Planar Carrollian dynamics

Loïc Marsot

Aix-Marseille Université
Based on arXiv: 2110.08489
Presentation for Carroll @ Vienna 2022

Aix $*$ Marseille université

Socialement engagée

Centre de Physique Thēorique

State of the art of Carrollian dynamics

Two main references on Carrollian dynamics:

- C. Duval, G. Gibbons, P. Horváthy, PM. Zhang, Class. Quant. Grav 31 (2014)
- E. Bergshoeff, J. Gomis, G. Longhi, Class. Quant. Grav 31 (2014)
\Rightarrow A Carrollian elementary particle moves (locally) along the time direction

These results apply to general elementary Carroll particles... but only when the spatial dimension d is 3 or higher.

The physical interests of $2+1$ Carroll structures

A Carroll structure is a triple (M, g, ξ) with $\operatorname{dim} M=d+1$, a degenerate "metric" g with dim $\operatorname{ker} g=1$, a nowhere vanishing vector field $\xi \in \operatorname{ker} g$, and $L_{\xi} g=0$. Locally, coordinates (\boldsymbol{x}, s) with $g=g_{0} d \boldsymbol{x} \otimes d \boldsymbol{x}$, and $\xi=\partial_{s}$. It is possible to add a (non unique connection) to obtain a strong Carroll structure (M, g, ξ, ∇).

Often present in General Relativity:

- Conformal null infinity
- Black holes horizon [L. Donnay, C. Marteau, '19]
- Any null hypersurface in a Lorentzian spacetime [L. Ciambelli, et. al. '19]

All these examples are $2+1$ dimensional.
Isometries of a flat strong Carroll structure: the Carroll group.

The subtlety of Carroll planar dynamics: central extension

The dynamics of an elementary particle can be obtained from the considered group or a central extension of this group.

Example: the Galilei group only describes massless particles. The description of massive systems requires its non-trivial central extension.

	Dimension of non-trivial central extensions	
spatial dimension	Galilei	Carroll
$d \geq 3$	1	0
$d=2$	2	2

\Rightarrow The Carroll group potentially has a richer structure in $d=2$.

Carroll's double central extension in $2+1$ dimensions

The algebra was computed in [de Azcarraga, et. al. '98; Ngendakumana, et. al. '14],

$$
\begin{array}{ll}
{\left[J_{3}, P_{i}\right]=\epsilon_{i j} P_{j},} & {\left[J_{3}, K_{i}\right]=\epsilon_{i j} K_{j}, \quad\left[K_{i}, P_{j}\right]=M \delta_{i j}} \\
{\left[P_{i}, P_{j}\right]=\epsilon_{i j} A_{1},} & {\left[K_{i}, K_{j}\right]=\epsilon_{i j} A_{2}}
\end{array}
$$

Elements of the group can be represented as [L. M. '21],

$$
\left.a=\left(\begin{array}{ccccc}
R & 0 & \boldsymbol{c} & 0 & \epsilon \boldsymbol{b} \\
-\overline{\boldsymbol{b}} R & 1 & f & 0 & a_{2} \\
0 & 0 & 1 & 0 & 0 \\
-\overline{\epsilon \boldsymbol{\epsilon}} R & 0 & a_{1} & 1 & -f-\langle\boldsymbol{b}, \boldsymbol{c}\rangle \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \right\rvert\, \begin{aligned}
& R \in \mathrm{O}(2) \\
& \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^{2} \\
& f, a_{1}, a_{2} \in \mathbb{R} \\
& \epsilon=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

This is the group one should consider when working out Carrollian dynamics in the plane.

Carroll's double central extension in $2+1$ dimensions (cont.)

The physical quantities dual to the group elements:

$$
J=\left(\ell, \boldsymbol{g}, \boldsymbol{p}, m, q_{1}, q_{2}\right)
$$

Coadjoint action of the group: $\operatorname{Coad}(a) J=\left(\ell^{\prime}, \boldsymbol{g}^{\prime}, \boldsymbol{p}^{\prime}, m, q_{1}, q_{2}\right)$, with,

$$
\begin{aligned}
\ell^{\prime} & =\ell+\boldsymbol{b} \times A \boldsymbol{g}-\boldsymbol{c} \times A \boldsymbol{p}+m \boldsymbol{b} \times \boldsymbol{c}+q_{1} \boldsymbol{c}^{2}-q_{2} \boldsymbol{b}^{2} \\
\boldsymbol{g}^{\prime} & =A \boldsymbol{g}+m \boldsymbol{c}+2 q_{2} \epsilon \boldsymbol{b} \\
\boldsymbol{p}^{\prime} & =A \boldsymbol{p}+m \boldsymbol{b}+2 q_{1} \epsilon \boldsymbol{c}
\end{aligned}
$$

$\Rightarrow 4$ Casimir invariants $(m \neq 0)$:

$$
\begin{aligned}
& C_{1}=m \quad \text { (convention: mass, not energy) } \\
& C_{2}=\left(1+4 \frac{q_{1} q_{2}}{m^{2}}\right) \ell+\frac{\boldsymbol{g} \times \boldsymbol{p}}{m}+\frac{q_{1}}{m^{2}} \boldsymbol{g}^{2}-\frac{q_{2}}{m^{2}} \boldsymbol{p}^{2} \\
& C_{3}=q_{1} \quad \Rightarrow \quad\left[q_{1}\right]=M T^{-1} \\
& C_{4}=q_{2} \Rightarrow\left[q_{2}\right]=M T
\end{aligned}
$$

Dynamics out of a symplectic model

If a dynamical system is G-invariant, one can (locally) build its phase space as a coadjoint orbit of G (or of a central extension of G).
(1) Build the "evolution space" V out of parameters of the group (e.g. spatial translations \sim position, boosts \sim momentum, etc)
(2) Choose the Casimir invariants that describe the elementary particle, and pick a J_{0} with such invariants
(3) Endow V of a presymplectic 2-form σ out of the Maurer-Cartan Θ form on G :

$$
\sigma=d\left(J_{0} \cdot \Theta\right)
$$

(4) The equations of motion are then spanned by the kernel of σ

A free massive Carroll particle in $3+1$ dimensions

From the usual Carroll group, consider a massive spinless elementary particle (Casimirs $m \neq 0$, and $\ell=0$).

The evolution space $V \ni y=(\boldsymbol{x}, \boldsymbol{v}, s)$ is endowed with the 2-form,

$$
\sigma=m d \bar{v} \wedge d x
$$

The equations of motions are then:

$$
\begin{aligned}
\frac{d x}{d s} & =0, \quad \text { (Carrollian velocity) } \\
m \frac{d v}{d s} & =0
\end{aligned}
$$

\Rightarrow We recover the well known property that Carroll particles do not move.

Free planar Carroll particles

The evolution space $V \ni y=(\boldsymbol{x}, \boldsymbol{v}, s, w, z)$ is endowed with the 2-form,

$$
\sigma=m d \overline{\mathbf{v}} \wedge d x-q_{1} \epsilon_{i j} d x^{i} \wedge d x^{j}+q_{2} \epsilon_{i j} d v^{i} \wedge d v^{j}
$$

The equations of motions depend on an effective mass

$$
\tilde{m}^{2}=m^{2}+4 q_{1} q_{2}
$$

$$
\widetilde{m}^{2} \neq 0
$$

Free particles do not move:

$$
\begin{aligned}
\frac{d x}{d s} & =0 \\
m \frac{d v}{d s} & =0
\end{aligned}
$$

$$
\widetilde{m}^{2}=0
$$

The equations degenerate:

$$
\begin{aligned}
& \frac{d x}{d s}=-2 \frac{q_{2}}{m} \epsilon \frac{d v}{d s} \\
& \Rightarrow \text { not localized? }
\end{aligned}
$$

3+1 Carroll particles with spin in an EM field

For a massive particle with spin and electric charge e, the equations of motion are,

$$
\begin{aligned}
\frac{d \boldsymbol{x}}{d s} & =0 \\
m \frac{d \boldsymbol{v}}{d s} & =e \boldsymbol{E}+\mu \boldsymbol{\nabla}_{\boldsymbol{x}}\langle\boldsymbol{u}, \boldsymbol{B}\rangle \\
\frac{d \boldsymbol{u}}{d s} & =\mu \boldsymbol{u} \times \boldsymbol{B}
\end{aligned}
$$

where $\boldsymbol{u} \in S^{2}$ represents the direction of the particle's spin.
\Rightarrow no actual motion, but precession of the spin around the magnetic field

Planar Carroll particles in an EM field - anyons

A particle described by the Casimirs: $m \neq 0, \ell \neq 0, q_{1} \neq 0, q_{2} \neq 0$.
There is again an effective mass,

$$
\widetilde{m}^{2}:=m^{2}+4\left(q_{1}-\frac{1}{2} e B\right) q_{2}
$$

There equations of motion are, for $\widetilde{m}^{2} \neq 0$,

$$
\begin{aligned}
\frac{d \boldsymbol{x}}{d s} & =-\frac{2 q_{2}}{\widetilde{m}^{2}} \epsilon\left(e \boldsymbol{E}+\mu \ell \nabla_{x} B\right), \\
m \frac{d \boldsymbol{v}}{d s} & =\frac{m^{2}}{\widetilde{m}^{2}}\left(e \boldsymbol{E}+\mu \ell \nabla_{\boldsymbol{x}} B\right)
\end{aligned}
$$

\Rightarrow We see actual motion!

A planar Carrollian photon $(m=0)$ in an EM field

Assuming the photon has an anyon spin that couples to the magnetic field,

$$
\begin{aligned}
\frac{d x}{d s} & =-\frac{\mu \ell}{2 q_{1}} \epsilon \nabla_{x} B \\
q_{2} \frac{d v}{d s} & =0
\end{aligned}
$$

\Rightarrow We have a velocity transverse to the gradient of the magnetic field.

Velocity drift on the horizon of a Kerr-Newmann BH

Conclusion

- In $2+1$ dimensions, one needs to consider the double central extension of the Carroll group to be the most general
- Two new Casimirs to describe elementary particles: q_{1} and q_{2} \Rightarrow Physical interpretation?
- These two exotic charges couple to the EM field to bring actual motion in Carrollian dynamics
- No exotic coupling to the gravitational field
- What about causality?

Backup slides

Carrollian time

Historical definition of the Carrollian time: $x^{0}:=s / C$ instead of $x^{0}:=c t$. While $[t]=T$, we have $[s]=L^{2} T^{-1}$.

The link between the Galilei, Bargmann, and Carroll groups:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
R & \boldsymbol{b} & 0 & \boldsymbol{c} \\
0 & 1 & 0 & e \\
-\overline{\boldsymbol{b}} R & -\|\boldsymbol{b}\|^{2} / 2 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
R & \boldsymbol{b} & \boldsymbol{c} \\
0 & 1 & e \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc}
R & \boldsymbol{b} & 0 & \boldsymbol{c} \\
0 & 1 & 0 & 0 \\
-\overline{\boldsymbol{b}} R & -\|\boldsymbol{b}\|^{2} / 2 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The horizon of Kerr-Newman black holes

The Kerr-Newman metric,
$g=-\frac{\Delta}{\Sigma}\left(d t-a \sin ^{2} \theta d \varphi\right)^{2}+\frac{\sin ^{2} \theta}{\Sigma}\left(a d t-\left(r^{2}+a^{2}\right) d \varphi\right)^{2}+\Sigma d \theta^{2}+\frac{\Sigma}{\Delta} d r^{2}$
The induced metric on this horizon, at $\Delta=0$ with $r=$ const, is,

$$
\widetilde{g}=\frac{\sin ^{2} \theta}{\Sigma}\left(a d t-\left(r^{2}+a^{2}\right) d \varphi\right)^{2}+\Sigma d \theta^{2}
$$

The vector field ξ such that $g(\xi)=0$ and $L_{\xi} g=0$ is,

$$
\xi=\partial_{t}+\frac{a}{r^{2}+a^{2}} \partial_{\varphi}
$$

Change of coordinates $(\theta, \varphi, t) \mapsto\left(\theta, \widetilde{\varphi}=\varphi-\frac{a}{r^{2}+a^{2}} s, s=t\right)$,

$$
\widetilde{g}=\frac{\left(r^{2}+a^{2}\right) \sin ^{2} \theta}{\Sigma} d \widetilde{\varphi}^{2}+\Sigma d \theta^{2} \quad \& \quad \xi=\partial_{s}
$$

