, ⇠) = 2⇡

✓
cL

r
⇠

2cM
+�

r
cM
2⇠

◆
.

Bagchi, Detournay, Fareghbal, Simon 2012.

Bagchi, Basu 2013.S = 2⇡

 
cL

r
⇠

2cM
+�

r
cM
2⇠

!
� 3

2
log

 
⇠

c1/3M

!
+ constant = S(0) + S(1).

cM =
3

G
, cL = 0.

<latexit sha1_base64="OinLElJ2LHDjm0t9EI5W+vOuf8I="></latexit>

SFSC = SBMS�Cardy
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Flat Holography : Aspects of dual theory
• Symmetry of 2d Carroll CFT: 

 
 

• Label states of the theory with  

• We will build highest weight representations.  

• BMS Primaries:  

• BMS modules are built out of these primary states by acting with raising operators.  

• A general descent is of the form

[Ln, Lm] = (n�m)Lm+n +
cL
12

�n+m,0(n
3 � n)

[Ln,Mm] = (n�m)Mm+n +
cM
12

�n+m,0(n
3 � n)

[Mn,Mm] = 0.

L0|�, ⇠i = �|�, ⇠i, M0|�, ⇠i = ⇠|�, ⇠i

Ln|�, ⇠ip = Mn|�, ⇠ip = 0, 8n > 0.

3 Highest Weight Characters for BMS

The BMS3 algebra is given by

[Ln, Lm] = (n�m)Ln+m + cL�n+m,0(n
3 � n)

[Ln,Mm] = (n�m)Mn+m + cM�n+m,0(n
3 � n),

[Mn,Mm] = 0. (3.1)

We will consider the highest weight representation of the above algerba. In this represen-

tation we have the BMS primary states, which are eigenstates of L0 and M0 [12, 42]

L0|�, ⇠i = �|�, ⇠i, M0|�, ⇠i = ⇠|�, ⇠i. (3.2)

We want the states |�, ⇠i to have the lowest value of � for a given ⇠. Since acting Ln and

Mn on |�, ⇠i lower the eigenvalue of L0 by n

L0Ln|�, ⇠i = (�� n)Ln|�, ⇠i, L0Mn|�, ⇠i = (�� n)Mn|�, ⇠i, (3.3)

we would impose that

Ln|�, ⇠i = Mn|�, ⇠i = 0 8n > 0. (3.4)

The states |�, ⇠i has a correspondence with the BMS primary fields. Particularly, they are

created by acting the primary field ��,⇠ on the vacuum

��,⇠(0, 0)|0i = |�, ⇠i. (3.5)

We can increase the eigenvalue of L0 by acting the raising operator L�n and M�n on the

BMS primary states. The set of all states obtained from |�, ⇠i is called the BMS module

for |�, ⇠i. States in the module has the general form

Lk1
�1L

k2
�2....L

kl
�l
M q1

�1M
q2
�2....M

qr
�r

|�, ⇠i ⌘ L�!
k
M�!

q |�, ⇠i, (3.6)

where
�!
k = (k1, k2, ...., kl) and �!q = (q1, q2, ...., qr). The module are divided into di↵erent

levels, states in level N have �+N for their L0 eigenvalue. The BMS primary state |�, ⇠i
is the level zero state. For a state L�!

k
M�!

q |�, ⇠i it can be checked that its level is given by

N =
X

i

iki +
X

j

jqj . (3.7)

3.1 Character for BMS3

A torus can be obtained by gluing two ends of a cylinder. We can also twist the cylinder

by an angle and then glue the two ends. Then the partition function for QFT on a torus

twisted by an angle ✓ is given by

Tr e��H+i✓P (3.8)

where H is the Hamiltonian which generate transformation along the length of the torus

and P generate transformation along the circumference of the torus.
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Carroll CFT: Partition functions.
➤ Can define the theory on a cylinder.  

➤ The mapping from the plane to the cylinder: 

➤ We can identify the end of the cylinder to define the theory on the torus.  

➤ Partition function: 

For the specific case of the mapping from the plane to the cylinder, this is given by

�0(!, !̄) = A(e�i!)�h
�
e�i!̄

��h̄

�(z, z̄) (2.12)

where A is a phase factor. Using this, one finds the correlation functions on the cylinder from the

ones computed on the plane. For example, the two point function on the cylinder for two primary

operators is given by

G(2)
CFT-cyl(!1, !̄1,!2, !̄2) = C


ei(!1+!2)

(ei!1 � ei!2)2

�h 
ei(!̄1+!̄2)

(ei!̄1 � ei!̄2)2

�h̄

) G(2)
CFT-cyl(!1, !̄1,!2, !̄2) = C{2 sin(!1 � !2)}�2h{2 sin(!̄1 � !̄2)}�2h̄ (2.13)

This explicitly depends only on the di↵erence of the co-ordinates on the cylinder.

2.2.2 Representation and 2pt-functions of 2d GCFTs

The 2d GCFT representations are labelled by the weights [39]:

L0|hL, hM i = hL|hL, hM i, M0|hL, hM i = hM |hL, hM i (2.14)

We will build on the notion of primary states in direct analogy with 2d CFTs. These are ones which

are annihilated by the action of Ln,Mn for n > 0.

Ln|hL, hM ip = Mn|hL, hM ip = 0 (2.15)

The GCA modules are built on these primary states by acting with creation operators L�n,M�n.

There is a representation which we would find particularly useful and we will call this the represen-

tation on the “plane”

Ln = xn+1@x + (n+ 1)xnt@t, Mn = xn+1@t (2.16)

The other set of generators, the ones on the cylinder, are our usual ones. These are the generators

of field theory which can be read o↵ from the asymptotic analysis on the gravitational side.

Ln = iein�(@� + in⌧@⌧ ), Mn = iein�@⌧ (2.17)

The map between these two sets of generators or the map between the “plane” and the “cylinder”

is given by

x = ei�, t = i⌧ei� (2.18)

For the plane, we can follow the analysis in [39] to derive the two-point correlation function of the

2d GCFT. This is given by

G(2)
GCFT-plane(x1, t1, x2, t2) = C(x1 � x2)

�2hL exp


�2hM

✓
t1 � t2
x1 � x2

◆�
(2.19)

Now we postulate the transformation law for the primary fields for the specific case of the mapping

from the “plane” to the “cylinder”.

�0(�, ⌧) = A(e�i�)�hL
�
e�i⌧

��hM �(x, t) (2.20)

Using this, we can deduce the correlation functions on the “cylinder”.

G(2)
GCFT-cyl(�1, ⌧1,�2, ⌧2) = C


ei(�1+�2)

(ei�1 � ei�2)2

�hL

exp


�2hM (⌧1 � ⌧2)

✓
ei�1 + ei�2

ei�1 � ei�2

◆�
(2.21)
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The other set of generators, the ones on the cylinder, are our usual ones. These are the generators

of field theory which can be read o↵ from the asymptotic analysis on the gravitational side.

Ln = iein�(@� + in⌧@⌧ ), Mn = iein�@⌧ (2.17)

The map between these two sets of generators or the map between the “plane” and the “cylinder”

is given by

x = ei�, t = i⌧ei� (2.18)

For the plane, we can follow the analysis in [39] to derive the two-point correlation function of the

2d GCFT. This is given by

G(2)
GCFT-plane(x1, t1, x2, t2) = C(x1 � x2)

�2hL exp


�2hM

✓
t1 � t2
x1 � x2

◆�
(2.19)

Now we postulate the transformation law for the primary fields for the specific case of the mapping

from the “plane” to the “cylinder”.

�0(�, ⌧) = A(e�i�)�hL
�
e�i⌧

��hM �(x, t) (2.20)

Using this, we can deduce the correlation functions on the “cylinder”.

G(2)
GCFT-cyl(�1, ⌧1,�2, ⌧2) = C


ei(�1+�2)

(ei�1 � ei�2)2

�hL

exp


�2hM (⌧1 � ⌧2)

✓
ei�1 + ei�2

ei�1 � ei�2

◆�
(2.21)
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➤ Look at Carroll limit of CFTs. 2d CFT partition function:  

➤ Relation between weights:   

➤ In a convenient basis:  

➤ Here  

➤ We work with the assumption that  

➤ To keep the partition function finite, we need to scale 

ZCFT = Tr e2⇡i⇣L0e�2⇡i⇣̄L̄0

2� = ⇣ � ⇣̄, 2⇢ = ⇣ + ⇣̄

� = h� h̄, ⇠ = ✏(h+ h̄).

ZCFT =
X

dCFT(h, h̄)e
2⇡i(⇣h�⇣̄h̄) =

X
d(�, ⇠)e2⇡i(��� ⇢

✏ ⇠)

⇢ ! ✏⇢

ZCarrollCFT = Tr exp {2⇡i (�L0 + ⇢M0)}

<latexit sha1_base64="E+LKpRj6HxW4gLE0Rh4DZtKkAx8=">AAACRXicdZBNa1NBFIbn1q82fjTWpZvBIFSEMDeEmiwKxYC4UKiQtMVMuMydzE2Gzsdl5lxJGO6f66Z7d/4DNy4q4lYnaQQVPTDDw/uew5l581JJD4R8SrZu3Lx1+872TuPuvfsPdpsP9068rRwXI26VdWc580JJI0YgQYmz0gmmcyVO8/PByj/9IJyX1gxhWYqJZjMjC8kZRClr0vdZoCAWEG9plmHAnLNKDV4N67rGh5jq3C7C0NWYikUZaOjQUmJJlShgn3o50wy/yQh+jqmbW/w2InVyNodntK6zZou0SayDA7yCtEfSCP1+r9Pp43RtEdJCmzrOmh/p1PJKCwNcMe/HKSlhEpgDyZWoG7TyomT8nM3EOKJhWvhJWKdQ46dRmeLCungM4LX6+0Rg2vulzmOnZjD3f3sr8V/euIKiNwnSlBUIw68XFZXCYPEqUjyVTnBQywiMOxnfivmcOcYhBt+IIfz6Kf4/nHTaabfdfddtHb3cxLGNHqMnaB+l6AU6Qq/RMRohji7QZ3SFviaXyZfkW/L9unUr2cw8Qn9U8uMng6qyKQ==</latexit>

ZCFT ! ZCarrollCFT as ✏ ! 0

<latexit sha1_base64="eXgHR4yApIPm84FS78rmkQLOxLA=">AAACPXicdVBNTxsxFPRCW2joR4BjL1YjJE7RZkkJ3BCRqh6plABqNoreOi9g4bUX+y0iWuWPceE/cOuNSw8gxLXXepMUtVUZydJ4Zp7sN0mmpKMw/B4sLL54+Wpp+XVl5c3bd++rq2uHzuRWYFcYZexxAg6V1NglSQqPM4uQJgqPkrN26R9doHXS6A6NM+yncKLlSAogLw2qnW+DIia8pKL9uTOZ8JgMf5JiknpctMFao9TU94HzHIZ85oN7umPmpDJ6Oh8OqrWwvruzHX2KeFgPw1a0tV2SqNWMtnjDKyVqbI6DQfUmHhqRp6hJKHCu1wgz6hdgSQqFk0qcO8xAnMEJ9jzVkKLrF9PtJ3zDK0M+MtYfTXyq/jlRQOrcOE18MgU6df96pfg/r5fTaKdfSJ3lhFrMHhrlivsVyyr5UFoUpMaegLDS/5WLU7AgyBde8SX83pQ/Tw6jeqNZb35t1vb253Ussw/sI9tkDdZie+wLO2BdJtgVu2V37D64Dn4ED8HjLLoQzGfW2V8Ifv4CTJuwcg==</latexit>



Modular invariance in 2d Carroll CFTs
BMS Partition function:  

Any notion of BMS modular invariance? We again investigate the limit. 

Modular transformation in the original CFT:  

In the BMS basis:  

The contracted modular transformation reads:  

This is what we will call the Carroll modular transformation.  

Intrinsic interpretation=> S-transformation: Exchange of circles on the Euclidean torus.  
[ala Detournay-Hartman-Hofmann for warped CFT. See e.g. Song et al 2017]

ZBMS =
X

d(�, ⇠)e2⇡i(���⇢⇠)

which can be simplified to

G(2)
GCFT-cyl(�1, ⌧1,�2, ⌧2) = C1

✓
2 sin(

�12

2
)

◆�2hL

e�hM⌧12 cot(�12/2) (2.22)

Interestingly, this is the same answer as one would have got by scaling the 2d CFT 2pt-function

in the ultra-relativistic limit [23] (without having to do the extra rescalings to render the answer

finite as we needed to do in [23]).

2.2.3 Partition Function and Modular Invariance

In the flat-space limit described above, (hL, hM ) are mapped to the original eigenvalues of L0, L̄0,

(h, h̄) by

hL = h� h̄, hM = ✏(h+ h̄). (2.23)

In the analysis of the Cardy-like formula, we start with the CFT partition function and re-write it

in the “GCFT-basis”.

ZCFT = Tr e2⇡⇣L0e�2⇡⇣̄L̄0 =
X

dCFT(h, h̄)e
2⇡i(⇣h�⇣̄h̄) =

X
d(hL, hM)e

2⇡i(⌘hL+
⇢
✏ hM) (2.24)

⇣, ⇣̄ are the modular parameters of the original 2d CFT. Above we have relabelled

2⌘ = ⇣ + ⇣̄. 2⇢ = ⇣ � ⇣̄ (2.25)

We demand that the partition function of the parent CFT reduce to the GCFT partition function

smoothly. This implies that ⇢ has to scale for (2.24) to stay finite in the limit.

ZCFT

✏!0���! ZGCFT ) ⇢ ! ✏⇢ (2.26)

We note here that ⇢ is the variable associated with M0. M0 is the generator of spacetime time

translations and hence the Hamiltonian. This is scaled in the limit and it necessitates the scaling

of ⇢ which behaves like the temperature.

Now, modular transformation in original CFT read:

⇣ ! a⇣ + b

c⇣ + d
with ad� bc = 1 (2.27)

In the GCFT basis this translates to:

⌘ + ⇢ ! a(⌘ + ⇢) + b

c(⌘ + ⇢) + d
! a⌘ + b

c⌘ + d
+

(ad� bc)⇢

(c⌘ + d)2
+

(ad� bc)c⇢2

(c⌘ + d)3
+ . . . (2.28)

In the limit, with the scaling of ⇢, the contracted version of the modular transformation reads

⌘ ! a⌘ + b

c⌘ + d
⇢ ! ⇢

(c⌘ + d)2
(2.29)

The S-transformation in the original CFT is ⇣ ! � 1
⇣
and ⇣̄ ! � 1

⇣̄
. This corresponds to a = d = 0

and b = �c = 1. So this means that the S-transformation in 2d GCFT reads

(⌘, ⇢) !
✓
�1

⌘
,
⇢

⌘2

◆
(2.30)

This form of the S-transformation has been previously derived in [26]. The interesting feature of

the full contracted modular transformation is that the second modular parameter ⇢ is a SL(2,Z)
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� ! a� + b

c� + d
, ⇢ ! ⇢

(c� + d)2

� + ⇢ ! a(� + ⇢) + b

c(� + ⇢) + d
=

a� + b

c� + d
+

(ad� bc)⇢

(c� + d)2
+

(ad� bc)c⇢2

(c� + d)3
+ . . .



Invariance of Partition function
Demand partition function is invariant under Carroll modular transformation and find 
consequences. 
 
                                                                                                . 

Carroll S-transformation:   

Invariance of the above quantity:  

This translates to:  

The density of states can be found with an inverse Laplace transformation 
 
 
where 

In the limit of large charges, this integration can be done with a saddle point approximation. 

Z0
BMS(�, ⇢) = Tr e2⇡i�(L0�

cL
2 )e2⇡i⇢(M0�

cM
2 ) = e⇡i(�cL+⇢cM )ZBMS(�, ⇢)

Z0
BMS(�, ⇢) = Z0

BMS

✓
� 1

�
,
⇢

�2

◆
(�, ⇢) !

✓
� 1

�
,
⇢

�2

◆

ZBMS(�, ⇢) = e2⇡i�
cL
2 e2⇡i⇢

cM
2 e�2⇡i(� 1

� )
cL
2 e�2⇡i( ⇢

�2 )
cM
2 ZBMS

✓
� 1

�
,
⇢

�2

◆

f̃(�, ⇢) =
cL�

2
+

cM⇢

2
+

cL
2�

� cM⇢

2�2
��� � ⇠⇢.

d(�, ⇠) =

Z
d�d⇢ e2⇡if̃(�,⇢)Z

✓
� 1

�
,
⇢

�2

◆
.



BMS Cardy formula
• In the large charge limit,  

• Value at the extremum is  

• BMS-Cardy formula is given by 
 
 
 
 

• One can calculate leading logarithmic corrections to this. 

f̃(�, ⇢) ! f(�, ⇢) =
cL
2�

� cM⇢

2�2
��� � ⇠⇢.

fmax(�, ⇢) = �i

✓
cL

r
⇠

2cM
+�

r
cM
2⇠

◆
.

S(0) = ln d(�, ⇠) = 2⇡

✓
cL

r
⇠

2cM
+�

r
cM
2⇠

◆
.

Bagchi, Detournay, Fareghbal, Simon 2012.

Bagchi, Basu 2013.S = 2⇡

 
cL

r
⇠

2cM
+�

r
cM
2⇠

!
� 3

2
log

 
⇠

c1/3M

!
+ constant = S(0) + S(1).



FSC entropy from dual theory
• The weights for the FSC: 

  

• Putting this back into the BMS-Cardy formula, we get 
 
 
 
which is precisely what we obtained from the gravitational analysis. 
  

• The log-correction is of the form  

• Total entropy:  
 
 
Here                         is the surface gravity of FSC. 

• Can also be obtained in the limit from the “inner” Cardy formula.  

⇠ = GM +
cM
24

= GM +
1

8
⇠ GM, � = J

SFSC =
⇡Jp
2GM

S(1)
FSC = �3

2
log(2GM)

SFSC =
2⇡r0
4G

� 3

2
log(

2⇡r0
4G

)� 3

2
log + constant

 =
r̂2

r0
=

8GM

r0

Bagchi, Detournay, Fareghbal, Simon 2012; Barnich 2012

Bagchi, Basu 2013.

Riegler 2014; Fareghbal, Naseh 2014.

⇠ = GM +
cM
24

= GM +
1

8
⇠ GM, � = J



What’s new? Bulk Scattering from Carroll CFTs

In asymptotically flat spaces, S-matrices are the observables of interest.  

Especially true in d>=4, where one has propagating DOF.  

Can we connect Carroll CFT correlations to S-matrix? YES!  

Interesting branches of correlators. “Weird” branch gives correct answer.  

We show this for d=3 boundary theory and d=4 bulk.  

Inspired by Pasterski-Shao map for Celestial CFTs. Use modified Mellin transformations.  

More details: See talk by SUDIPTA DUTTA tomorrow!  

Also talks by Laura, Romain, Adrien in this conference for another perspective. 

AB, Banerjee, Basu, Dutta 2022 (PRL)



3d Carrollian CFTs

has already produced many novel results about asymptotic symmetries and scattering

amplitudes [20–30, 32] in four dimensions. The reader is pointed to the excellent recent

reviews [35–37] for more details on Celestial holography.

Another school of thought has been the attempt to build duals of asymptotitcally flat

spacetime in terms of a one-dimensional lower field theory that enjoys BMS symmetry.

These field theories are conformal theories living on the null boundary of spacetime and

can be understood as Carroll contractions of usual relativistic CFTs, which takes the speed

of light c to zero [39, 40]. We shall call this approach Carroll holography. The success of

this formulation has principally been in the three dimensional bulk and two dimensional

field theories, where various checks have been performed between the boundary and the

bulk, including the matching of entropy [41–43], stress-tensor correlations [44], entangle-

ment entropy [45–47]. Some other important advances are [48–53] and higher dimensional

explorations include [54–56]. Crucially, the understanding of scattering processes has been

lacking in this formulation.

In this paper, we will provide a bridge between the two formulations. We will show that

using BMS or Conformal Carroll symmetries in a 3d field theory living on null infinity,

one can formulate the scattering problem in 4d asymptotically flat spacetimes. We will

further demonstrate the plausibility of our proposal by constructing an explicit realisation

of Carrollian CFTs in terms of a 3d massless Carroll scalar with some desired features.

Note added: When this paper was being readied for submission, [57] appeared on the

arXiv. Although both papers attempt to link Carroll and Celestial holography, our ap-

proaches are complementary.

2 BMS and Carroll CFTs

As is now well known, and has been known since the 1960s, the symmetries of interest in

asymptotically flat spacetimes in d = 4 actually extends beyond the Poincare group to an

infinite dimensional group discovered initially by Bondi, van der Burgh, Metzner and Sachs

[1]. The BMS symmetry algebra of 4d flat spacetime at its null boundary I ± is given by:

[Ln, Lm] = (n�m)Ln+m, [L̄n, L̄m] = (n�m)L̄n+m (2.1a)

[Ln,Mr,s] =

✓
n+ 1

2
� r

◆
Mn+r,s, [L̄n,Mr,s] =

✓
n+ 1

2
� s

◆
Mr,n+s (2.1b)

[Mr,s,Mt,u] = 0. (2.1c)

Here Mr,s are the generators of infinite dimensional angle dependent translations at I ±

known as supertranslations. The original BMS group was given by these infinite dimen-

sional supertranslations on top of the usual Lorentz group denoted here by the generators

{L0, L±1, L̄0, L̄±1}. Following [5, 6], there has been an e↵ort to consider the full conformal

group on the sphere at infinity and hence all modes of the Ln generators, the so-called

super-rotations2.
2
There exists other extensions e.g.[30, 31].
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In 2d Celestial CFT superrotation or local conformal transformations on the celestial sphere

are generated by a stress tensor which is the shadow transform of the subleading soft

graviton [7, 8, 13]. After shadow transformation the subleading soft graviton theorem [7]

becomes the well known Ward identity for stress tensor in a 2d CFT.

Let us now discuss 3d Carrollian CFT. We are interested in defining a 3d conformal field

theory on I + which is topologically Ru⇥S2, where Ru is a null line and S2 is the sphere at
infinity. The null line makes the induced metric of I + degenerate. Hence the Riemannian

structure is replaced by a so-called Carrollian structures on the intrinsic geometries of

these hypersurfaces. CFTs living on I ± are naturally expected to be invariant under the

conformal isometries of these Carrollian structures. We refer the reader to Appendix B

for more details on Carrollian and conformal Carrollian isometries. Rather intriguingly,

conformal Carrollian symmetries have been shown to be isomorphic to BMS symmetries

in one higher dimension [39, 50]

CCarrd = bmsd+1. (2.2)

Hence a 3d Carrollian CFT naturally realises the extended infinite-dimensional BMS4 sym-

metry. These 3d Carrollian CFTs would be our field theories of interest, which we will

show to be a potential candidate for a holographic description of scattering amplitudes in

4d asymptotically flat spacetimes.

For these 3d theories, a particular useful representation of vector fields to consider is [54]:

Ln = �z
n+1

@z �
1

2
(n+ 1)znu@u L̄n = �z̄

n+1
@z �

1

2
(n+ 1)z̄nu@u Mr,s = z

r
z̄
s
@u (2.3)

Here z, z̄ are stereographic coordinates on the sphere. We will label the Carroll conformal

fields � living on I + with their weights under L0 and L̄0:

[L0,�(0)] = h�(0), [L̄0,�(0)] = h̄�(0). (2.4)

We will assume the existence of Carrollian primary fields living on I +. The primary

conditions are [33, 54]:

[Ln,�(0)] = 0, [L̄n,�(0)] = 0, 8n > 0, [Mr,s,�(0)] = 0, 8r, s > 0. (2.5)

In particular, it is important to stress that the last condition is an additional requirement

on these fields, which is unlike a 2d CFT. Also for the supertranslations, any one of r or s

being greater than zero annihilates the primary field. The transformation rules of the three

dimensional Carrollian primary fields �h,h̄(u, z, z̄) at an arbitrary point on I + under the

infinitesimal BMS transformations are given by

�Ln�h,h̄(u, z, z̄) = ✏


z
n+1

@z + (n+ 1)zn
✓
h+

1

2
u@u

◆�
�h,h̄(u, z, z̄), (2.6a)

�Mr,s�h,h̄(u, z, z̄) = ✏z
r
z̄
s
@u�h,h̄(u, z, z̄). (2.6b)

There is a similar relation for the antiholomorphic piece.

Let us now discuss how the structure of a Carrolian CFT that we have discussed above fits

into the framework of Celestial Holography.
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Algebra on       : 

Representation (vector fields): 

Labelling of operators: 

Highest weight representations: 

Here z: stereographic coordinate on sphere, u: null direction. 
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has already produced many novel results about asymptotic symmetries and scattering

amplitudes [20–30, 32] in four dimensions. The reader is pointed to the excellent recent

reviews [35–37] for more details on Celestial holography.

Another school of thought has been the attempt to build duals of asymptotitcally flat

spacetime in terms of a one-dimensional lower field theory that enjoys BMS symmetry.

These field theories are conformal theories living on the null boundary of spacetime and

can be understood as Carroll contractions of usual relativistic CFTs, which takes the speed

of light c to zero [39, 40]. We shall call this approach Carroll holography. The success of

this formulation has principally been in the three dimensional bulk and two dimensional

field theories, where various checks have been performed between the boundary and the

bulk, including the matching of entropy [41–43], stress-tensor correlations [44], entangle-

ment entropy [45–47]. Some other important advances are [48–53] and higher dimensional

explorations include [54–56]. Crucially, the understanding of scattering processes has been

lacking in this formulation.

In this paper, we will provide a bridge between the two formulations. We will show that

using BMS or Conformal Carroll symmetries in a 3d field theory living on null infinity,

one can formulate the scattering problem in 4d asymptotically flat spacetimes. We will

further demonstrate the plausibility of our proposal by constructing an explicit realisation

of Carrollian CFTs in terms of a 3d massless Carroll scalar with some desired features.

Note added: When this paper was being readied for submission, [57] appeared on the

arXiv. Although both papers attempt to link Carroll and Celestial holography, our ap-

proaches are complementary.

2 BMS and Carroll CFTs

As is now well known, and has been known since the 1960s, the symmetries of interest in

asymptotically flat spacetimes in d = 4 actually extends beyond the Poincare group to an

infinite dimensional group discovered initially by Bondi, van der Burgh, Metzner and Sachs

[1]. The BMS symmetry algebra of 4d flat spacetime at its null boundary I ± is given by:

[Ln, Lm] = (n�m)Ln+m, [L̄n, L̄m] = (n�m)L̄n+m (2.1a)

[Ln,Mr,s] =

✓
n+ 1

2
� r

◆
Mn+r,s, [L̄n,Mr,s] =

✓
n+ 1

2
� s

◆
Mr,n+s (2.1b)

[Mr,s,Mt,u] = 0. (2.1c)

Here Mr,s are the generators of infinite dimensional angle dependent translations at I ±

known as supertranslations. The original BMS group was given by these infinite dimen-

sional supertranslations on top of the usual Lorentz group denoted here by the generators

{L0, L±1, L̄0, L̄±1}. Following [5, 6], there has been an e↵ort to consider the full conformal

group on the sphere at infinity and hence all modes of the Ln generators, the so-called

super-rotations2.
2
There exists other extensions e.g.[30, 31].
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Scattering in 4d flatspace: Connections to 2d CFT
Consider massless particles. 4-momenta parametrised as:  

Mellin transformation:  
 
 
 
 
 
Also:                                  

 
Using Lorentz transformation properties of the S-matrix, it can be shown that the LHS 
transforms like a correlation function of n primary operators of a 2d CFT.  

3 Relation to 4d scattering amplitudes via Celestial Holography

As we have stressed above, one of the main reasons for studying Carrollian CFTs is that its

symmetries are the same as the extended BMS algebra. So potentially Carroll CFTs can

be a holographic dual of the quantum theory of gravity in asymptotically flat spacetime.

Now we know, from general considerations, that the only observables in a quantum theory

of gravity in asymptotically flat space time are the S-matrix elements. Therefore, given

a holographic dual, one should be able to compute the spacetime S-matrix from this.

Moreover, if the dual is a field theory or at least looks like one then presumably the S-

matrix elements should be somehow related to the correlation functions of the field theory.

This is the point of view that we adopt in this paper.

In the next section, we will focus on the correlation functions of the Carrollian CFTs. We

will find that there are two kinds of correlation functions or two branches. In one branch,

the correlation functions are independent of the null time direction3 and have the structure

of correlation functions of a 2d CFT. However, in the other branch the correlators have

explicit (null) time dependence and do not look like those of a 2d CFT. For example, unlike

2d CFT, the two point function in this branch is ultra-local in the spatial directions and

nonzero even when the scaling dimensions of the operators are di↵erent. Similarly one

can show using the 4d Poincare or global Conformal Carroll invariance of the Carrollian

CFT that the time dependent three point function is zero. This problem can be solved if

we treat z and z̄ as independent complex coordinates rather than complex conjugates of

each other. These are reminiscent of the properties of scattering amplitudes of massless

particles in 4d flat spacetime. So what is the relation of Carroll CFT correlations to

scattering amplitudes? In this paper we propose an answer.

In order to answer this question, we use ideas from Celestial holography. (For a quick recap

of the essential features of Celestial holography, the reader is pointed to Appendix A). In

Celestial holography the dual theory is conjectured to be a 2d (relativistic) CFT which lives

on the celestial sphere. The important point for our purpose is that the correlation functions

of the celestial CFT are given by the Mellin transform of the 4d scattering amplitudes [15–

19]. Let us briefly describe this. For simplicity let us consider only massless particles.

We parametrize the four momentum of a massless particle as

p
µ = ! (1 + zz̄, z + z̄,�i(z � z̄), 1� zz̄) , p

µ
pµ = 0 (3.1)

We also introduce a symbol ✏ which is equal to ±1 if the particle is (outgoing) incoming.

Using this parametrization, the Mellin transformation can be written as [16, 17],

M
�
{zi, z̄i, hi, h̄i, ✏i}

�
=

nY

i=1

Z 1

0
d!i!

�i�1
i S ({✏i!i, zi, z̄i,�i}) , � 2 C, � 2 Z

2
(3.2)

3
The null direction of Carrollian field theories can be interpreted as the time direction. One of the

reasons for this is that the Carroll limit from the relativistic theories involves a contraction of the time

direction.
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where S is the S-matrix element for n massless particle scattering. Here we have also

defined

h =
�+ �

2
, h̄ =

�� �

2
(3.3)

One can show [16, 17] using the Lorentz transformation property of S-matrix that the object

M on the LHS indeed transforms like the correlation function of n primary operators of

weight (h, h̄) in a 2d CFT 4. After Mellin transformation the coordinates (z, z̄) can be

interpreted as the stereographic coordinates of the celestial sphere and physically represent

the direction of motion of the massless particle. For our purpose however, we will use a

modification [18, 19] of (3.2) such that the correlation function M is now defined on a 3d

space with coordinates (u, z, z̄). This space can be interpreted as the (future) null-infinity

with u as the retarded time and (z, z̄) as the stereographic coordinates of the celestial

sphere. One can show [18–20, 33] that under supertranslation,

u ! u
0 = u+ f(z, z̄), z ! z

0 = z, z̄ ! z̄
0 = z̄ (3.4)

Similarly under superrotation or local conformal transformations

u ! u
0 =

✓
dw

dz

◆ 1
2
✓
dw̄

dz̄

◆ 1
2

u, z ! z
0 = w(z), z̄ ! z̄

0 = w̄(z̄) (3.5)

Now the modified transformation [18, 19] has the following form:

M̃
�
{ui, zi, z̄i, hi, h̄i, ✏i}

�
=

nY

i=1

Z 1

0
d!i!

�i�1
i e

�i✏i!iuiS ({✏i!i, zi, z̄i,�i}) , � 2 C (3.6)

One can show [18–20, 33] using the celebrated Soft Theorem - Ward Identity correspondence

[2–4, 8–13] that M̃ transforms covariantly under the extended BMS4 transformations.

In Celestial holography the modified Mellin transformation (3.6) is used to compute the

graviton celestial amplitudes in general relativity because the original Mellin transformation

integral (3.2) is not convergent due to bad UV behaviour of graviton scattering amplitudes

in GR. It turns out that instead when (3.6) is used the time coordinate u acts as a UV

regulator and as a result M̃ is finite. For more details the reader is referred to [20, 33, 34].

Now it is useful to write the modified celestial amplitude M̃ as a correlation function of
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where a(✏!, z, z̄,�) is the momentum space (creation) annihilation operator of a massless

particle with helicity � when (✏ = �1) ✏ = 1. In terms of these fields we can write
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Note that � is the 4d helicity and also the 2d spin of the corresponding operator.
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Now, the field �
✏
h,h̄

(u, z, z̄) transforms covariantly under the extended BMS4 transforma-

tion. Under superrotation [18–20, 33]
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where the primed coordinates are defined in (3.5). Similarly under supertranslation,

�
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✏
h,h̄(u+ f(z, z̄), z, z̄) (3.10)

It is easy to see that for infinitesimal BMS4 transformations (3.9) and (3.10) reduce to the

equations (2.6) written in terms of the primaries of a Carrollian CFT.

Therefore, it is not unreasonable to wonder whether one can identify the Carrollian pri-

maries with the primaries �
✏
h,h̄

(u, z, z̄) of Celestial Holography. If this is true then this

will open the road towards connecting the Carrollian CFT correlation functions with bulk

scattering amplitudes because the field �
✏
h,h̄

(u, z, z̄) is directly related to standard creation-

annihilation operators by (3.7).

4 The Proposal

4.1 The central claim

Our central claim in this paper is the following:

It is natural to identify the time-dependent correlation functions of primaries in a Carrol-

lian CFT with the modified Mellin amplitude

M̃
�
{ui, zi, z̄i, hi, h̄i, ✏i}

�
=

Y

i

h�✏i
hi,h̄i

(ui, zi, z̄i)i.

In other words, the time-dependent correlators of a 3d Carrollian CFT compute the 4d

scattering amplitudes in the Mellin basis.

We would like to emphasize that we are not saying that every Carrollian CFT computes

space-time scattering amplitude. But, if a specific Carrollian CFT does so then it does it

in the modified Mellin basis (3.6).

Now the reader might think that this identification is kinematical because both the objects

transform in the same way under relevant symmetries. While this is correct, the dynam-

ics enters non-trivially when we choose one of the branches of the conformal Carrollian

correlation functions.

Before we end this section we would like to emphasize few points. First of all, Celestial

holography, as it stands, requires the existence of an infinite number of conformal primary

fields with complex scaling dimensions. So any Carrollian CFT which can compute 4d

scattering amplitudes should also have this feature.
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What have we learnt so far?
Carrollian physics emerges in the vanishing speed of light limit of Lorentzian physics. 

Carrollian CFTs are natural holographic duals of flat spacetimes as they inherit the 
asymptotic symmetries of the bulk theory.  

Over the years, a lot of evidence has been gathered about especially the duality 
between 3d flatspace and 2d Carroll CFTs.  

In particular, a BMS-Cardy formula in a 2d Carroll CFT reproduces the entropy of the 
cosmological horizon of Flatspace Cosmologies, providing one of the most important 
checks of the holographic analysis in flatspace.   

A stumbling block was the formulation of scattering in Carroll CFTs. 



What have we learnt so far?
The S-matrix is the most important observable for Quantum gravity in 
flatspace.  

Carroll CFT correlation functions have two branches. One of them is time-
independent and gives correlations of a 2d CFT. The other one gives spatial delta 
functions and depends on the null time direction.  

Using modified Mellin transformations, can show this delta-function branch has 
the correct properties for reproducing scattering amplitudes in the bulk .  

So scattering amplitudes are connected to Carroll CFT correlations in a rather 
non-trivial and non-obvious way. 



Open questions: Flat Holography
Why is the “electric” leg important for scattering?  

Going beyond 2 and 3 point functions. 4 point? Can we construct an interacting 
theory and make the connection concrete? Input from gravity?  

Limit from AdS/CFT for flatspace scattering? Does not seem to work at first sight.  

Bootstrap for Carroll CFT for d>2. [Bootstrap for d=2 (AB, Gary, Zodinmawia 2016)] 

Connection to the picture of Laura, Romain, Adrien.  
Celestial Holography as a “restriction” of Carrollian Holography?  

Addressing the question of S=A/4G for d=4.  

Vacuum degeneracy and memory in Carroll CFTs. 



Tensionless Strings



Null Strings?! What? Why? 
Massless point particles move on null geodesics. Worldlines are null.  

Null strings: extended analogues of massless point particles.  
Massless point particles => Tensionless strings.  

Tensionless or null strings: studied since Schild in 1970’s.

Tension                           : point particle limit of string theory => Classical gravity.  

Tensionless regime:                           : ultra-high energy, ultra-quantum gravity! 

Null strings are vital for: 

A. Strings at very high temperatures: Hagedorn Phase.  

B. Strings near spacetime singularities: Strings near Black holes, near the Big Bang.  

C. Connections to higher spin theory. 
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Summary of Results

2d Conformal Carrollian (or BMS3) and its supersymmetric cousins arise 
on the worldsheet of the tensionless string replacing the two copies of 
the (super) Virasoro algebra.  

Classical tensionless strings: properties can be derived intrinsically or as 
a limit of usual tensile strings.  

 Quantum tensionless strings: many surprising new results. 



Classical Tensionless Strings

Isberg, Lindstrom, Sundborg, Theodoridis 1993
AB 2013; AB, Chakrabortty, Parekh 2015.



Going tensionless
INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

CLASSICAL CLOSED STRINGS
Isberg, Lindstrom, Sundborg,Theodoridis 1993

Start with Nambu-Goto action:
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I Tensionless action is invariant under world-sheet diffeomorphisms.
I Fixing gauge: “Conformal” gauge: V

↵ = (v, 0) (v: constant).

I Tensile: Residual symmetry after fixing conformal gauge = Vir ⌦ Vir.
Central to understanding string theory.
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I Tensionless limit can now be taken systematically.
I T ! 0 )

g
↵� =

✓
�1 ⇢
⇢ �⇢2

◆
.

I Metric is degenerate. det g = 0.

I Replace degenerate metric density T
p

�gg
↵� by a rank-1 matrix V

↵
V

� where V
↵ is a vector

density

V
↵

⌘
1

p
2�

(1, ⇢) (4)

I Action in T ! 0 limit

S =

Z
d

2⇠ V
↵

V
�@↵X

m@�X
n⌘mn. (5)

I Starting point of tensionless strings.
I Need not refer to any parent theory. Treat this as action of fundamental objects.
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I Define: L(f ) = f
0(�)⌧@⌧ + f (�)@�, M(g) = g(�)@⌧ .

I Expand: f =
P

ane
in�, g =

P
bne

in�

I Therefore we have:

L(f ) =
X

n

ane
in�(@� + in⌧@⌧ ) =

X

n

anLn, (7)

M(g) =
X

n

bne
in�@⌧ =

X

n

bnMn. (8)

I Symmetry algebra in terms of Fourier modes:

[Lm, Ln] = (m � n)Lm+n +
cL

12
(m

3
� m)�m+n,0, [Mm, Mn] = 0.

[Lm, Mn] = (m � n)Mm+n +
cM

12
(m

3
� m)�m+n,0. (9)

Isberg et al find cL = cM = 0.
I 3d Bondi-Metzner-Sachs algebra or 2d Galilean Conformal Algebra.
I Various other applications: Holography of 3d flat space, Galilean field theories,

non-relativistic limit of AdS/CFT.
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Tensionless Limit from the Worldsheet
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TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT
A Bagchi 2013

I Tensile string: Residual symmetry in conformal gauge g↵� = e
�⌘↵� :

[Lm,Ln] = (m � n)Lm+n +
c

12
m(m

2
� 1)�m+n,0

[Lm, L̄n] = 0, [L̄m, L̄n] = (m � n)L̄m+n +
c̄

12
m(m

2
� 1)�m+n,0 (10)

I World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the
cylinder.

Ln = ie
in!@!, L̄n = ie

in!̄@!̄ (11)
where !, !̄ = ⌧ ± �. Vector fields generate centre-less Virasoros.

I Tensionless limit ) length of string becomes infinite (� ! 1).
I Ends of closed string identified ) limit best viewed as (� ! �, ⌧ ! ✏⌧, ✏ ! 0).
I Define

Ln = Ln � L̄�n, Mn = ✏(Ln + L̄�n). (12)

I New vector fields (Ln, Mn) well-defined in limit and given by:

Ln = ie
in�(@� + in⌧@⌧ ), Mn = ie

in�@⌧ . (13)

I These are exactly the generators defined previously . Close to form BMS3.
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71

nition in (4.49) and put in them back into (4.33):

Ln = 1
2

X

m

£
C°m ·Cm+n ° C̃°m · C̃m°n

§
; (4.40a)

Mn = 1
2

X

m

£
C°m ·Cm+n + C̃°m · C̃m°n +2C°m · C̃°m°n

§
. (4.40b)

It may be pointed out here that Mn has a cross term consisting of both C and C̃ modes.

The above forms will prove useful when we impose the constraints on the Hilbert space

of the quantum theory.

4.2 Limit from tensile closed bosonic string

We mentioned in the introduction that the string becomes extremely long and floppy

in the tensionless limit. This means that the square of the string length Æ0 !1. From

a worldsheet point of view, this is illustrated in Figure 4.1. In terms of worldsheet coor-

Figure 4.1: Closed string worldsheet in the tensionless limit.

dinates the limit can be expressed as æ!1 and ø! ø. For a closed string, we would

like to identify the ends of the string: æ=æ+2º, hence the limit is better viewed as

ø! "ø; æ!æ (4.41)
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TENSIONLESS STRINGS AND CARROLLIAN STRUCTURES

I Tensionless limit on the worldsheet: � ! �, ⌧ ! ✏⌧, ✏ ! 0
I Worldsheet velocities v = �

⌧ ! 1. Effectively, v

c
! 1

I Hence worldsheet speed of light ! 0. Carrollian limit.

I Degenerate worldsheet metric.
I Riemannian tensile worldsheet ! Carrollian tensionless worldsheet.

I Action for tensionless string ) a massless spin-0 particle coupled to a Carrollian background.
Compare, e.g. with [Bergshoeff, Gomis, Rollier, Rosseel, Veldhuis 2017]

I BMS symmetries are conformal Carroll symmetries.
I This is why the BMS3 algebra appears here.

I Similar discussions: [Duval, Gibbons, Horvathy 2014]
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I Similar discussions: [Duval, Gibbons, Horvathy 2014]

INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

SYMMETRIES OF TENSIONLESS CLOSED STRINGS

Isberg, Lindstrom, Sundborg,Theodoridis 1993

I Define: L(f ) = f
0(�)⌧@⌧ + f (�)@�, M(g) = g(�)@⌧ .

I Expand: f =
P

ane
in�, g =

P
bne

in�

I Therefore we have:

L(f ) =
X

n

ane
in�(@� + in⌧@⌧ ) =

X

n

anLn, (7)

M(g) =
X

n

bne
in�@⌧ =

X

n

bnMn. (8)

I Symmetry algebra in terms of Fourier modes:

[Lm, Ln] = (m � n)Lm+n +
cL

12
(m

3
� m)�m+n,0, [Mm, Mn] = 0.

[Lm, Mn] = (m � n)Mm+n +
cM

12
(m

3
� m)�m+n,0. (9)

Isberg et al find cL = cM = 0.
I 3d Bondi-Metzner-Sachs algebra or 2d Galilean Conformal Algebra.
I Various other applications: Holography of 3d flat space, Galilean field theories,

non-relativistic limit of AdS/CFT.
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INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT
A Bagchi 2013

I Tensile string: Residual symmetry in conformal gauge g↵� = e
�⌘↵� :

[Lm,Ln] = (m � n)Lm+n +
c

12
m(m

2
� 1)�m+n,0

[Lm, L̄n] = 0, [L̄m, L̄n] = (m � n)L̄m+n +
c̄

12
m(m

2
� 1)�m+n,0 (10)

I World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the
cylinder.

Ln = ie
in!@!, L̄n = ie

in!̄@!̄ (11)
where !, !̄ = ⌧ ± �. Vector fields generate centre-less Virasoros.

I Tensionless limit ) length of string becomes infinite (� ! 1).
I Ends of closed string identified ) limit best viewed as (� ! �, ⌧ ! ✏⌧, ✏ ! 0).
I Define

Ln = Ln � L̄�n, Mn = ✏(Ln + L̄�n). (12)

I New vector fields (Ln, Mn) well-defined in limit and given by:

Ln = ie
in�(@� + in⌧@⌧ ), Mn = ie

in�@⌧ . (13)

I These are exactly the generators defined previously . Close to form BMS3.



Tensionless EM Tensor and constraints
INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

TENSIONLESS EM-TENSOR A Bagchi 2013

I Spectrum of tensile string theory (in conformal gauge in flat space)
I Quantise worldsheet theory as a theory free scalar fields.
I Constraint: vanishing of EOM of metric (which is fixed to be flat).
I Op form: Physical states vanish under action of modes of E-M tensor.

I EM tensor for 2d CFT on cylinder:

Tcyl = z
2
Tplane �

c

24
=

X

n

Lne
in!

�
c

24
; T̄cyl =

X

n

L̄ne
in!̄

�
c̄

24
(14)

I The Ultra-relativistic EM tensor

T(1) = lim
✏!0

✓
Tcyl � T̄cyl

◆
=

X

n

(Ln � in⌧Mn)e
in�

�
cL

24
(15)

T(2) = lim
✏!0

✏

✓
Tcyl + T̄cyl

◆
=

X

n

Mne
in�

�
cM

24
(16)

I Classical constraint on the tensionless string: T(1) = 0, T(2) = 0.
I Quantum version: physical spectrum of tensionless strings restricted by

hphys|T(1)|phys0i = 0, hphys|T(2)|phys0i = 0. (17)
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A Bagchi 2013
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c
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m(m
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c̄
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m(m
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I World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the
cylinder.

Ln = ie
in!@!, L̄n = ie

in!̄@!̄ (11)
where !, !̄ = ⌧ ± �. Vector fields generate centre-less Virasoros.

I Tensionless limit ) length of string becomes infinite (� ! 1).
I Ends of closed string identified ) limit best viewed as (� ! �, ⌧ ! ✏⌧, ✏ ! 0).
I Define

Ln = Ln � L̄�n, Mn = ✏(Ln + L̄�n). (12)

I New vector fields (Ln, Mn) well-defined in limit and given by:

Ln = ie
in�(@� + in⌧@⌧ ), Mn = ie

in�@⌧ . (13)

I These are exactly the generators defined previously . Close to form BMS3.



Intrinsic Analysis: EOM and Mode Expansions
INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

INTRINSIC ANALYSIS: EOM AND SOLUTIONS
AB, Chakrabortty, Parekh 2015

I Equation of motion in V
a = (v, 0) gauge: Ẍ

µ = 0.
I Solution:

X
µ(�, ⌧) = x

µ +
p

2c0A
µ
0 � +

p

2c0B
µ
0 ⌧ + i

p

2c0
X

n 6=0

1
n

�
A

µ
n
� in⌧B

µ
n

�
e

in� (18)

I Closed string b.c.: X
µ(�, ⌧) = X

µ(� + 2⇡, ⌧) ) A
µ
0 = 0.

I Constraints:

Ẋ
2 = 2c

0 X

m,n

B�m · Bm+n e
in� = 0, Ẋ · X

0 = 2c
0 X

m,n

(A�m � in⌧B�m) · Bm+n e
in� = 0

I Define:
Ln =

X

m

A�m · Bm+n, Mn =
X

m

B�m · Bm+n

I Classical constraints in terms of modes:
X

n

(Ln � in⌧Mn) e
in� = 0 = T(1),

X

n

Mn e
in� = 0 = T(2). (19)

I Familiar form obtained earlier from purely algebraic considerations.
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µ = 0.
I Solution:

X
µ(�, ⌧) = x

µ +
p

2c0A
µ
0 � +

p

2c0B
µ
0 ⌧ + i

p

2c0
X

n 6=0

1
n

�
A

µ
n
� in⌧B

µ
n

�
e

in� (18)

I Closed string b.c.: X
µ(�, ⌧) = X

µ(� + 2⇡, ⌧) ) A
µ
0 = 0.

I Constraints:

Ẋ
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I Familiar form obtained earlier from purely algebraic considerations.
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µ = 0.
I Solution:

X
µ(�, ⌧) = x

µ +
p

2c0A
µ
0 � +

p

2c0B
µ
0 ⌧ + i

p

2c0
X

n 6=0

1
n

�
A

µ
n
� in⌧B

µ
n

�
e

in� (18)

I Closed string b.c.: X
µ(�, ⌧) = X

µ(� + 2⇡, ⌧) ) A
µ
0 = 0.

I Constraints:

Ẋ
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I The algebra of the modes are:

{A
µ
m
, A

⌫
n
} = 0, {B

µ
m
, B

⌫
n
} = 0, {A

µ
m
, B

⌫
n
} = �im�m+n,0 ⌘µ⌫ . (20)

Note: this is not the algebra of harmonic oscillator modes. (More later.)

I The worldsheet symmetry algebra of tensionless strings, now constructed from the quadratics
of the modes:

{Lm, Ln} = �i(m � n)Lm+n, {Lm, Mn} = �i(m � n)Mm+n, {Mm, Mn} = 0. (21)

I Quantization: {, }PB ! �
i

~ [, ] leads to the BMS3 Algebra.
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Limiting Analysis: EOM and Mode Expansions
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LIMITING ANALYSIS: MODES
AB, Chakrabortty, Parekh 2015

I Tensile string mode expansion:
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I The limiting procedure: ⌧ ! ✏⌧, � ! �, ↵0 = c
0/✏ with ✏ ! 0
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I Thus we get a relation between the tensionless and tensile modes:

A
µ
n

=
1
p
✏
(↵µ

n
� ↵̃µ

�n
), B

µ
n

=
p
✏(↵µ

n
+ ↵̃µ

�n
). (22)

I The equivalent of the Virasoro contraints are now related as:

Ln = Ln � L̄�n, Mn = ✏
⇥
Ln + L̄�n

⇤
(23)
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AB, Chakrabortty, Parekh 2015
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INTRINSIC ANALYSIS: EOM AND SOLUTIONS
AB, Chakrabortty, Parekh 2015
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I Closed string b.c.: X
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I Familiar form obtained earlier from purely algebraic considerations.
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Quantum Tensionless Strings



A summary of quantum results
Novel closed to open string transition as the tension goes to zero.  
[AB, Banerjee, Parekh (PRL) 2019]  

Careful canonical quantisation leads to not one, but three different vacua which give rise to 
different quantum mechanical theories arising out of the same classical theory. 
[AB, Banerjee, Chakrabortty, Dutta, Parekh 2020]  

Lightcone analysis: spacetime Lorentz algebra closes for two theories for D=26. No restriction 
on the other theory. All acceptable limits of quantum tensile strings.   
[AB, Mandlik, Sharma 2021]  

Interpretation in terms of Rindler physics on the worldsheet.  
[AB, Banerjee, Chakrabortty (PRL) 2021]  

Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless 
near blackhole event horizons. [AB, Banerjee, Chakrabortty, Chatterjee 2021] 



A Tale of Three
AB, Banerjee, Chakrabortty, Dutta, Parekh. 2001.00354

✤ From a single classical theory, several inequivalent quantum theories may emerge. This happens when 
we consider canonical quantisation of tensionless string theories.  

✤ As we saw earlier 

✤ This amounts to 

✤ For each type of oscillator F obeying                                       , there can be three types of solutions.  
 
 
 

INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

TENSIONLESS EM-TENSOR A Bagchi 2013

I Spectrum of tensile string theory (in conformal gauge in flat space)
I Quantise worldsheet theory as a theory free scalar fields.
I Constraint: vanishing of EOM of metric (which is fixed to be flat).
I Op form: Physical states vanish under action of modes of E-M tensor.

I EM tensor for 2d CFT on cylinder:
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I Classical constraint on the tensionless string: T(1) = 0, T(2) = 0.
I Quantum version: physical spectrum of tensionless strings restricted by

hphys|T(1)|phys0i = 0, hphys|T(2)|phys0i = 0. (17)
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Remember that in section (3.2) we have studied two consistent ways to impose the con-

straint condition consistently on a worldsheet, the first one being the conventional method

of Virasoro highest weight representations:

Ln|physi = L̄n|physi = 0 (n > 0). (5.2)

It should be noted that the sandwich conditions here work via the right handed action of

the constraints. The other method is the case of the “flipped” vacuum where half of the

conditions are that of the lowest weight,

Ln|physi = L̄�n|physi = 0 (n > 0). (5.3)

Notice in the case above, the anti-holomorphic constraints actually impose a left handed

action to satisfy the sandwich condition.

For the tensionless case, the emergence of BMS3 algebra makes the matters more

conceptually di�cult as there could be more possibilities to consistently define the string

vacuum and physical states. We will see that this general sandwich condition, together

with the property of hermiticity can be broken down into three distinct cases:

1. Fn|physi = 0 (n > 0), (5.4a)

2. Fn|physi = 0 (n 6= 0), (5.4b)

3. Fn|physi 6= 0, but hphys0|Fn|physi = 0. (5.4c)

Zero modes are not included here since one can always have an ordering ambiguity in those

modes for which we need to consider F0 =: F0 : �aF in the above classification. The most

comfortable and nice way is the first case because the physical states fall into the highest

weight representation of the algebra (case 1), which is often the usual norm to study a

quantum string theory with.

In the case of the BMS3 algebra things are not that simple, and one needs to consider

all the cases to understand the associated string spectrum. Here we have Fn = (Ln,Mn)

for which the above classification of conditions are possible. It seems that we could have

nine possible combinations in total through which we can impose the constraint on the

states. These are depicted below:
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✤ Here                              . Hence seemingly nine conditions:  

 

✤ But the underlying BMS algebra also has to be satisfied. It turns out that only three of the nine choices lead to 
consistent solutions.  

✤ These are three inequivalent vacua, leading to three inequivalent quantum theories.  

Induced vacuum: Theory obtained from the limit of usual tensile strings.   

Flipped vacuum: Leads to ambitwistor strings. (See e.g. Casali, Tourkine, (Herfray) 2016-17) 

Oscillator vacuum: Interesting new vacuum. Contains hints of huge underlying gauge symmetry.
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9
>=

>;
. (5.5c)
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Critical Dimensions
AB, Mandlik, Sharma. 2105.09682
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Ambitwistor

Oscillator

Induced

Tensile Bosonic 

Closed String Theory

Figure 1. Tensionless corners of Bosonic String Theory.

In order to implement this, we shall make the assumption that the vacuum is a physical state:

h0|Ln|0i = 0, h0|Mn|0i = 0, 8n 6= 0 (2.31)

where the zero mode will come with normal ordering ambiguities and is hence excluded. Following
the analysis of [19], one can then find that there are three distinct choices of vacuum (and hence
three distinct quantum mechanical theories) compatible with the conditions above:

(A) Flipped: Ln|phyi = 0, Mn|phyi = 0 8n > 0, (2.32a)

(B) Induced: Ln|phyi 6= 0, Mn|phyi = 0 8n 6= 0, (2.32b)

(C) Oscillator: Ln|phyi 6= 0, Mn|phyi 6= 0, 8n but (2.30) satisfied. (2.32c)

The flipped vacuum imposes the conditions in the familiar highest weight manner. The resulting
theory is actually the bosonic version of the Ambitwistor string [30], which has been put forward
to explain the Cachazo-He-Yuan formulae for tree-level scattering amplitudes.

The induced vacuum is named from the induced representations of the BMS algebra under which
it transforms. This can be thought of as the limit of the tensile vacuum. A lot of interesting
phenomena occur here like the emergence of an open string from the condensation of all the closed
string modes [18].

The oscillator vacuum seems to be the most intimately intrinsic tensionless vacuum and hence has
the maximal chance of not satisfying a spacetime Lorentz algebra in any dimensions. However the
oscillator and the induced vacua are closely related by worldsheet Rindler transformations [20] and
our present analysis would show that this too is consistent in d = 26.

Figure 1 above depicts these three tensionless corners of the closed bosonic string.
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Other results
Tensionless superstrings: Two varieties depending on the underlying 
Superconformal Carrollian algebra. 

Homogeneous Tensionless Superstrings: Fermions scale in same way.  
Previous construction: Lindstrom, Sundborg, Theodoridis 1991. 
Limiting point of view: AB, Chakrabortty, Parekh 2016.  

Inhomogeneous Tensionless Superstrings: Fermions scale differently. 
New tensionless string!  AB, Banerjee, Chakrabortty, Parekh 2017-18.  

Possible counting of BTZ microstates with winding null strings on the 
horizon. AB, Grumiller, Sheikh-Jabbari (in progress) 



Open questions: Tensionless Strings
Analogous calculation of beta-function=0. Consistent backgrounds?  

Linking up to Gross-Mende high energy string scattering from worldsheet 
symmetries.  

Attacking the Hagedorn transition from the Carroll perspective. Emergent 
degrees of freedom?   

Strings near black holes, strings falling into black holes?  

Extend “Tale of Three” to superstrings. Different superstring theories?  

Intricate web of tensionless superstring dualities? 



Carroll Fermions

AB, Basu, Islam, Mondal (d>2, work in progress) 

AB, Banerjee, Dutta, Mondal (d=2, work in progress) 

What else is cooking? 



Carroll Clifford algebra
Two metrics for (flat) Carrollian theories:  

Two different Clifford algebra? 
 

Both consistent?  

                          : should obey the equivalent of the Lorentz algebra, i.e.  
 
the algebra of Carroll boosts and rotations.  

Lower gammas do this.  

For upper gammas: rotation matrices are identically zero. Not a faithful 
representation of the algebra. 

in (d+ 1) dimensions. The topology of null boundary is Ru ⌦ Sd, where Ru is a null line.

In keeping with this isomorphism, it has been observed that it is possible to give the finite

dimensional CCA discussed above an infinite-dimensional extension as shown in [26]. The

exact details are actually dimension dependent. The infinite extension in d = 2 gives the

BMS3 algebra:

[Ln, Lm] = (n�m)Ln+m +
cL
12

(n3
� n)�n+m,0,

[Ln,Mm] = (n�m)Mn+m +
cM
12

(n3
� n)�n+m,0,

[Mn,Mm] = 0 (2.10)

Here the supertranslations Mn are the generators of angle-dependent translations of the

null direction u and Ln, the superrotations, generate the di↵eomorphism of the circle at

infinity. There is a similar enhancement possible for d = 3 which gives rise to the BMS4
algebra. Even for d � 4 it is possible to give an infinite extension for the supertranslations

[]. For d = 4 this is

Mf = f(x, y, z)@t, (2.11)

for any arbitrary tensor field f , transforming under SO(3). These close to form an infinite

Abelian ideal along with the (finite) conformal generators on the sphere. It is possible

to have an extension to the full di↵eomorphism group on the sphere with other boundary

conditions, but we will not be interested in this and other generalisations of the BMS group

in this paper.

2.2 Carroll Geometry

Let us now give a more geometric picture of Carroll symmetry and review some of the

non-Lorentzian structures that arise in this context.

We begin by considering the Carroll limit of ordinary Minkowski spacetime to get a first idea

of the degenrate structures we would encounter. Consider the d-dimensional Minkowski

space with line element:

ds2 = �c2dt2 + (dxi)2 (2.12)

Then the covariant metric and its contravariant inverse are:

⌘µ⌫ =

 
�c2 0

0 Id�1

!
⌘µ⌫ =

 
�1/c2 0

0 Id�1

!
(2.13)

Now taking the Carroll limit (c ! 0) we get a degenerate covariant spatial metric h̃µ⌫ with

one zero eigenvalue and a degenerate contravariant temporal metric ⇥µ⌫ with one non-zero

eigenvalue:

⌘µ⌫ ! h̃µ⌫ =

 
0 0

0 Id�1

!
, �c2⌘µ⌫ ! ⇥µ⌫ =

 
1 0

0 0d�1

!
(2.14)
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3 Carroll Cli↵ord Algebra

We wish to build towards an understanding of fermions in Carrollian spacetimes. To this

end, we first postulate a Carrollian version of the relativistic Cli↵ord algebra and then we

will discuss some aspects of its representation theory.

3.1 The Algebra

For Carrollian spacetimes, we have two metrics given by h̃µ⌫ and ⇥µ⌫ . We need both to

generate the isometry of Carroll spacetimes. In keeping with this we propose that the

Carroll Cli↵ord algebra is given by:

�
�̃µ, �̃⌫

 
= 2h̃µ⌫ ,

�
�̃µ, �̃⌫

 
= 2⇥µ⌫ (3.1)

For flat Carroll spacetimes, which is the case we will be interested in throughout this work:

h̃µ⌫ = diag(0, 1, 1, . . .) ⇥µ⌫ = diag(1, 0, 0, . . .). (3.2)

Contrary to the relativistic case, here we expect that there are two sets of �̃ matrices which

obey these equations.

As a further test of our proposal, we will need to check that we can construct the set of

similar matrices ⌃̃

⌃̃ab ⌘
1

4
[�̃a, �̃b] (3.3)

which has to obey equivalent of the Lorentz (and not Poincare) algebra. This is the sub-

algebra of Carroll algebra which contains the Carroll boosts and rotations but excludes

translation generators:

[⌃̃0i, ⌃̃0j ] = 0, [⌃̃0i, ⌃̃jk] = ��ij⌃̃0k + �ik⌃̃0j (3.4a)

[⌃̃ij , ⌃̃kl] = ��il⌃̃jk + �ik⌃̃jl � �jk⌃̃il + �jl⌃̃ik (3.4b)

Note that we have used only the lower-index gammas in the above. As the product of two

�̃i in Carroll case is zero, the rotation matrices will be identically zero. Only non-vanishing

is the boost operator which commutes with other boost operators, satisfying this part of

the Carroll algebra. This will have some interesting consequences for us later.

3.2 Representation of the Carroll Cli↵ord algebra

In this subsection, we will construct an explicit representation of our Carroll Cli↵ord algebra

in d = 4 and show how to get this from a lower dimensional representation. This will help

us build representations for arbitrary dimensions.
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Theory with Lower Gammas
Can build higher dimensional gammas from lower dimensional ones.  

Adjoint of a Carroll spinor:  

Defined                            is a Carroll scalar.  

An action with lower gammas: 

Carroll symmetry manifest.  

Massless case: Conformal Carroll. Has infinite dimensional supertranslations as well. 
(Carroll version of Coriolis algebra)  

Possible applications to magic superconductivity in 2+1 dimensional graphene. 

which the boost and rotation by 3-vectors �i and ni act as:

��� = �ixi@t�, �n� = ✏ijknixj@k��
i

2
nl�l�. (4.2)

5 Action for Carroll fermions and its symmetries

Equipped with the required tools, we want to construct a Carroll invariant action for

fermions. We start with spinor  and define its adjoint

 ̄ =  †⇤, where ⇤ =

 
0 I

I 0

!
(5.1)

such that ⇤2 = I. We have introduced the matrix ⇤ so that the term  ̄ behaves like a

scalar under Carroll transformations. Other branch of ⇤: real v/s imaginary. Comment?

5.1 Action with lower gammas

We will begin by looking at an action constructed out of the lower gamma matrices. Since

the ⌃̃ matrices constructed out of these gammas give a proper representation of the space-

time Carroll algebra (minus translations), we expect that the action constructed out of

these matrices would have invariance under the full Carroll group and when the mass

terms are turned o↵, we expect to see conformal Carroll invariance appearing.

Let us take the hermitian conjugate of the �̃µ matrices for this representation:

�̃†µ = �⇤�̃µ⇤ which implies ⌃̃†
µ⌫ = �⇤⌃̃µ⌫⇤ (5.2)

Evidently, due the faithful representation furnished by the the �µ matrices, we have

bar i�̃0@t and  ̄ as two Carroll invariant terms, corresponding to the kinetic and

the mass term for a theory of a 4-component fermion  . Hence the following action is a

good point to start from:

Slower =

Z
dtd3x

�
 ̄�̃0@t �m ̄ 

�
(5.3)

However due to the degeneracy in the � matrices displayed above, only two of the four

components take part in the dynamics and the action boils down to:

Slower =

Z
dtd3x

⇣
i�†@t��m�†�

⌘
, (5.4)

where � is a 2-component spinor. For the massive case, this enjoys a SU(2) symmetry at

each space point, which enlarges to SO(4) for the massless case. Even for the global parts

of these transformations, these are richer than the relativistic case, where one encounters

U(1)⇥ U(1) symmetry only for Weyl (massless fermions) and just a U(1) for the massive

one.

Before concluding this section, we recall that due to the degeneracy in the representation

of the Carrollian Cli↵ord algebra, we have a theory of two component spinors, resulting

– 12 –

⇤ such that  ̄ 
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Theory with Upper Gammas
Also can construct higher dimensional gammas from lower dimensional ones.  

One can use Upper Gammas to construct theories for d=2, since we don’t have 
rotations here.  

Action:  

Relations to earlier actions for the tensionless superstrings.  

BMS3 arises as symmetries. 

identically vanish, we expect that the actions written from here will not be invariant under

the whole Carroll group. This expectation would be borne out by our analysis.

Our proposed action is the following:

Supper =

Z
dtdd�1x  ̄(i�̃0@t + i�̃i@i) (5.13)

Here (�̃0)2 = 1 and (�̃i)2 = 0. Under boost transformation

�C = (xi@t � ⌃̃
0i) , �C ̄ = (xi@t ̄+  ̄⌃̃0i) (5.14)

this action is invariant. Under rotations, the fields change as before

�J = (xi@j � xj@i � ⌃̃
ij) , �J ̄ = (xi@j � xj@i) ̄+  ̄⌃̃ij (5.15)

The change in the Lagrangian would be

�JL = [@j(xiL)� @i(xjL)]�  ̄(�̃
j@i � �̃i@j) +  ̄[⌃̃ij , �̃0]@t +  ̄[⌃̃ij , �̃k]@k (5.16)

Now for this representation ⌃̃ij are identically zero. So the commutators in the above

equation will vanish. The Lagrangian and hence the action is not invariant under rotations:

�JL = [@j(xiL)� @i(xjL)]�  ̄(�̃
j@i � �̃i@j) 6= 0. (5.17)

So we see that the vanishing of the ⌃̃ij in this representation of upper gammas leads to a

Carroll action which is not rotation invariant. For the special case of d = 2, however, since

there are no rotation generators, this action becomes is

S2d
upper =

Z
dtdx

�
 ̄�̃0@t +  ̄�̃1@x 

�
, (5.18)

where (�̃0)2 = 1 and (�̃1)2 = 0. invariant under the whole Conformal Carroll group.

Interestingly, the symmetries get infinitely enhanced to the full BMS3 algebra (??). To see

this, we recall the action of the fields under the modes of infinite dimensional generators

Ln,Mn []:

�Ln =
�
xn+1@x + (n+ 1)xnt@t + (n+ 1)xn�� n(n+ 1)xn�1t⌃̃01

�
 (5.19)

�Mn =
�
� xn+1@t + (n+ 1)xn⌃̃01

�
 (5.20)

It is straight-forward to see that the action (5.18) remains invariant, provided � = 1/2.

6 Solutions and discrete symmetries

In order to see the e↵ect of discrete symmetries like charge conjugation in a ferrmionic

system, it is often useful to study that on plane-wave solutions. With this motivation,

we make a curious observation below. We start by taking a naive Carrollian limit on the
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Confusions with Fermions
Why do the upper gammas not make sense for d>2?  

Carroll Clifford algebras look like “electric” and “magnetic” ones arising from the original 
Clifford algebra.   

The naive limit c-> 0 does not seem to make sense.   
 
 
 
But this does not work in the explicit representations we have.  

Clearly a lot to understand about Carroll fermions. 
 

{�,�} = 2g = 2(g0 + c2g1 + . . .) ) {�lower, �upper} = 0
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