Carrollian and celestial spaces at infinity

Stefan Prohazka stefan.prohazka@ed.ac.uk

THE UNIVERSITY of EDINBURGH

CARROLL WORKSHOP 21 FEB 2022

LEVERHULME TRUST

Plan

Homogeneous carrollian spacetimes

- José Figueroa-O'Farrill, Ross Grassie
- 1809.01224, 1905.00034
- Introduce homogeneous spaces
- Review all homogeneous carrollian spacetimes
- Connect to interesting recent advances

Carrollian and celestial spaces at infinity

- José Figueroa-O'Farrill, Emil Have, Jakob Salzer
- 2112.03319
- Please see these papers for references
- Feel free to ask questions

Outline

Motivation

Homogeneous spacetimes

Homogeneous Carrollian spaces

Carrollian and celestial spaces at infinity

Maximally symmetric spaces

- Maximally symmetric spaces
 - Riemannian: Euclidean, Sphere, Hyperbolic
 - Lorentzian: Minkowski, de Sitter, anti-de Sitter
- Properties (intuitive)
 - Maximal amount of symmetry (e.g., Killing vectors)
 - Every point looks the same
 - Symmetry connects each point
- Properties have nice consequences
 - Because every point of the space is "the same" a lot can be learned by just analyzing any specific point
 - More complicated problems can be reduced to linear algebra
 - ▶ Similar to Lie group $G \to Lie$ algebra \mathfrak{g}
- Why are they important?
 - Backgrounds for physics
 - Vacuum for gravitational theories (empty universe), c.f., Carrollian gravity talks
 - Starting point for gauging

Motivation

Homogeneous spacetimes

Homogeneous Carrollian spaces

Carrollian and celestial spaces at infinity

Two elements

- 1. Smooth space (Manifold)
- 2. Continuous symmetries acting on the space such that every point is connected continuously to every other point using such a symmetry (transitive Lie group action)

Example: (Plane, rotations + translations)

- ▶ Space: Two dimensional plane (ℝ²)
- Symmetries: Rotations and translations (ISO(2))
 - Connect all points
- ► Space + Symmetries \rightarrow Homogeneous space
- Often interested in invariants

Nondegenerate riemannian metric $ds^2 = dx^2 + dy^2$

Example: (Plane, rotations + translations)

Equivalent way: Symmetries first

▶ Symmetries: Rotations and translations (*ISO*(2))

$$(R_1, \vec{a}_1) \cdot (R_2, \vec{a}_2) = (R_1 R_2, R_1 \vec{a}_2 + \vec{a}_1)$$

Subset of symmetries that close: Rotations

$$\mathsf{Space} = \frac{\mathsf{Rotations} + \mathsf{translations}}{\mathsf{"ignore" rotations}} \left(= \frac{ISO(2)}{SO(2)} \right)$$

"Ignore" it is important that the rotations are a subgroup

Example: (Plane, rotations + translations)

- Something interesting has happened
- To specify the homogeneous space specify:
 - Symmetries
 - Subgroup of symmetries
- Only symmetries!
- Homogeneous space:
 - (Manifold, Symmetries) → Klein pair (Symmetries, Subgroup of symmetries)

Equivalent because

$$\mathsf{Space} = \frac{\mathsf{Symmetries}}{\mathsf{Subgroup of symmetries}}$$

Minkowski = (Poincaré, Lorentz)

- Try to understand Minkowski space using this concept
- Symmetries: Rotations, Lorentz-boosts, spatial and time translations (Poincaré)
- Subgroup of Symmetries: Rotations, Lorentz-boosts (Lorentz)
- Homogeneous space specified: (Poincaré, Lorentz)
- Minkowski space

 $\frac{\text{Poincaré}}{\text{Lorentz}} = \frac{\text{Rotations, boosts, spatial and time translations}}{\text{Rotations, boosts}}$

- Sanity check: Spatial and time translations = dimension of spacetime
- Invariant: Nondegenerate lorentzian metric

$$g = -dt^2 + dx^2 + dy^2 + dz^2$$

Symmetries of invariant structure $\mathcal{L}_{\xi}g = 0 \Rightarrow$ Poincaré

What are spatially isotropic spacetimes?

- 1. Restrict the Lie algebra to the following generators
 - Rotations J (J_{ab})
 - "Boosts" $oldsymbol{B}\left(B_{a}
 ight)$
 - "Spatial translations" $P(P_a)$
 - Time translations H

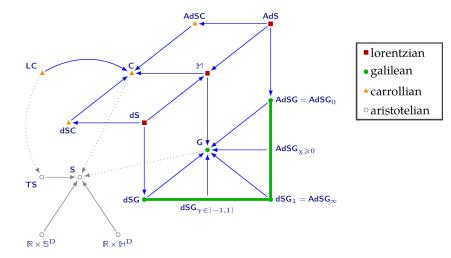
$$[\boldsymbol{J}, \boldsymbol{J}] = \boldsymbol{J}$$
 $[\boldsymbol{J}, \boldsymbol{B}] = \boldsymbol{B}$ $[\boldsymbol{J}, \boldsymbol{P}] = \boldsymbol{P}$ $[\boldsymbol{J}, \boldsymbol{H}] = 0$

2. Classify all possible Lie algebras satisfying this commutation relations

This is possible due the rotational invariance

- 3. Classify all homogeneous spaces for each Lie algebra
 - Search Lie subalgebras $\{J, B\}$
 - At this step the "boosts" \rightarrow boosts
- 4. Search for invariants \rightarrow characterize the spacetime
- 5. Check that boosts are noncompact

Generic dimensions: $[m{J},m{J}]=m{J}$, $[m{J},m{B}]=m{B}$, $[m{J},m{P}]=m{P}$



Motivation

Homogeneous spacetimes

Homogeneous Carrollian spaces

Carrollian and celestial spaces at infinity

Homogeneous Carrollian spaces

- They all share (are kinematical spacetimes)
 - Rotations $J(J_{ab})$
 - Carroll boosts $\boldsymbol{B}\left(B_{a}\right)$
 - Spatial translations P (P_a)
 - Time translations H
 - Carrollian invariants: degenerate riemannian metric, non-vanishing vector field

$$\blacktriangleright \ \mathfrak{g} = \langle {\bm J}, {\bm B}, H, {\bm P} \rangle, \text{ subalgebra } \mathfrak{h} = \langle {\bm J}, {\bm B} \rangle$$

$$[\boldsymbol{J}, \boldsymbol{J}] = \boldsymbol{J}$$
 $[\boldsymbol{J}, \boldsymbol{B}] = \boldsymbol{B}$ $[\boldsymbol{J}, \boldsymbol{P}] = \boldsymbol{P}$ $[\boldsymbol{J}, \boldsymbol{H}] = 0$

▶ AdS Carroll $\Lambda < 0$, dS Carroll $\Lambda > 0$, Carroll $\Lambda \rightarrow 0$ spacetime

$$[\boldsymbol{B},\boldsymbol{P}]=H$$
 $[H,\boldsymbol{P}]=-\Lambda\boldsymbol{B}$ $[\boldsymbol{P},\boldsymbol{P}]=-\Lambda\boldsymbol{J}$

• Lightcone (Lie algebra $\mathfrak{so}(4,1)$)

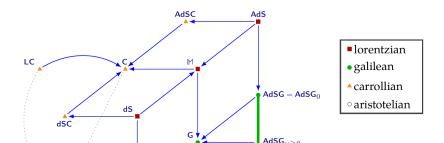
$$[\boldsymbol{B},\boldsymbol{P}] = H + \boldsymbol{J}$$
 $[\boldsymbol{B},H] = \boldsymbol{P}$ $[H,\boldsymbol{P}] = -\boldsymbol{P}$

All realized as null hypersurfaces of lorentzian manifolds

Cosmological carrollian spaces

- The two carrollian "limits" of de Sitter space
 - ► Empty universe with no preferred place → Vacuum homogeneous space
- $1. \ dS \to LC$
 - Lightcone: No limit in the sense of a contraction
 - Underlying symmetry algebra is the same as for dS so(4,1), but the homogeneous space changes
 - Easy to visualize
- 2. dS \rightarrow dS Carroll

Limit in the sense of a IW contraction of symmetries



One Lie algebra can have various spacetimes:

- $\mathfrak{so}(4, 1)$: de Sitter \leftrightarrow Light cone
- $\mathfrak{iso}(3,1)$: AdS-Carroll \leftrightarrow Minkowksi space
- The symmetries of the homogeneous space g are not necessarily the same as the symmetries of the invariant structure L_ξ(invariants) = 0
 - Carroll Lie algebra \leftrightarrow infinite dimensional algebra

Motivation

Homogeneous spacetimes

Homogeneous Carrollian spaces

Carrollian and celestial spaces at infinity

Motivation: Holography

AdS₄/CFT₃

▶ Both based on $\mathfrak{so}(3,2)$ but have different dimension

Isometries of the vacuum in the bulk

 \leftrightarrow Symmetries of the vacuum of the boundary

- Not asymptotic symmetries
- True in 2+1 dim.
- Simple: Same symmetries + different dimension + vacuum should be homogeneous

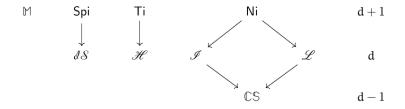
Plan

- AdS₄: homogeneous spaces of $\mathfrak{so}(3,2)$ with $d \leq 3$
- ▶ This means we have to search for all subalgebras of $\mathfrak{so}(3,2)$ with $d \ge 7$
- Analyze if they exist and are relevant
- Powerful:
 - Nearly no input: Only symmetries (Lie algebra + Lie subalgebra)
 - Precise (no room to wiggle, one might come back empty-handed)
 - Coordinate invariant
 - Complete with the given assumptions and if one is able to do it
- Universal: This approach is not restricted to any specific geometry
- Unifying: If there are more possible interesting options one should obtain all of them
- Provides possibly underlying symmetries and geometries, but more work is needed.
 - Necessary, not sufficient

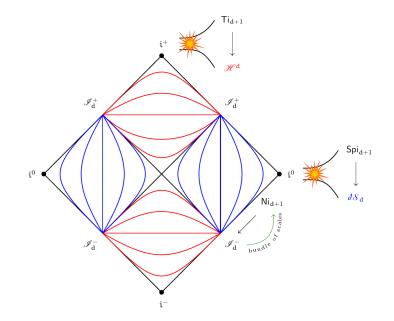
literature	v t carrollian and t celestial	۷.
	Carrollian and celestial spaces at infinity José Figueroa-O'Farrill, Emil Have, Stefan Prohazka, Jakob Salzer (Dec 6, 2021) e-Print: 2112.03319 [hep-th]	#1
	Ď pdf ⊡ cite	→ 3 citations
	A Carrollian Perspective on Celestial Holography Laura Donnay (Vienna, Tech. U.), Adrien Fiorucci, Yannick Herfray, Romain Ruzziconi (Vienna, Tech. U.) (Feb 9, e-Print: 2202.04702 [hep-th]	#2
	Scattering Amplitudes: Celestial and Carrollian Arjun Bagchi (Indian Inst. Tech., Kanpur), Shamik Banerjee, Rudranil Basu, Sudipta Dutta (Feb 16, 2022) e-Print: 2202.08438 [hep-th]	#3

- AdS₄: homogeneous spaces of $\mathfrak{so}(3,2)$ with $d \leq 3$
- ▶ dS₄: homogeneous spaces of $\mathfrak{so}(4,1)$ with $d \leq 3$
- ▶ \mathbb{M}_4 : homogeneous spaces of $\mathfrak{iso}(3,1)$ with $d \leq 3$
- This means Lie subalgebras of $d \ge 7$

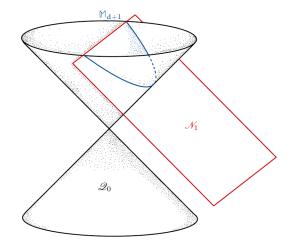
General picture



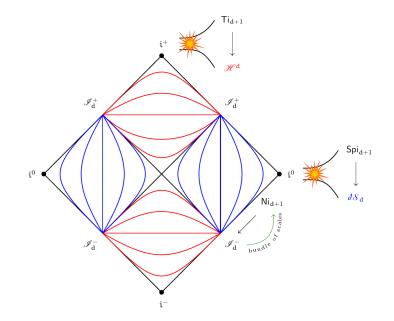
General picture



Embedding Minkowski space



General picture



To summarize, the result of the blowing up of i^0 is a 4-manifold which has the structure of a principal fibre bundle: The base space is the unit timelike hyperboloid in the tangent space of i^0 , and the structure group is the additive group of reals. This S will be called Spi-spatial infinity. From its very construction, S inherits two tensor fields: a covariant, second rank, symmetric (degenerate) tensor field h_{ab} , the pullback to S of the natural metric on the hyperboloid K; and a vertical vector field v^a , the generator of the natural, one-parameter family of diffeomorphisms on S induced by its structure group.32

- Invariant structure: doubly-carrollian
 - two nowhere-vanishing vectorfields
 - doubly degenerate metric
- Symmetries of the invariant structure: *BMS*₄
- Not conformal carrollian symmetries, but proper ones \$\mathcal{L}_{\xi}(inv) = 0\$
- Explanation: Bundle of scales of \mathcal{J}_3

With
$$i = 1, 2, \eta_{ij} = \delta_{ij}$$
 and $\eta_{+-} = \eta_{-+} = 1$
 $[L_{ij}, L_{k\ell}] = \delta_{jk}L_{i\ell} - \delta_{ik}L_{j\ell} - \delta_{j\ell}L_{ik} + \delta_{i\ell}L_{jk}$
 $[L_{ij}, L_{\pm k}] = \delta_{jk}L_{\pm i} - \delta_{ik}L_{\pm j}$
 $[L_{+i}, L_{-j}] = -L_{ij} - \delta_{ij}L_{+-}$
 $[L_{+-}, L_{\pm i}] = \pm L_{\pm i}$
 $[L_{ij}, P_k] = \delta_{jk}P_i - \delta_{ik}P_j$
 $[L_{\pm i}, P_j] = \delta_{ij}P_{\pm}$
 $[L_{\pm i}, P_{\mp}] = -P_i$
 $[L_{+-}, P_{\pm}] = \pm P_{\pm}.$

$$\mathfrak{g} = \mathfrak{iso}(3,1) = \left\langle L_{ij}, L_{+i}, L_{-i}, L_{+-}, P_i, P_+, P_- \right\rangle_{i,j=1,2}$$

$$\begin{split} \mathfrak{h}_{Ni} &= \langle L_{ij}, L_{-i}, P_i, P_- \rangle \\ \mathfrak{h}_{\mathcal{J}} &= \langle L_{ij}, L_{-i}, P_i, P_-, L_{+-} \rangle \\ \mathfrak{h}_{\mathsf{LC}} &= \langle L_{ij}, L_{-i}, P_i, P_-, P_+ \rangle \\ \mathfrak{h}_{CS} &= \langle L_{ij}, L_{-i}, P_i, P_-, L_{+-}, P_+ \rangle \end{split}$$

Motivation

Homogeneous spacetimes

Homogeneous Carrollian spaces

Carrollian and celestial spaces at infinity

Summary and outlook

There are 4 homogeneous carrollian spaces

- Carroll, (A)dS Carroll, Light-cone
- Seem to be useful, see talks workshop talks
- Rich and interesting world of carrollian physics
 - Beyond the flat case
 - AdS Carroll related to Ti, carrollian limit of AdS related to timelike infinity in M (?)
 - Beyond purely carrollian, e.g.,
 - Spi is pseudo-carrollian
 - Ni is dubbly-carrollian
 - Not necessarily limits (in the sense of a contraction)
 - Reinterpretation, i.e., different homogeneous spaces
- Arise as bundles of scales of conformal riemannian spaces

Carroll: More general

- "Algebraic holography": Search lower-dimensional spaces
- Vacuum homogeneous
- ▶ Unique CS₃ for dS₄ (nearly unique or AdS₄)
- Flat space holography
 - Carroll physics derives from the Poincaré algebra with different homogeneous space
 - Unifying: Spatial, temporal and null
 - Much of what has been said generalizes to other signatures (Celestial torus)
- Uniqueness:
 - \mathcal{J}_3 is unique effective hom. space in d=3
 - \blacktriangleright CS₂ unique for d = 2
 - CS₂: No counterpart in (A)dS₄

- Celestial sphere in (A)dS?
- Homogeneous spaces are the starting point for gauging
- Embedding picture interesting for holography?
 - Bulk-to-boundary propagators
 - Extremal surfaces
 - Reconstruction

