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Introduction

Carroll symmetry has been used in very different physical contexts (as it is
clear from this conference!)

In gravity → Gravitational theories with a “Carrollian structure”

1) Described in first order formalism:

- Hartong (2015)

- Bergshoeff, Gomis, Rollier, Rosseel, ter Veldhuis (2017)

→ Local Carroll symmetry

2) Described in Hamiltonian formalism:

- “Strong gravity” (Isham 1976) or “zero-signature limit of GR”
(Teitelboim 1978) −→ Electric Carroll gravity

- Magnetic Carrol gravity (Henneaux, Salgado-Rebolledo 2021)

The algebra of constraints is simpler than in General Relativity
→ field-independent → Hamiltonian constraints form an abelian subalgebra



It could be an interesting framework to explore certain aspects of quantum
gravity

In magnetic Carroll gravity: “Carrollian black holes” −→ Thermal regular
solutions in the context of Carrollian geometry → Possess a non-trivial
entropy

A first step: Analysis of the asymptotic symmetries (with and without
cosmological constant )

- Electric theory−→ “Unwanted features”

- Magnetic theory−→ Very rich asymptotic structure



Asymptotic symmetries: Summary of the results

Λ = 0 Λ < 0

Regge-Teitelboim Henneaux-Troessaert No
parity conditions parity conditions parity conditions

General Poincaré BMS4 AdS4 ' so (2, 3)
Relativity

Magnetic Carroll algebra BMS-Carroll algebra 3D Conformal
Carroll Carroll algebra
gravity (BMS4)

Electric Spatial rotations D Spatial rotations D so(1, 4)
Carroll spatial translations parity odd
gravity supertranslations (Euclidean)

Boosts can be included in the electric theory with Λ = 0 when “extended
Henneaux-Troessaert” parity conditions are considered (Oscar’s talk)



Asymptotic symmetries in electric

Carroll gravity



Electric Carroll gravity

The electric contraction can be interpreted as a strong coupling limit of
Einstein gravity [Isham (1976)], or as a gravitational theory in a
“zero-signature limit” [Teitelboim (1978)]

HE =
1
√
g

(
πijπij −

1

2
π2

)
+ 2
√
gΛ , HEi = −2π j

i|j

The constraints HE and HEi obey the algebra:

{
HE(x),HE(x′)

}
= 0{

HE (x) ,HEi
(
x′
)}

= HE (x) δ,i
(
x, x′

)
{
HEi (x) ,HEj

(
x′
)}

= HEi
(
x′
)
δ,j
(
x, x′

)
+HEj (x) δ,i

(
x, x′

)
A covariant formulation in [Henneaux (1979)]



Asymptotic symmetries in Electric Carroll gravity with Λ = 0

The generator of gauge symmetries takes the form

G
[
ξ, ξi

]
=

∫
d3x

(
ξHE + ξiHEi

)
+QE

Here

HE =
1
√
g

(
πijπij −

1

2
π2

)
, HEi = −2π j

i|j

with

δQE =

∮
d2sl

(
2ξkδπ

kl +
(

2ξkπjl − ξlπjk
)
δgjk

)
I The lapse function does not appear in the boundary term of the

Hamiltonian!

The transformation laws of the canonical variables are given by

δgij =
2ξ
√
g

(
πij −

1

2
gijπ

)
+ ξi|j + ξj|i

δπij =
ξ

2
√
g
gij
(
πklπkl −

1

2
π2

)
− 2ξ
√
g

(
πilπ

lj − 1

2
ππij

)
+ Lξπij



Fall-off of the canonical variables

We consider deviations with respect to the Carrollian ground state
characterized by

ḡijdx
idxj = dr2 + r2γABdx

AdxB , π̄ij = 0

with A,B = 1, 2, and where γAB denotes the metric of the round 2-sphere.

The proposed fall-off is:

grr = 1 +
frr
r

+
f
(−2)
rr

r2
+O

(
r−3)

grA =
f
(−1)
rA

r
+O

(
r−2)

gAB = r2γAB + r fAB + f
(0)
AB +O

(
r−1)

πrr = prr +O
(
r−1)

πrA =
prA

r
+
prA(−2)

r2
+O

(
r−3)

πAB =
pAB

r2
+O

(
r−3)



The asymptotic form of the parameters that preserve the fall-off is:

ξ = r b+ f +O
(
r−1) , ξr = W +O

(
r−1)

ξA = Y A +
1

r

(
2b
√
γ
prA +DAW

)
+O

(
r−2)

where Y A = εAB
√
γ
∂B (~ω · r̂).

For large values of r, the symplectic term is logarithmically divergent∫
dtd3xπij ġij =

r→∞
log (r)

∫
dt

∮
d2x

(
prr ḟrr + pAB ḟAB

)
+O

(
r−1)

The divergence can be removed by imposing appropriate parity conditions
on the canonical variables.



Regge-Teitelboim parity conditions

Under the antipodal map

θ → −θ + π , φ→ φ+ π

the Regge-Teitelboim parity conditions are given by

frr, fθθ, fφφ, p
θφ, prθ (parity even)

fθφ, p
rr, pθθ, pφφ, prφ (parity odd)

The symplectic term is finite



From the parity conditions:

b = bodd (θ, φ) , W (θ, φ) = ~α · r̂ +Weven (θ, φ)

The charge takes the form

QE = ~ω · ~J + ~α · ~P

with

JI = 2

∮
d2x
√
γ r̂IεABD

AprB(−2) , PI = 2

∮
d2x r̂I (prr − 2p̃)

which obey

{JI , JJ} = −εIJKJK , {PI , JJ} = −εIJKPK , {PI , PJ} = 0

The asymptotic symmetry algebra of electric Carroll gravity
with Λ = 0 and Regge-Teitelboim parity conditions is the
semi-direct sum of spatial rotations with spatial translations

There is no notion of energy in this theory!



Henneaux-Troessaert parity conditions

To implement the Henneaux-Troessaert parity conditions it is useful to
introduce the following variables

λ̄ =
1

2
frr, k̄AB =

1

2
fAB+

1

2
frrγAB , k̄ =

1

2
f̃+frr, p̄ = 2

(
prr − pABγAB

)
The Henneaux-Troessaert parity conditions are given by

λ̄, prφ, pθθ, pφφ, k̄θφ (parity even)

p̄, prθ, pθφ, k̄θθ, k̄φφ (parity odd)

The symplectic term takes the form

∫
dtd3xπij ġij =

r→∞
log (r)

∫
dt

∮
d2x

(
p̄ ˙̄λ+ 2pAB ˙̄kAB

)
+O

(
r−1)

expression that vanishes by virtue of the parity conditions.



In this case we have

b (θ, φ) (parity odd)

W (θ, φ) (parity odd)

The charge takes the form

QE = ~ω · ~J +

∮
d2x
√
γ W (θ, φ) P (θ, φ)

with

JI = 2

∮
d2x
√
γεAB r̂I D

A
(
prB(−2) − 2λ̄prB

)
, P (θ, φ) =

p̄
√
γ

Their algebra is given by

{JI , JJ} = −εIJKJK , {P (θ, φ) , JI} = Ŷ AI ∂AP (θ, φ) ,
{
P (θ, φ) ,P

(
θ′, φ′

)}
= 0

where Ŷ AI := εAB
√
γ
∂B r̂I .

The asymptotic symmetry algebra of electric Carroll gravity
with Λ = 0 and Henneaux-Troessaert parity conditions is the
semi-direct sum of spatial rotations with parity odd
supertranslations −→ Infinite dimensional



Asymptotic symmetries in Electric Carroll gravity with Λ < 0

When a negative cosmological is present, the solution obtained from a
direct Carrollian limit of AdS spacetime, given by

ḡijdx
idxj =

dr2(
r2

l2
+ 1
) + r2γABdx

AdxB , π̄ij = 0

N̄ =

√
r2

l2
+ 1 , N̄ i = 0

is not a solution of the Hamiltonian constraint

HE =
1
√
g

(
πijπij −

1

2
π2

)
+ 2
√
gΛ

[Hansen, Obers, Oling, Sogaard (2021)]

As a consequence, it does not seem to be possible to construct a consistent
set of asymptotic conditions for this theory.



Possible solution: To consider the electric Carrollian theory obtained from
Euclidean General Relativity

HEEuc = − 1
√
g

(
πijπij −

1

2
π2

)
+ 2
√
gΛ

Alternative ground state:

ḡijdx
idxj =

dr2(
r2

l2
+ 1
) + r2γABdx

AdxB , π̄ij =
2

l

√
ḡḡij

It is possible to construct a set of asymptotic conditions in terms of
deviations with respect to this background configuration.

Asymptotic symmetry algebra: so(1, 4) → non-Carrollian.

Furthermore, the space of spherically symmetric solutions of this theory is
degenerate. → The theory as “unwanted properties.”



Asymptotic symmetries in magnetic

Carroll gravity



Magnetic Carroll gravity

HM = −√g (R− 2Λ) , HMi = −2π j
i|j

The constraints HM and HMi obey the algebra:

{
HM (x),HM (x′)

}
= 0{

HM (x) ,HMi
(
x′
)}

= HM (x) δ,i
(
x, x′

)
{
HMi (x) ,HMj

(
x′
)}

= HMi
(
x′
)
δ,j
(
x, x′

)
+HMj (x) δ,i

(
x, x′

)
[Henneaux, Salgado-Rebolledo (2021)]

A covariant formulation in [Hansen, Obers, Oling, Sogaard (2021)]



Asymptotic symmetries in Magnetic Carroll gravity with Λ = 0

The generator of gauge symmetries takes the form

G
[
ξ, ξi

]
=

∫
d3x

(
ξHM + ξiHMi

)
+QM

where

δQM =

∮
d2sl

[
Gijkl

(
ξδgij|k − ξ|kδgij

)
+ 2ξkδπ

kl +
(

2ξkπjl − ξlπjk
)
δgjk

]
with Gijkl = 1

2

√
g
(
gikgjl + gilgjk − 2gijgkl

)
I The same as in General Relativity.

The transformation laws for the canonical variables are given by

δgij = ξi|j + ξj|i

δπij = −ξ√g
(
Rij − 1

2
gijR

)
+
√
g
(
ξ|i|j − gijξ |k|k

)
+ Lξπij



grr = 1 +
frr
r

+
f
(−2)
rr

r2
+O

(
r−3)

grA =
f
(−1)
rA

r
+O

(
r−2)

gAB = r2γAB + r fAB + f
(0)
AB +O

(
r−1)

πrr = prr +O
(
r−1)

πrA =
prA

r
+
prA(−2)

r2
+O

(
r−3)

πAB =
pAB

r2
+O

(
r−3)

The fall-off is preserved by the following gauge parameters:

ξ = r b+ f (θ, φ) +O
(
r−1)

ξr = W (θ, φ) +O
(
r−1)

ξA = Y A +
∂AW (θ, φ)

r
+O

(
r−2)

with

b = ~β · r̂ , Y A =
εAB
√
γ
∂B (~ω · r̂)



Regge-Teitelboim parity conditions

W = ~α · r̂ +Weven (θ, φ) , f = T + fodd (θ, φ)

where Weven and fodd are pure gauge.

The charge then takes the form

QM = T E + ~ω · ~J + ~α · ~P + ~β · ~K

with

E = 2

∮
d2x
√
γfrr , PI = 2

∮
d2x r̂I

(
prr −DAprA

)
KI = 2

∮
d2x
√
γr̂I

(
f (−2)
rr +DAf

(−1)
rA + f̃ (0)

)
, JI = 2

∮
d2x
√
γr̂IεABD

AprB(−2)

The generators obey

{PI ,KJ} = δIJE , {JI , JJ} = −εIJKJK

{PI , JJ} = −εIJKPK , {KI , JI} = −εIJKKK

The symmetry algebra of magnetic Carroll gravity with Λ = 0
and Regge-Teitelboim parity conditions is the Carroll algebra



Henneaux-Troessaert parity conditions

To have an integrable charge, the following shift is necessary:

f = −1

2
b
(

3frr + f̃
)

+ T (θ, φ)

where the functions T (θ, φ) and W (θ, φ) have the following parity under
the antipodal map

T (θ, φ) (parity even)

W (θ, φ) (parity odd)

The charge takes the form

QM = ~ω · ~J + ~β · ~K +

∮
d2x
√
γ [T (θ, φ) T (θ, φ) +W (θ, φ) P (θ, φ)]

with

T (θ, φ) = 4λ̄ , P (θ, φ) =
p̄
√
γ

JI =

∮
d2x 2

√
γεAB r̂I D

A
(
prB(−2) − 2λ̄prB

)
, KI =

∮
d2x 2

√
γ r̂I

(
k(2) − 3λ̄k̄

)



The generators have the following non-vanishing Poisson brackets

{JI , JJ} = −εIJKJK , {KI , JI} = −εIJKKK

{P (θ, φ) , JI} = Ŷ AI ∂AP (θ, φ) , {T (θ, φ) , JI} = Ŷ AI ∂AT (θ, φ)

{P (θ, φ) ,KI} = r̂I (3T + ∆T ) + (DAr̂I)
(
DAT

)
where Ŷ AI := εAB

√
γ
∂B r̂I .

The symmetry algebra of magnetic Carroll gravity with Λ = 0
and Henneaux-Troessaert parity conditions is the “BMS-Carroll
algebra.”



Asymptotic symmetries in Magnetic Carroll gravity with Λ < 0

We consider the following background solution

ḡijdx
idxj =

dr2(
r2

l2
+ 1
) + r2

(
dθ2 + sin2 θdφ2) , π̄ij = 0

N̄ =

√
r2

l2
+ 1 , N̄ i = 0

I Carrollian isometries are given by the Carroll-AdS4 algebra

{JI , JJ} = −εIJKJK , {PI , JJ} = −εIJKPK , {KI , JJ} = −εIJKPK

{PI ,KJ} = δIJE , {PI , PJ} =
1

l2
εIJKJK , {PI , E} =

1

l2
KI

I Defines an homogeneous space that can be obtained from a coset
construction. [Figueroa-O’Farrill, Grassie, Prohazka (2019)]

I As in three-dimensional gravity, there is an enhancement of these
symmetries in the asymptotic symmetry algebra.



Fall-off

The asymptotic behavior of the canonical variables is the following:

grr =
l2

r2
− l4

r4
+
frr
r5

+O
(
r−6)

grA =
frA
r4

+O
(
r−5)

gAB = r2γAB + hAB +
fAB
r

+O
(
r−2)

πrr =
prr

r
+O

(
r−2)

πrA = −
DB k̃

AB
(2)

r
+
prA

r2
+O

(
r−3)

πAB =
k̃AB(2)

r2
+
kAB(4)

r4
+
pAB

r5
+O

(
r−6)
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The fall-off is preserved by the following parameters:

ξ =
r

l
T (θ, φ) +

l (∆ + 2)T (θ, φ)

4r
+ . . .

ξr = − r
2
DAY

A (θ, φ)− l2

4
DAY

A (θ, φ)
1

r
+ . . .

ξA = Y A (θ, φ)− l2

4r2
DADBY

B (θ, φ) + . . .

where Y A must obey the conformal Killing equation on the 2-sphere

DAYB +DBYA − γABDCY C = 0

I T (θ, φ) is an arbitrary function on the sphere

The charge is given by

QM =

∮
d2x
√
γ
(
T P + Y A JA

)
where

P :=
1

l2

(
3f̃ +

2

l2
frr

)
, JA := 2γ−

1
2 γABp

rB



The algebra closes according to

T3 = Y A1 ∂AT2 − Y A2 ∂AT1 +
1

2

(
T1DAY

A
2 − T2DAY

A
1

)
Y A3 = Y C1 ∂CY

A
2 − Y C2 ∂CY A1

This is precisely the composition rule of the BMS4 algebra. [Bondi, Van der

Burg, Metzner (1962)] [Sachs (1962)]

I Is infinite-dimensional in contrast to the case in General Relativity.

I The BMS4 generators are canonical → in contrast with the analysis at
null infinity in GR with Λ = 0.

I Admits Barnich-Troessaert superrotations. [Barnich, Troessaert (2009)]

I The asymptotic conditions can be consistently truncated to recover the
Carroll-AdS4 algebra.

I Is isomorphic to the three-dimensional conformal Carroll algebra.
[Duval, Gibbons, Horvathy (2014)]

I There is full agreement with the expectations coming from holography.
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Carrollian black holes

In collaboration with R. Troncoso, to appear



Carrollian Schwarzschild solution

The magnetic theory (with Λ = 0) admits the following solution

gijdx
idxj =

dr2(
1− r+

r

) + r2
(
dθ2 + sin2 θdφ2) , πij = 0

The lapse and shift functions are given by

N =

√
1− r+

r
, N i = 0

I The canonical variables are the same than in Schwarzschild in General
Relativity.

The energy of the solution is

E =
r+

2Gc (
HM = −

√
g

16πGc
(R− 2Λ)

)
I Can this solution be interpreted as a black hole?



Euclidean black holes

X

tE

C

r+

I Topology: Disk × SD−2.

I In the context of Riemannian geometry: Regularity of the Euclidean
metric, or alternatively spin connection with trivial holonomy around
the thermal cycle.

I The absence of conical singularities fixes the period of the Euclidean
time → Hawking temperature.



Carrollian geometry à la Cartan

Carrollian geometry can be described in terms of a “clock form,” the spatial
vielbein

τ = τµdx
µ , ea = eaµdx

µ , a = 1, 2, 3 , µ = 0, 1, 2, 3

and the spin connection

ωa = ωaµdx
µ ωab = ωabµ dx

µ

If

ω := ωaKa +
1

2
ωabJab

The condition for the existence of a Carrollian black hole is that the
holonomy of ω around the thermal cycle is trivial

P exp

(∮
C
ω

)
= 1



For a spherically symmetric solution of the form:

ds2 =
dr2

f2 (r)
+ r2

(
dθ2 + sin2 θdφ2) , N = N (r)

one has

τ = Ndt , e1 =
1

f (r)
dr , e2 = rdθ, e3 = r sin θdφ

The spin connection can be expressed in terms of the vielbeins using the
torsionless condition (which is compatible with the magnetic theory).
[Bergshoeff, Gomis, Rollier, Rosseel, ter Veldhuis (2017)]

The only relevant component is

ωt = −f∂rN K1

The regularity condition becomes

exp [iβf∂rN K1] = 1

Therefore, the temperature T = β−1 is fixed as follows:

T =
1

2π
f∂rN |r+



For the Carrollian Schwarzschild solution:

T =
1

4πr+

The entropy can be directly obtained from the boundary terms of the action

S = I|r+ =
πr2+
Gc

=
A

4Gc

The first law is automatically fulfilled

δE = TδS

I The Carrollian Schwarzschild solution possesses a non-trivial
temperature and entropy → Thermal state.

I Microstates?

I A cosmological constant and matter fields can be naturally
accomodated.

I Carrollian Kerr?
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Summary

I We studied the asymptotic symmetries of the magnetic and electric
Carroll gravity in 3+1 space-time dimensions.

I In the electric theory there is no notion of energy.

I In the magnetic theory with Λ = 0:

I Regge-Teitelboim parity conditions: Carroll algebra.

I Henneaux-Troessaert parity conditions: Carroll-BMS algebra →
infinite-dimensional.

I In the magnetic theory with Λ < 0:

I 3D Carroll conformal algebra ' BMS4 → infinite-dimensional.

I Carrollian black holes → (non-thermal) geometry?

I Carroll holography?

I Relation with the Carrollian gravitational theories of Hartong and
Bergshoeff, Gomis, Rollier, Rosseel, ter Veldhuis?
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