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QUESTIONS & CUES

WHY FLUIDS?

Solution space of asymptotically locally AdS spacetimes in
incomplete Newman-Unti gauge — boundary relativistic fluids

V.

WHY CARROLLIAN PHYSICS?

Asymptotically flat spacetimes — Carrollian boundary geometry

WHAT 1S CARROLLIAN HYDRODYNAMICS?

Set of equations obtained
o either from relativistic fluid dynamics at zero light velocity

o or demanding Carrollian diffeomorphism invariance




WHAT IS THE ROLE OF CARROLLIAN FLUIDS IN THE SOLUTION
SPACE OF RICCI-FLAT SPACETIMES?

They carry part of the infinite deep information — unless a
“self-duality” condition is imposed

WHAT ARE THE HINTS ABOUT FLAT HOLOGRAPHY?
If it exists it should be Chthonian rather than Celestial
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EINSTEIN SPACETIMES WITH A < 0 IN n DIMENSIONS

THE NEWMAN-UNTI GAUGE FOR Gug (r, t, x', i=1,...,n—2)
o Gauge conditions: G, = 0, Gy = —1, G;; = 0

ds? = \—r/dt2 — 2dtdr + Gj; (dx' — U'dt) (dx/ — U/dt)

vV, Gj, U’ functions of all coordinates
o Residual diffeomorphisms: w(t,x), f(t,x), Y'(t,x)
o ASG ¢ fall-offs/boundary conditions

INcOMPLETE NEWMAN-UNTI GAUGE FIXING

o Gauge conditions: G, = 0, G; = —1, G,; # 0

o Residual diffeomorphisms: w(t,x), f(t,x), Y(t,x) plus
Z'(t,x), Spj(t,x) — extra local SO(n — 2,1)




EINSTEIN SPACETIMES RECONSTRUCTED

SOLUTION SPACE WITH INCOMPLETE NEWMAN-UNTI GAUGE AND
MILD BOUNDARY CONDITIONS

o Mn=N+2 Finstein’s equations — n* — 3 functions of (¢, x)

— boundary data [p,v =0,1,...,n— 2]
o 8y symmetric < @
boundary metric
o T,, symmetric and traceless < @ =1
conformal boundary energy—momentum tensor
o ut < n—2
boundary normalized vector field

o remaining n — 1 Einstein’s equations |V, 7" = 0| — map
to a Weyl-covariant relativistic fluid with velocity u* -

linear trigger for fluid/gravity holographic correspondence

[Bhattacharyya, Hubeny, Minwalla, Rangamani ’07; Haack, Yarom ’08; etc.]




RELATIVISTIC HYDRODYNAMICS ECKART ’40; LANDAU AND LIFSHITZ *60; ISRAEL "87

0 IGNORING MATTER CURRENT AND CHEMICAL POTENTIAL
o ON ARBITRARY (NON-FLAT) GEOMETRY &, OF DIM d + 1

V,T* = 0 plus Gibbs-Duhem & equation of state (conformal)

o |ul2=—k B =g 4 sy
v __
TH = ¢ % + ph* + THY + T

o energy density € = %Twu“u” thermodynamic pressure p
o heat current and viscous stress tensor g*, T#¥ — transverse

o fluid velocity u* — arbitrary (eckar 40; Landau and Lifshitz 's0)




IN n = 4 DIMENSIONS A = —3k?

GENERAL SOLUTION: 6 + 2 4+ 5 ARBITRARY BOUNDARY DATA
o ds? = —k2 (Qdt — bdx')? + ajdxidx/
o u= u,dx*
o Ty — {e =2p,¢", ™}

(*]

S
dséinstein = 2%(dl‘ + rA) + r’ds* — zéauudxﬂdxu + o

+87TG cu? 4 4u 1 .
—— |eu — — ——*cC
k*r 3 q 381G




COMMENTS

o The boundary fluid is abstract — no constitutive relations &
derivative expansions

o Infinite-dim bulk ASG = boundary-fluid invariance — extra
local SO(n — 2, 1) = hydrodynamic-frame invariance

o Bulk Newman-Unti gauge = boundary fluid with locked
velocity - charges — handle on breaking of SO(n — 2, 1) i
n = 3 cf. Campoleoni et al. *19 and talk by Luca Ciambelli]

o A remarkable “self-duality” condition — resummation — u¥
shearless, g, = ﬁ * Cpy Ty = chkz * CW (— bulk Weyl)
ds? 25 (dr+rA)+r’ds? +F+I«Tﬂ (87w Ger + ¢)

res. Einstein —
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A NEW ASYMPTOTIC STRUCTURE

FroM ADS,, TO FLAT,, ASYMPTOTICS

n—1)(n—2
PGS (2 PERN

V¢+

AdS bulk | & flat bulk i

k—0

CARROLLIAN BOUNDARY GEOMETRY IN n — 1 DIMENSIONS

k = boundary velocity of light <+ the boundary .# is null
— Carrollian fluids as boundary data for Ricci-flat bulks




IDEAS ON CARROLLIAN FLUIDS

WHAT WE CANNOT DO: MICROSCOPICS AT k — 0

o no motion is allowed
@ no kinetic theory or Boltzmann equation can be constructed

o no thermodynamics

WHAT WE CAN DO: TAKE LIMITS AND USE SYMMETRIES

@ Carrollian from relativistic hydrodynamics at k — 0
o choose a convenient coordinate system
o assume a behavior for ¢, p, g*, T*"
o study the limit of V, T*" =0

@ Momenta & conservation from Carrollian diffeomorphisms
o effective action invariant under Carrollian diffeomorphisms
o momenta as variations and conservation equations




A GOOD GAUGE IN d 4+ 1 DIMENSIONS

RIEMANNIAN FIBRATION .# A LA PAPAPETROU-RANDERS
ds? = —K? (th — b;dx’) + a;dx'dx’/
[cf. discussion in Stefan Vandoren’ and Niels Obers’ talks about choosing “good” coordinates]
o Carrollian diffeos t' = /(t,x), x' = x'(x) (here x° = kt)

reduction of V#

° éVU is a Carrollian scalar
o V'isa Carrollian vector
oM f R x .7 Carrollian geometry with metric
—0
de? = ajjdx'dx’ & Ehresmann connection e = Qdt — b;dx’




THE CARROLLIAN LIMIT OF FLUIDS

KiNEMATICS

u=q (—8t -+ v’ﬁ,-)

o v/ — 0 non-trivially
k—0

o B" = jjﬁj the inverse velocity of Carrollian fluids

TRANSPORT
0 ¢ — €
o similarly for p
o L it LQ
K2 k2

o i — — = 1550




THREE REMARKS
@ scalings suggested by the AdS boundary relativistic fluids
@ more O (1/k2m) terms — more degrees of freedom

@ more O (1/k2m) terms — more equations

COMPARISON WITH THE GALILEAN LIMIT k — 0O
°oc—eo+kKop—pqg—Qandri - XV
o new degree of freedom: mass density

o new equation: continuity

BAck To CARROLLIAN: 2d + 2 EQUATIONS

0= &V, T = LF+E+0 (k)
0=V,TH=LH +G'+0 (k)




CARROLLIAN-COVARIANT EQUATIONS

STRUCTURE

Carrollian-covariant time and space derivatives acting on
Carrollian momenta

CARROLLIAN MOMENTA
éToo = € —I- (@) (kz)
wTh= —% —T'+0 (k)
Ti=-2 1M+ 0 (k)
with

e =€+ 26;Q — BiBTY

N'=qQ — gz’

Ti=nl— BEN+ B (e + p+ Q) + 5 Q
Ni = pal — =V + Q'8 + 'Y




EXPLICIT EXPRESSIONS [FOR CARROLLIAN CONNECTION AND CURVATURE SEE CIAMBELLI ET AL. '18]

E=—(50i+0)e — (@; + 2<p,~) N — N9 (& + 30ay)
F=30¢+1¥0 “constraint”

G/ = (50 +0) TV + (ﬁi + 90;) N9 + ple. + 2M'w/
W— — (@I + 99/) Y 4 (éﬁt 4 9) MV “continuity”

Applications: holographic fluids, Cotton tensor in 3 dim,
membrane paradigm [Ciambelli et al. *18 & *20; Campoleoni et al. ’19; Donnay, Marteau *19]

COMMENT ON AN APPARENT DISAGREEMENT [cF. NIELs OBERS’ TALK]
o Minkowski metric ds*> = —k?dt* + 5,~J~dxidxj
i 0 0 _
o Ty =-T" (x°=kt)
o Th=—-KT!'—0 if T'=0(k") a>-2
k—0

Qo




QEJASI_ALTERNATIVE METHOD [C1aMBELLI, MARTEAU '19]

CARROLLIAN-INVARIANT ACTION AND MOMENTA

ni— 2 éS
T VaQ 6a,,
I_Il \/19 5b # 0 [again vs. talk by Niels Obers]

I bi ¢S
s ﬁ(59+95b)

CARROLLIAN-DIFFEO INVARIANCE & = £X(t,x)0; + £/(x)0;
0= = (0 +6) e = (Vi + 200) V=TV (& + J0y)

0= (@,"f’(ﬂ,‘) I'Iij+g0jee+2I'Iiw;j

some degrees of freedom are missing — need a;;, b;, {2
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RiccIi-FLAT IN INCOMPLETE NEWMAN—-UNTI GAUGE

Al 2
FIRST HINT IN n = 4 limy_,0 DSE,vorem

ds3..i.ac described in terms of Carrollian boundary data
o Carrollian geometry (6)

o degenerate metric (3)
o Ehresmann connection (3)

o Carrollian fluid (5)

o energy (1)
o momenta — heat current (2) and stress tensor (2)

o Carrollian-fluid “velocity” (2) — hydro-frame freedom

FULL SOLUTION SPACE

infinite number of further Carrollian data obeying Carrollian
dynamics — at every O (1/)




THE HOLOGRAPHIC CARROLLIAN FLUID

TRANSPORT — IN RED FED BY THE BOUNDARY COTTON
o 5:2p—>€(,1)k2+5+%+% € o Bondi mass
o Z—; -7+ % ate % el angular momentum aspect
o i — —k2Fi —Zi X _ ¢

k? k4

NON-TRIVIAL FLUID EQUATIONS (2)

i

1 A
N ij
sm mc(@@ I ,,Q@t )

il = . i 1 ~. fi.c
5.% (71" — ;7:[}6 ) + 591 (6 + E:T—’G ) = (shear, news)

@ﬁ-‘r@




RIcCI-FLAT SPACETIMES UP TO O (/)

0 A 1 _a
dSRicci-flar = 20 (dr + rpap — rom+ Dy * @ — Eu“%%’z)

od
+ <p2 + %) 6 + Cop (ru’p’ — ¥ * pp’)

1 N, 321G 1 .
-l-; [(871‘65—%);1, 4 (71'“—8 G*wa>p,p,

3 T

16mG

Eabu“ub] + 0 (/”)
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HINTS FOR FLAT HOLOGRAPHY

THE ASYMPTOTICALLY ADS PARADIGM IN 4 DIMENSIONS

o on the Riemannian boundary

o metric g, — source
o energy-momentum tensor TH” — vev

o Dirichlet bry. conds. — global SO(3, 2) on Minkowski
holographic dual theory = CFT on Minkowski

THE 4-DIM ASYMPTOTICALLY FLAT EXPECTATIONS
o on the Carrollian boundary
o {ajj, bi, 2} — source - possibly
o momenta {E"j, 7N E} — vev — possibly
o ...00 (D Gy except for 3-dim bulk)
o Dirichlet bry. conds. — global CCarroll; = BMS; on R x E,

dual non-local field theory on R x E, invariant under
BMS4 = sT x SL(2, C) — Chthonian Carroll CFT




WHAT ABOUT FLAT4/CFT, CELESTIAL HOLOGRAPHY? [iisvinn scroor]

FRAMEWORK

FEATURES

OuTtruT

Qo
Qo

Q

S? = spatial section of the Carrollian bry.
2-dim en.—mom. tensor ~ [ Az ~ [ 0:C

limited to “SL(2, C)” invariance — vs. BMS,
ignores the deep degrees of freedom

o raises questions about unitarity and locality

Qo

kinematic book-keeping for radiation S-matrix

o very special to n = 4 (e.g. no shear in n = 3)

<
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FacTs & QUOTABLE
o Carrollian fluid = formal Carrollian-general-covariant
hydrodynamics
o enforced by Ricci-flat bounbary dynamics
o applicable in the membrane-paradigm (ponnay. Marteau *19]
o Flat bulk is mapped onto Carrollian boundary dynamics

o supports a Carrollian-fluid/flat-gravity sector
o requires infinite sets of deep boundary data
o suggests flat-holographic duals are non-local field theories

WORTH INVESTIGATING
o find other applications of Carrollian fluids e puch school
o pursue the quest of BMS-invariant field theories [icseiac, ey

Leblond ’67 & '73; Souriau ’85; Duval et al. *14; Bagchi et al. ’20; Henneaux, Salgado—Rebolledo ’79 & *21]

o circumscribe the role/validity of celestial CFT [ponnay et a1 22)
o group theory and representation aspects [cf. Glenn Barnich’ talk]
o Carrollian momenta and reconstruction properties
o better understand the role of boundary Cotton
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CARROLLIAN GEOMETRY [DUVAL ET AL. *14; BEKAERT ET AL. '16; CIAMBELLI ET AL. '19]

BASIC INGREDIENTS IN d + 1 DIMENSIONS
o degenerate metric: d/? = a;(t,x)dx'dx’ i, j=1,...,d

o Ehresmann connection: e = Qdt — b;dx’

GENERAL COVARIANCE

Carrollian diffeomorphisms: ' = ¢/(t,x) x' = x/(x)

EXAMPLE: ZERO-C LIMIT OF MINKOWSKI SPACETIME (1 Lesions o]
o df? = 5;jdxidxj e =dt
' =t+ Bix' + to,

o isometries: Carroll group :
XK = Rxl 4 xk

PROPERTY
CCarrrollg41 = BMS44»
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PROPERTIES

BuLk ASG MATCHES THE BOUNDARY INVARIANCES

o Weyl w(t, x)

o sT f(t,x)x sR Yi(x) = Carrollian diffeos

o Carrollian hydrodynamic-frame transformations
Dirichlet (d¢> ~ S?> & no Ehresmann) — BMS, = CCarroll;

FURTHER COMMENTS

o Shear €; — independent — news c/ﬁj

o A remarkable “self-duality” condition — resummation — no
shear, pure fluid, Carrollian momenta = Carrollian Cotton

2 _I; 2
dSres. Ricci-flat — Ilmk—>0 dsres. Einstein




A MIRACULOUS “SELF-DUALITY” CONDITION .. . .

6 + 1 INDEPENDENT BOUNDARY DATA
o Carrollian fluid momenta = Carrollian Cotton tensor
o “velocity” p = —e (Ehresmann connection)

o zero shear & other Carrollian data frozen

2
ALGEBRAICALLY SPECIAL — FLAT LIMIT OF DS pqummED ADS

Q
dSrzesummed flat = 20 <dr + roe + ridt) o r2de?

2
+s+ = (8mCer + ¢ * w)
p
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GENERAL COVARIANCE AND WEYL INVARIANCE

FLuip EQUATIONS COVARIANT — DIFFEOMORPHISM INVARIANCE

Diffeomorphisms are generated by vector fields (i,j = 1, ..., d)
E=f0+ Y0
f(t,x) and Y/(t,x) d + 1 functions of time and space

be = —%

CONFORMAL (WEYL-COVARIANT) FLUIDS: FLUID EQUATIONS
INVARIANT UNDER ARBITRARY RESCALING OF THE METRIC
oSy = — ATy Gyl = G

w(t, x) arbitrary function of time and space

0w = WW




THE HYDRODYNAMIC-FRAME INVARIANCE

LANDAU-LIFSHITZ’S FOLLOWING 1940 ECKART’S STATEMENTS

[THEORETICAL PHYSICS VOL. 6 §136]

u* is not physical/measurable — a book-keeping device

TRANSLATION: GAUGE INVARIANCE

Arbitrary local Lorentz transformations of u* can be
compensated by appropriate modifications of T, ¢, p, g*, TH
such that T#” and the entropy current S* remain invariant
Note: These are not Lorentz isometries (generally absent) but
tangent-space local transformations generated by Z' (d boosts),
Sjj antisymmetric (d(d=1)/2 rotations)




oo-dim generated by {w(t, x), f(t,x), Y/(t,x), Z'(t,x), Sy(t,x)}
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A GOOD GAUGE IN d 4+ 1 DIMENSIONS

RIEMANNIAN .# IN ADM/ZERMELO
ds? = —Q%k*dt* + ajj (dxi — Widl') (dxj — Wjdt)

with Q = Q(t)
o Galilean diffeos t' = #/(t), x' = x/(t,x) (here x° = kt)
o J(t) o0
Ex)=25= i — reduction of V#
! J(T) jj(x)
o QV%is a Galilean scalar

o V;is a Galilean form

oM k—> R x . Galilean geometry with inverse metric
— 00

a’j&aj & time arrow e = é (8t -+ W’B,-)




THE GALILEAN LIMIT OF FLUIDS

KiNEMATICS
u=" (=0 +v'd)

with vtu, = —k?

TRANSPORT
0o c—eo+klgandp—p
0o ¢ —+Qandri - —Xi

scalings suggested by out-of-equilibrium thermodynamics




GALILEAN-COVARIANT EQUATIONS

STRUCTURE OF THE d + 2 EQUATIONS

0=kQV,T" = k’C + Q+ O (/1)
0= VMTNI. =M;+ 0(1/k2)

GALILEAN MOMENTA
QT = k20 + N+ O (1/k2)
kQTIO = kZP,' +T1;+0 (1/k2)
Tjj =M + 0 (/¥)

with

N=o(e+1 ()
P=etgt
M= Q= g2 + oig (h+ } (5%)°) T

My = paj — X + Q("'_W'S)_ZM




EXPLICIT EXPRESSIONS

REMARK — BEFORE CONSIDERING THE GALILEAN LIMIT
o JH = oo + ¥
o VJt=0
o p+e=To+ ppoy de= Tdo + popdeo
o =p+k e=(et+k* oo

REMARK — IN THE GALILEAN LIMIT
o 0 =0+0(/K)
o Ji=Pi+ & +0(/k)




Q_UASI-ALTERNATIVE METHOD

GALILEAN-INVARIANT ACTION AND MOMENTA

M: — — 2 4SS
i = T /a0 bab
1 &s
Pi = VaQ 5

Me _1 (965 _ w3ss
Va \ o2 T @

GALILEAN-DIFFEOMORPHISM INVARIANCE

%13

Q=g + My

M; =

:ol—‘ a|Or

b2 4

MISSING TERMS/EQUATIONS
Further degrees of freedom are needed
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