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State of the art of Carrollian dynamics

Two main references on Carrollian dynamics:
C. Duval, G. Gibbons, P. Horváthy, PM. Zhang, Class. Quant. Grav 31 (2014)

E. Bergshoeff, J. Gomis, G. Longhi, Class. Quant. Grav 31 (2014)

⇒ A Carrollian elementary particle moves (locally) along the time direction

These results apply to general elementary Carroll particles...
but only when the spatial dimension d is 3 or higher.
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The physical interests of 2 + 1 Carroll structures

A Carroll structure is a triple (M, g , ξ) with dimM = d + 1, a degenerate
“metric” g with dim ker g = 1, a nowhere vanishing vector field ξ ∈ ker g ,
and Lξg = 0. Locally, coordinates (x , s) with g = g0dx ⊗ dx , and ξ = ∂s .

It is possible to add a (non unique connection) to obtain a strong Carroll
structure (M, g , ξ,∇).

Often present in General Relativity:
Conformal null infinity

Black holes horizon [L. Donnay, C. Marteau, ’19]

Any null hypersurface in a Lorentzian spacetime [L. Ciambelli, et. al. ’19]

All these examples are 2 + 1 dimensional.

Isometries of a flat strong Carroll structure: the Carroll group.
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The subtlety of Carroll planar dynamics: central extension

The dynamics of an elementary particle can be obtained from the
considered group or a central extension of this group.

Example: the Galilei group only describes massless particles. The
description of massive systems requires its non-trivial central extension.

Dimension of non-trivial central extensions
spatial dimension Galilei Carroll

d ≥ 3 1 0
d = 2 2 2

⇒ The Carroll group potentially has a richer structure in d = 2.
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Carroll’s double central extension in 2+1 dimensions

The algebra was computed in [de Azcarraga, et. al. ’98; Ngendakumana, et. al. ’14],

[J3,Pi ] = ϵijPj , [J3,Ki ] = ϵijKj , [Ki ,Pj ] = Mδij ,

[Pi ,Pj ] = ϵijA1, [Ki ,Kj ] = ϵijA2.

Elements of the group can be represented as [L. M. ’21],

a =


R 0 c 0 ϵb

−bR 1 f 0 a2
0 0 1 0 0

−ϵcR 0 a1 1 −f − ⟨b, c⟩
0 0 0 0 1


R ∈ O(2)

b, c ∈ R2

f , a1, a2 ∈ R

ϵ =

(
0 1
−1 0

)

This is the group one should consider when working out Carrollian
dynamics in the plane.
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Carroll’s double central extension in 2+1 dimensions (cont.)

The physical quantities dual to the group elements:

J = (ℓ, g ,p,m, q1, q2)

Coadjoint action of the group: Coad(a)J = (ℓ′, g ′,p′,m, q1, q2), with,

ℓ′ = ℓ+ b × Ag − c × Ap +mb × c+q1c2 − q2b2

g ′ = Ag +mc+2q2ϵb
p′ = Ap +mb+2q1ϵc

⇒ 4 Casimir invariants (m ̸= 0):

C1 = m (convention: mass, not energy)

C2 =
(
1+4

q1q2

m2

)
ℓ+

g × p
m

+
q1

m2g2 − q2

m2p2

C3 = q1 ⇒ [q1] = MT−1

C4 = q2 ⇒ [q2] = MT
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Dynamics out of a symplectic model

If a dynamical system is G -invariant, one can (locally) build its phase space
as a coadjoint orbit of G (or of a central extension of G ).

1 Build the “evolution space” V out of parameters of the group
(e.g. spatial translations ∼ position, boosts ∼ momentum, etc)

2 Choose the Casimir invariants that describe the elementary particle,
and pick a J0 with such invariants

3 Endow V of a presymplectic 2-form σ out of the Maurer-Cartan Θ
form on G :

σ = d (J0 ·Θ)

4 The equations of motion are then spanned by the kernel of σ
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A free massive Carroll particle in 3+1 dimensions

From the usual Carroll group, consider a massive spinless elementary
particle (Casimirs m ̸= 0, and ℓ = 0).

The evolution space V ∋ y = (x , v , s) is endowed with the 2-form,

σ = mdv ∧ dx

The equations of motions are then:

dx
ds

= 0, (Carrollian velocity)

m
dv
ds

= 0.

⇒ We recover the well known property that Carroll particles do not move.
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Free planar Carroll particles

The evolution space V ∋ y = (x , v , s,w , z) is endowed with the 2-form,

σ = mdv ∧ dx−q1ϵijdx
i ∧ dx j + q2ϵijdv

i ∧ dv j

The equations of motions depend on an effective mass

m̃2 = m2 + 4q1q2

m̃2 ̸= 0

Free particles do not move:

dx
ds

= 0

m
dv
ds

= 0

m̃2 = 0

The equations degenerate:

dx
ds

= −2
q2

m
ϵ
dv
ds

⇒ not localized?
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3+1 Carroll particles with spin in an EM field

For a massive particle with spin and electric charge e, the equations of
motion are,

dx
ds

= 0,

m
dv
ds

= eE + µ∇x⟨u,B⟩,

du
ds

= µu × B,

where u ∈ S2 represents the direction of the particle’s spin.

⇒ no actual motion, but precession of the spin around the magnetic field
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Planar Carroll particles in an EM field – anyons

A particle described by the Casimirs: m ̸= 0, ℓ ̸= 0, q1 ̸= 0, q2 ̸= 0.

There is again an effective mass,

m̃2 := m2 + 4
(
q1 −

1
2
eB

)
q2,

There equations of motion are, for m̃2 ̸= 0,

dx
ds

= −2q2

m̃2 ϵ (eE + µℓ∇xB) ,

m
dv
ds

=
m2

m̃2 (eE + µℓ∇xB) .

⇒ We see actual motion!
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A planar Carrollian photon (m = 0) in an EM field

Assuming the photon has an anyon spin that couples to the magnetic field,

dx
ds

= − µℓ

2q1
ϵ∇xB,

q2
dv
ds

= 0.

⇒ We have a velocity transverse to the gradient of the magnetic field.
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Velocity drift on the horizon of a Kerr-Newmann BH
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Conclusion

In 2 + 1 dimensions, one needs to consider the double central
extension of the Carroll group to be the most general

Two new Casimirs to describe elementary particles: q1 and q2
⇒ Physical interpretation?

These two exotic charges couple to the EM field to bring actual
motion in Carrollian dynamics

No exotic coupling to the gravitational field

What about causality?
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Backup slides
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Carrollian time

Historical definition of the Carrollian time: x0 := s/C instead of x0 := ct.
While [t] = T , we have [s] = L2T−1.

The link between the Galilei, Bargmann, and Carroll groups:

Bargmann
R b 0 c
0 1 0 e

−bR −∥b∥2/2 1 f
0 0 0 1

 −→

GalileiR b c
0 1 e
0 0 1


↪→
R b 0 c
0 1 0 0

−bR −∥b∥2/2 1 f
0 0 0 1


Carroll
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The horizon of Kerr-Newman black holes

The Kerr-Newman metric,

g = −∆

Σ

(
dt − a sin2 θ dφ

)2
+
sin2 θ

Σ

(
a dt − (r2 + a2)dφ

)2
+Σdθ2+

Σ

∆
dr2

The induced metric on this horizon, at ∆ = 0 with r = const, is,

g̃ =
sin2 θ

Σ

(
a dt − (r2 + a2)dφ

)2
+Σdθ2

The vector field ξ such that g(ξ) = 0 and Lξg = 0 is,

ξ = ∂t +
a

r2 + a2∂φ

Change of coordinates (θ, φ, t) 7→ (θ, φ̃ = φ− a
r2+a2 s, s = t),

g̃ =
(r2 + a2) sin2 θ

Σ
dφ̃2 +Σdθ2 & ξ = ∂s
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