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State of the art of Carrollian dynamics

Two main references on Carrollian dynamics:
@ C. Duval, G. Gibbons, P. Horvathy, PM. Zhang, Class. Quant. Grav 31 (2014)
@ E. Bergshoeff, J. Gomis, G. Longhi, Class. Quant. Grav 31 (2014)

= A Carrollian elementary particle moves (locally) along the time direction

These results apply to general elementary Carroll particles...
but only when the spatial dimension d is 3 or higher.
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The physical interests of 2 + 1 Carroll structures

A Carroll structure is a triple (M, g,£) with dim M = d + 1, a degenerate
“metric’ g with dimker g = 1, a nowhere vanishing vector field £ € ker g,
and L¢g = 0. Locally, coordinates (x,s) with g = godx ® dx, and £ = 0.

It is possible to add a (non unique connection) to obtain a strong Carroll
structure (M, g, £, V).

Often present in General Relativity:

e Conformal null infinity
@ Black holes horizon [L. Donnay, C. Marteau, '19]

@ Any null hypersurface in a Lorentzian spacetime [L. Ciambelli, et. al. '19]

All these examples are 2 4+ 1 dimensional.

Isometries of a flat strong Carroll structure: the Carroll group.
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The subtlety of Carroll planar dynamics: central extension

The dynamics of an elementary particle can be obtained from the
considered group or a central extension of this group.

Example: the Galilei group only describes massless particles. The
description of massive systems requires its non-trivial central extension.

Dimension of non-trivial central extensions
spatial dimension Galilei Carroll
d>3 1 0
d=2 2 2

= The Carroll group potentially has a richer structure in d = 2.
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Carroll's double central extension in 24+1 dimensions

The algebra was Computed in [de Azcarraga, et. al. '98; Ngendakumana, et. al. '14],

[J3, Pi] = €ijP;,  [J5, Ki] = €K}, [Ki, Pj] = Méj;,
[Pi, Pi] = €jjA1, [Ki, Kj] = €jjA2.

Elements of the group can be represented as [L. M. 21],

R 0 ¢ 0 eb Reo@)
“BR 1 f 0 a bceR
2= O 0 1 0 O f,31,32€R
—e€R 0 a1 1 —f—(b,c) 6:(01 (1))
0 0 0 O 1

This is the group one should consider when working out Carrollian
dynamics in the plane.
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Carroll's double central extension in 241 dimensions (cont.)

The physical quantities dual to the group elements:

J = (E,g,p, m, QI7q2)
Coadjoint action of the group: Coad(a)J = (¢, g’,p’, m, g1, ¢2), with,

V'=0+bxAg —cxAp+ mb x c+qic®> — qb?
g = Ag + mc+2qeb
p = Ap + mb+2qiec

= 4 Casimir invariants (m # 0):

G=m (convention: mass, not energy)
X
G = (1+4Q1Z2)£+g P+il2g2_i22p2
m m m m

G=q = [p]=MT!
G=q = |[@p=MT
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Dynamics out of a symplectic model

If a dynamical system is G-invariant, one can (locally) build its phase space
as a coadjoint orbit of G (or of a central extension of G).

© Build the “evolution space” V out of parameters of the group
(e.g. spatial translations ~ position, boosts ~ momentum, etc)

@ Choose the Casimir invariants that describe the elementary particle,
and pick a Jy with such invariants

© Endow V of a presymplectic 2-form o out of the Maurer-Cartan ©

form on G:
o=d(Jh-9O)

@ The equations of motion are then spanned by the kernel of o
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A free massive Carroll particle in 34+1 dimensions

From the usual Carroll group, consider a massive spinless elementary
particle (Casimirs m # 0, and ¢ = 0).

The evolution space V' 5 y = (x, v, s) is endowed with the 2-form,
o=mdv A dx

The equations of motions are then:

% =0, (Carrollian velocity)
dv
— =0.

m ds

= We recover the well known property that Carroll particles do not move.
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Free planar Carroll particles

The evolution space V 5 y = (x, v, s, w, z) is endowed with the 2-form,
o= mdv A dx—qle,-jdxi Adx) + qge,-jdvi A dvl
The equations of motions depend on an effective mass

m? = m? + 4q1q2

i #0
Free particles do not move: The equations degenerate:
dx dx g2 dv
-0 A R
ds ds m* ds
dv
m— =0 = not localized?
ds
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341 Carroll particles with spin in an EM field

For a massive particle with spin and electric charge e, the equations of
motion are,

dx
ds
dv
m— = eE Vx{u, B),
ds + 1V x( )
du
— =pux B,
ds a
where u € 52 represents the direction of the particle’s spin.

= no actual motion, but precession of the spin around the magnetic field
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Planar Carroll particles in an EM field — anyons

A particle described by the Casimirs: m#0, £ #0, g1 # 0, g2 # 0.

There is again an effective mass,
~9 5 1
m°:=m-+4 q1—§eB go,

There equations of motion are, for m? # 0,

dx 24
E = —7",772 €(eE +/’L€VXB)7
dv m?

s = w2 (eE + 1tV xB)

= We see actual motion!
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A planar Carrollian photon (m = 0) in an EM field

Assuming the photon has an anyon spin that couples to the magnetic field,

dx wl
- ev,B,
ds 2q1ev
dv

%E =0.

= We have a velocity transverse to the gradient of the magnetic field.
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Velocity drift on the horizon of a Kerr-Newmann BH
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Conclusion

@ In 2 4+ 1 dimensions, one needs to consider the double central
extension of the Carroll group to be the most general

@ Two new Casimirs to describe elementary particles: g and ¢»
= Physical interpretation?

@ These two exotic charges couple to the EM field to bring actual
motion in Carrollian dynamics

@ No exotic coupling to the gravitational field

@ What about causality?
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Backup slides
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Carrollian time

Historical definition of the Carrollian time: x° := s/C instead of x° := ct.
While [t] = T, we have [s] = 2T~ 1.

The link between the Galilei, Bargmann, and Carroll groups:

Bargmann i
R b 0 c Galilei
R b c
0o 1ooel (57:
“BR —[bl22 1 |\, 5§
0 0 01
T
R b 0 c
0 1 00
—~bR —||b||?/2 1 f
0 0 01
Carroll
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The horizon of Kerr-Newman black holes

The Kerr-Newman metric,

sin® 9
>

The induced metric on this horizon, at A = 0 with r = const, is,

¥
(adt — (r + 3°)de)* +Xd6>+ —dr?

B A .2 2
§=-% (dt—asm 9dg0) + A

~_sin29
£§= 7%

The vector field ¢ such that g(£) =0 and Lgg =0'is,

(adt — ( + a*)dyp)” + £d6°

§=0:+ 2—1—326

Change of coordinates (0, ¢, t) — (0, p = ¢ — oS, S = t),

2 2\ cin2
_ 0,
g:—(r “Z)S'” dP? +Yd6?> & &=0,
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