BMS symmetry in light-cone gravity: A null-front Hamiltonian study

Sucheta Majumdar
ENS Lyon

with Sudarshan Ananth and Lars Brink
Based on arXiv:2012.07880 and 2101.00019

Carroll @ Vienna
15 February, 2022

BMS symmetry at a glance

Bondi approach:

BMS as the asymptotic symmetry group at null infinity

- infinite-dimensional enhancement of Poincaré group
- further extended to include superrotations, $\operatorname{Diff}\left(\mathbb{S}^{2}\right)$, near-horizon symmetries
- connections to soft theorems and on-shell amplitudes, Celestial Holography etc.
[Bondi-van der Burg-Metzner-Sachs '62, Barnich-Troessaert, Hawking-Perry-Strominger Compère, Detournay, Grumiller, Sheikh-Jabbari, Campiglia-Laddha, Donnay, Zwikel and many more]

Conformal Carroll approach:

- BMS group as conformal Carroll group
- Further extensions to other Carrollian structures
- Symmetries of null hypersurfaces, Carrollian field theory
[Duval-Gibbons-Hovarthy '14, Ciambelli, Freidel, Flanagan, Leigh, Obers, Petropoulos, ...]

Hamiltonian approach:

BMS symmetry at spatial infinity

- Based on " $3+1$ " Hamiltonian formulation of gravity à la ADM
- Canonical realization of the BMS algebra from an action principle
- a precursor to any quantization methods
[Henneaux-Troessaert '18, Fuentealba, Matulich, Tanzi, Guilini, ...]

The other Hamiltonian formulation of gravity

"Forms of relativistic dynamics" [Dirac '49] \rightarrow Use a null time parameter to study dynamics

The other Hamiltonian formulation of gravity

"Forms of relativistic dynamics" [Dirac '49] \rightarrow Use a null time parameter to study dynamics "On the characteristic initial value problem in gravitational theory" [R. K. Sachs '62]
"Covariant $2+2$ formulation of the initial-value problem in general relativity"
[d'Inverno and Smallwood '79] [Gambini-Restuccia, C. Torre, M. Kaku,...]

- Spacelike foliation of codim 2 (instead of 1)
- Unconstrained Hamiltonian systems
- Gravitational d.o.f. identified with the "conformal two-metric"

The other Hamiltonian formulation of gravity

"Forms of relativistic dynamics" [Dirac '49] \rightarrow Use a null time parameter to study dynamics

> "On the characteristic initial value problem in gravitational theory" [R. K. Sachs '62]
"Covariant $2+2$ formulation of the initial-value problem in general relativity" [d'Inverno and Smallwood '79] [Gambini-Restuccia, C. Torre, M. Kaku,...]

- Spacelike foliation of codim 2 (instead of 1)
- Unconstrained Hamiltonian systems
- Gravitational d.o.f. identified with the "conformal two-metric"

Focus of this talk: BMS symmetry in the other Hamiltonian formulation

- Set up the $2+2$ Hamiltonian formulation of light-cone gravity
- Study the BMS symmetry from residual gauge invariance

Light-cone coordinates: The front-form

DOI:10.1016/j.physrep.2015.05.001
"Forms of relativistic dynamics" [Dirac '49]
(a) Instant form: time x^{0}

Initial data on a spatial hyperplane $\left(x^{0}=0\right)$
(b) Front form: time $x^{+}=\frac{x^{0}+x^{3}}{\sqrt{2}}$

Initial data on a null hyperplane $\left(x^{+}=0\right)$

- Poincaré generators in the instant form: $\left(P_{\mu}, M_{\mu \nu}\right)$

$$
[P, P] \sim 0, \quad[P, M] \sim P, \quad[M, M] \sim M
$$

$\left(P_{0}, M_{0 i}\right) \rightarrow$ four "Hamiltonians"

- Poincaré generators in light-cone coordinates, $x^{\mu}=\left(x^{+}, x^{-}, x^{i}\right), \quad i=1,2$

Kinematical $K=\left\{P_{i}, P_{-}, M_{i j}, M_{+-}\right\}$,
Dynamical $D=\left\{P_{+}, M_{i+}\right\} \rightarrow$ three "Hamiltonians" pick up corrections
Non-linear terms in \mathbb{D} generators give us a handle on the dynamics of the interacting theory

Light-cone Poincaré algebra in $d=4$

- Non-vanishing commutators of the Poincaré algebra

$$
\begin{array}{ccc}
J^{+}=\frac{J^{+1}+i J^{+2}}{\sqrt{2}}, \quad \bar{J}^{+}=\frac{J^{+1}-i J^{+2}}{\sqrt{2}}, \quad J=J^{12}, & H=P_{+}=-P^{-} \\
{\left[H, J^{+-}\right]=-i H,} & {\left[H, J^{+}\right]=-i P,} & {\left[H, \overline{J^{+}}\right]=-i \bar{P}} \\
{\left[P^{+}, J^{+-}\right]=i P^{+},} & {\left[P^{+}, J^{-}\right]=-i P,} & {\left[P^{+}, \bar{J}^{-}\right]=-i \bar{P}} \\
{\left[P, J^{-}\right]=-i H,} & {\left[P, \bar{J}^{+}\right]=-i P^{+},} & {[P, J]=P} \\
\ldots \text { and many more }
\end{array}
$$

[Bengtsson-Bengtsson-Brink '83]

- Underlying Carrollian algebra

Rotation $\mathbb{J}=\left\{J^{12}, J^{+-}, J^{+}, \bar{J}^{+}\right\}$, Boosts $\mathbb{K}=\left\{J^{-}, \bar{J}^{-}\right\}$
Translations $\mathbb{P}=\left\{P, \bar{P}, P_{-}\right\}$, Hamiltonian $\mathbb{H}=P_{+}$

$$
\begin{array}{ll}
{[\mathbb{J}, \mathbb{J}]=\mathbb{J},} & {[\mathbb{J}, \mathbb{P}]=\mathbb{P},} \\
{[\mathbb{J}, \mathbb{H}]=0,} & {[\mathbb{J}, \mathbb{K}]=\mathbb{K}} \\
{[\mathbb{P}, \mathbb{P}]=0,} & {[\mathbb{K}, \mathbb{K}]=0,} \\
{[\mathbb{H}]=0,} & {[\mathbb{P}, \mathbb{K}]=0} \\
\hline \mathbb{H}]=\mathbb{H}
\end{array}
$$

Light-cone Poincaré algebra in $d=4$

- Non-vanishing commutators of the Poincaré algebra

$$
\begin{array}{ccc}
J^{+}=\frac{J^{+1}+i J^{+2}}{\sqrt{2}}, \quad \bar{J}^{+}=\frac{J^{+1}-i J^{+2}}{\sqrt{2}}, \quad J=J^{12}, & H=P_{+}=-P^{-} \\
{\left[H, J^{+-}\right]=-i H,} & {\left[H, J^{+}\right]=-i P,} & {\left[H, \overline{J^{+}}\right]=-i \bar{P}} \\
{\left[P^{+}, J^{+-}\right]=i P^{+},} & {\left[P^{+}, J^{-}\right]=-i P,} & {\left[P^{+}, \bar{J}^{-}\right]=-i \bar{P}} \\
{\left[P, J^{-}\right]=-i H,} & {\left[P, \bar{J}^{+}\right]=-i P^{+},} & {[P, J]=P} \\
\ldots \text { and many more }
\end{array}
$$

[Bengtsson-Bengtsson-Brink '83]

- Underlying Carrollian algebra

Rotation $\mathbb{J}=\left\{J^{12}, J^{+-}, J^{+}, \bar{J}^{+}\right\}$, Boosts $\mathbb{K}=\left\{J^{-}, \bar{J}^{-}\right\}$
Translations $\mathbb{P}=\left\{P, \bar{P}, P_{-}\right\}$, Hamiltonian $\mathbb{H}=P_{+}$

$$
\begin{array}{lll}
{[\mathbb{J}, \mathbb{J}]=\mathbb{J},} & {[\mathbb{J}, \mathbb{P}]=\mathbb{P},} & {[\mathbb{J}, \mathbb{K}]=\mathbb{K}} \\
{[\mathbb{J}, \mathbb{H}]=0,} & {[\mathbb{H}, \mathbb{P}]=0,} & {[\mathbb{H}, \mathbb{K}]=0} \\
{[\mathbb{P}, \mathbb{P}]=0,} & {[\mathbb{K}, \mathbb{K}]=0,} & {[\mathbb{P}, \mathbb{K}]=\mathbb{H}}
\end{array}
$$

- In terms of the Kinematical-Dynamical split

$$
\begin{gathered}
\mathbb{K}=\left\{P_{i}, P_{-}, M_{i j}, M_{+-}\right\}, \quad \mathbb{D}=\left\{P_{+}, M_{i+}\right\} \\
{[\mathbb{K}, \mathbb{K}]=\mathbb{K}, \quad[\mathbb{K}, \mathbb{D}]=\mathbb{D}, \quad[\mathbb{D}, \mathbb{D}]=0}
\end{gathered}
$$

Gravity in the light-cone gauge

"/č formalism" [Scherk-Schwarz, Schwarz-Goroff, Bengtsson-Cederwall-Lindgren]

- Einstein-Hilbert action in 4D

$$
\mathcal{S}=\frac{1}{2 \kappa^{2}} \int d^{4} \times \sqrt{-g} R\left[g_{\mu \nu}\right]
$$

- Light-cone gauge: Set the "minus" components to zero

$$
g_{--}=g_{-i}=0, \quad(i=1,2) \quad 10-3=7
$$

Parametrization

$$
g_{+-}=-e^{\phi}, \quad g_{i j}=e^{\psi} \gamma_{i j}
$$

$\phi, \psi, \gamma_{i j}$ are real and $\operatorname{det} \gamma_{i j}=1$

Light-cone gravity metric

$$
\begin{gathered}
d S_{L C}^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-2 e^{\phi} d x^{+} d x^{+}+g_{++}\left(d x^{+}\right)^{2}+g_{+i} d x^{+} d x^{i}+e^{\psi} \gamma_{i j} d x^{i} d x^{j} \\
\text { given in terms of } 7 \text { functions }\left\{\phi, \psi, \gamma_{i j}, g_{++}, g_{+i}\right\}
\end{gathered}
$$

- " $2+2$ " split of the Einstein field equations $R_{\mu \nu}=0$ [Sachs, d'Inverno-Smallwood, ...]

Dynamical equations: $R_{i j}=0$
Constraint equations: $R_{--}=R_{-i}=0$
Subsidiary equations: $R_{++}=R_{+i}=0$
Trivial equations: $R_{+-}=0$

Gravity in the light-cone gauge

Can we solve the constraint equations?

\rightarrow subject to choice of coordinates, gauge conditions and iterative integration schemes

- Constraint equation $R_{--}=0$

$$
2 \partial_{-} \phi \partial_{-} \psi-\left(\partial_{-} \psi\right)^{2}-2 \partial_{-}^{2} \psi+\frac{1}{2} \partial_{-} \gamma^{i j} \partial_{-} \gamma_{i j}=0
$$

Fourth gauge choice : [Scherk-Schwarz]

$$
\phi=\frac{\psi}{2}
$$

$$
7-1=6
$$

allows us to integrate ${ }^{\dagger}$ out ψ

$$
\psi=\frac{1}{4} \frac{1}{\partial_{-}^{2}}\left(\partial_{-} \gamma^{i j} \partial_{-} \gamma^{i j}\right) \quad 6-1=5
$$

\dagger Our integration scheme

$$
\partial_{-} f\left(x^{-}\right)=g\left(x^{-}\right) \Rightarrow f\left(x^{-}\right)=\frac{1}{\partial_{-}} g\left(x^{-}\right)=-\int \epsilon\left(x^{-}-y^{-}\right) g\left(y^{-}\right) d y^{-}+\text {"constant" }
$$

- The constraint $R_{-i}=0$ eliminates g_{+i}

$$
5-2=3
$$

- $R_{-+}=0$ allows us to eliminates g_{++}

$$
3-1=2
$$

Light-cone action for gravity

- Closed form expression

$$
\begin{aligned}
S\left[\gamma_{i j}\right]= & \frac{1}{2 \kappa^{2}} \int d^{4} \times e^{\psi}\left(2 \partial_{+} \partial_{-} \phi+\partial_{+} \partial_{-} \psi-\frac{1}{2} \partial_{+} \gamma^{i j} \partial_{-} \gamma_{i j}\right) \\
& -e^{\phi} \gamma^{i j}\left(\partial_{i} \partial_{j} \phi+\frac{1}{2} \partial_{i} \phi \partial_{j} \phi-\partial_{i} \phi \partial_{j} \psi-\frac{1}{4} \partial_{i} \gamma^{k l} \partial_{j} \gamma_{k l}+\frac{1}{2} \partial_{i} \gamma^{k l} \partial_{k} \gamma_{j l}\right) \\
& -\frac{1}{2} e^{\phi-2 \psi} \gamma^{i j} \frac{1}{\partial_{-}} R_{i} \frac{1}{\partial_{-}} R_{j},
\end{aligned}
$$

where

$$
R_{i} \equiv e^{\psi}\left(\frac{1}{2} \partial_{-} \gamma^{j k} \partial_{i} \gamma_{j k}-\partial_{-} \partial_{i} \phi-\partial_{-} \partial_{i} \psi+\partial_{i} \phi \partial_{-} \psi\right)+\partial_{k}\left(e^{\psi} \gamma^{j k} \partial_{-} \gamma_{i j}\right)
$$

Light-cone action for gravity

- Closed form expression

$$
\begin{aligned}
S\left[\gamma_{i j}\right]= & \frac{1}{2 \kappa^{2}} \int d^{4} \times e^{\psi}\left(2 \partial_{+} \partial_{-} \phi+\partial_{+} \partial_{-} \psi-\frac{1}{2} \partial_{+} \gamma^{i j} \partial_{-} \gamma_{i j}\right) \\
& -e^{\phi} \gamma^{i j}\left(\partial_{i} \partial_{j} \phi+\frac{1}{2} \partial_{i} \phi \partial_{j} \phi-\partial_{i} \phi \partial_{j} \psi-\frac{1}{4} \partial_{i} \gamma^{k l} \partial_{j} \gamma_{k l}+\frac{1}{2} \partial_{i} \gamma^{k l} \partial_{k} \gamma_{j l}\right) \\
& -\frac{1}{2} e^{\phi-2 \psi} \gamma^{i j} \frac{1}{\partial_{-}} R_{i} \frac{1}{\partial_{-}} R_{j},
\end{aligned}
$$

where

$$
R_{i} \equiv e^{\psi}\left(\frac{1}{2} \partial_{-} \gamma^{j k} \partial_{i} \gamma_{j k}-\partial_{-} \partial_{i} \phi-\partial_{-} \partial_{i} \psi+\partial_{i} \phi \partial_{-} \psi\right)+\partial_{k}\left(e^{\psi} \gamma^{j k} \partial_{-} \gamma_{i j}\right)
$$

- Perturbative expansion

$$
\gamma_{i j}=\left(e^{\kappa H}\right)_{i j}, \quad H=\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right) ; \quad h_{22}=-h_{11}
$$

Define

$$
h=\frac{1}{\sqrt{2}}\left(h_{11}+i h_{12}\right), \quad \bar{h}=\frac{1}{\sqrt{2}}\left(h_{11}-i h_{12}\right)
$$

- Light-cone Lagrangian

$$
\mathcal{L}=\frac{1}{2} \bar{h} \square h+2 \kappa \bar{h} \partial_{-}^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h\right)+c . c .+ \text { higher order terms }
$$

h and \bar{h} represent gravitons of helicity +2 and -2 respectively

Light-cone Hamiltonian for gravity

- Conjugate momenta (recall: x^{+}is time)

$$
\begin{gathered}
\mathcal{L}=\bar{h}\left(\partial_{-} \partial_{+}-\partial \bar{\partial}\right) h+2 \kappa \bar{h} \partial_{-}^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h\right)+\cdots \\
\pi=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} h\right)}=-\partial_{-} \bar{h}, \quad \bar{\pi}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} \bar{h}\right)}=-\partial_{-} h
\end{gathered}
$$

$(\pi, \bar{\pi})$ not independent variables \Rightarrow Half the d.o.f than in the $3+1$ formalism
\rightarrow a feature of all null-front Hamiltonian systems

Light-cone Hamiltonian for gravity

- Conjugate momenta (recall: x^{+}is time)

$$
\begin{gathered}
\mathcal{L}=\bar{h}\left(\partial_{-} \partial_{+}-\partial \bar{\partial}\right) h+2 \kappa \bar{h} \partial_{-}^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h\right)+\cdots \\
\pi=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} h\right)}=-\partial_{-} \bar{h}, \quad \bar{\pi}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} \bar{h}\right)}=-\partial_{-} h
\end{gathered}
$$

$(\pi, \bar{\pi})$ not independent variables \Rightarrow Half the d.o.f than in the $3+1$ formalism
\rightarrow a feature of all null-front Hamiltonian systems

- Light-cone Hamiltonian for gravity

$$
\mathcal{H}=\partial \bar{h} \bar{\partial} h+2 \kappa \partial_{-}^{2} \bar{h}\left(h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h-\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h\right)+c . c .+\mathcal{O}\left(\kappa^{2}\right)
$$

- Poisson brackets

$$
\begin{gathered}
[h(x), \pi(y)]=\delta\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y) \Rightarrow[h(x), \bar{h}(y)]=\underbrace{\frac{1}{\partial_{-}} \delta\left(x^{-}-y^{-}\right.}_{\text {STEP FUNCTION }}) \delta^{(2)}(x-y), \\
{[h(x), h(y)]=[\bar{h}(x), \bar{h}(y)]=0}
\end{gathered}
$$

Symmetries of light-cone gravity

Notion of symmetry

A canonical transformation $(h, \bar{h}) \xrightarrow{\delta_{X}} \quad(\tilde{h}, \tilde{\bar{h}})$
which leaves the action invariant

$$
\delta_{X} \mathcal{S}[h, \bar{h}]=0
$$

Transformation laws $=$ P.B. with the generator $G_{X}[h, \bar{h}]$, e.g.

$$
\delta_{X} h=\left\{G_{x}, h\right\}_{P B}
$$

For example,
Poincaré generators in terms of the fields h and \bar{h}

$$
\begin{aligned}
& H=P_{+}=\int d^{3} x \mathcal{H}(h, \bar{h}), \quad P=\int d^{3} x \partial_{-} \bar{h} \partial h, \quad P_{-}=d^{3} x \partial_{-} \bar{h} \partial_{-} h, \quad \ldots \\
& J=i \int d^{3} x \partial_{-} \bar{h}(x \bar{\partial}-\bar{x} \partial-2) h, \\
& J^{-}=\int d^{3} x\left[x \mathcal{H}(h, \bar{h})+\partial_{-} \bar{h}\left(x^{-} \partial-2 \frac{\partial}{\partial_{-}}\right) h+\mathcal{S}\right], \quad \cdots
\end{aligned}
$$

\rightarrow canonical realization of Poincarè algebra in light-cone gravity

BMS symmetry from residual gauge invariance

Is there any residual reparameterization freedom left?

$$
x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}
$$

First gauge condition holds

$$
g_{--}=0 \quad \Rightarrow \quad \partial_{-} \xi^{+}=0 \quad \Rightarrow \quad \xi^{+}=f\left(x^{+}, x^{j}\right)
$$

Second gauge condition $g_{-i}=0$ leads to a relation between ξ^{+}and ξ^{i}

$$
\partial_{-} \xi^{j} g_{i j}+\partial_{i} \xi^{+} g_{+-}=0
$$

Fourth gauge condition fixes x^{+}dependence of $f\left(x^{+}, x^{j}\right)$

$$
\begin{aligned}
\xi^{+} & =f=\frac{1}{2} x^{+} \partial_{i} Y^{i}+T\left(x^{k}\right) \\
\xi^{i} & =-\partial_{k} f \frac{1}{\partial_{-}}\left(g_{-+} g^{i k}\right)+Y^{i}\left(x^{k}\right) \\
\xi^{-} & =-\partial_{i} Y^{i} x^{-}+\left(\partial_{+} \xi_{i}\right) x^{i}
\end{aligned}
$$

BMS symmetry from residual gauge invariance

Is there any residual reparameterization freedom left?

$$
x^{\mu} \rightarrow x^{\mu}+\xi^{\mu}
$$

First gauge condition holds

$$
g_{--}=0 \quad \Rightarrow \quad \partial_{-} \xi^{+}=0 \quad \Rightarrow \quad \xi^{+}=f\left(x^{+}, x^{j}\right)
$$

Second gauge condition $g_{-i}=0$ leads to a relation between ξ^{+}and ξ^{i}

$$
\partial_{-} \xi^{j} g_{i j}+\partial_{i} \xi^{+} g_{+-}=0
$$

Fourth gauge condition fixes x^{+}dependence of $f\left(x^{+}, x^{j}\right)$

$$
\begin{aligned}
\xi^{+} & =f=\frac{1}{2} x^{+} \partial_{i} Y^{i}+T\left(x^{k}\right) \\
\xi^{i} & =-\partial_{k} f \frac{1}{\partial_{-}}\left(g_{-+} g^{i k}\right)+Y^{i}\left(x^{k}\right) \\
\xi^{-} & =-\partial_{i} Y^{i} x^{-}+\left(\partial_{+} \xi_{i}\right) x^{i}
\end{aligned}
$$

\rightarrow leaves the light-cone gravity action invariant

$$
\delta_{\xi} \mathcal{S}[h, \bar{h}]=0
$$

iff $\partial^{2} Y=0 \rightarrow$ only Lorentz rotations (no supertranslations)

BMS algebra in light-cone gravity

- BMS transformation law (on the initial surface $x^{+}=0$),

$$
\begin{aligned}
\delta_{Y, \bar{Y}, T} h= & Y(x) \bar{\partial} h+\bar{Y}(\bar{x}) \partial h+(\partial \bar{Y}-\bar{\partial} Y) h+T \frac{\partial \bar{\partial}}{\partial_{-}} h \\
& -2 \kappa T \partial_{-}\left(h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h-\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h\right)-2 \kappa T \frac{1}{\partial_{-}}\left(\frac{\partial^{2}}{\partial_{-}^{2}} \bar{h} \partial_{-}^{2} h\right) \\
& -2 \kappa T \frac{\partial^{2}}{\partial_{-}^{3}}\left(\bar{h} \partial_{-}^{2} h\right)+4 \kappa T \frac{\partial}{\partial_{-}^{2}}\left(\frac{\partial}{\partial_{-}} \bar{h} \partial_{-}^{2} h\right)+\mathcal{O}\left(\kappa^{2}\right)
\end{aligned}
$$

- Symmetry algebra

$$
\left[\delta\left(Y_{1}, \bar{Y}_{1}, T_{1}\right), \delta\left(Y_{2}, \bar{Y}_{2}, T_{2}\right)\right] h=\delta\left(Y_{12}, \bar{Y}_{12}, T_{12}\right) h
$$

with parameters

$$
\begin{aligned}
Y_{12} & \equiv Y_{2} \bar{\partial} Y_{1}-Y_{1} \bar{\partial} Y_{2} \\
\bar{Y}_{12} & \equiv \bar{Y}_{2} \partial \bar{Y}_{1}-\bar{Y}_{1} \partial \bar{Y}_{2} \\
T_{12} & \equiv\left[Y_{2} \bar{\partial} T_{1}+\bar{Y}_{2} \partial T_{1}+\frac{1}{2} T_{2}\left(\bar{\partial} Y_{1}+\partial \bar{Y}_{1}\right)\right]-(1 \leftrightarrow 2)
\end{aligned}
$$

\rightarrow BMS algebra in four dimensions

- Canonical generator for supertranslations

$$
\begin{gathered}
\delta_{T} h=\left[G_{T}, h\right], \quad \delta_{T} \bar{h}=\left[G_{T}, \bar{h}\right] \\
G_{T}=\int d^{3} \times \partial_{-} \bar{h}\left(\delta_{T} h\right)=\int d^{3} \times \partial_{-} \bar{h} T \frac{\partial \bar{\partial}}{\partial_{-}} h+\mathcal{O}(\kappa)
\end{gathered}
$$

Light-cone representation of the BMS algebra

- Light-cone Poincaré algebra

$$
\begin{aligned}
\mathbb{K}: & \left\{P, \bar{P}, P^{+}, J, J^{+}, J^{+}, J^{+-}\right\} \\
\mathbb{D}: & \left\{P^{-} \equiv H, J^{-}, \overline{J^{-}}\right\} \\
{[\mathbb{K}, \mathbb{K}]=\mathbb{K}, } & {[\mathbb{K}, \mathbb{D}]=\mathbb{D}, \quad[\mathbb{D}, \mathbb{D}]=0 . }
\end{aligned}
$$

- Light-cone BMS algebra

$$
\begin{aligned}
& \mathbb{K} \rightarrow \mathbb{K} \\
& \mathbb{D} \rightarrow \mathbb{D}(T) \\
& {[\mathbb{K}, \mathbb{K}]=\mathbb{K}, \quad[\mathbb{K}, \mathbb{D}(T)]=\mathbb{D}(T), \quad[\mathbb{D}(T), \mathbb{D}(T)]=0 . }
\end{aligned}
$$

Dynamical part enhanced to infinite-dimensional supertranslations labeled by a single parameter T

- Poincaré part of the BMS

$$
\partial^{2} T=\bar{\partial}^{2} T=0
$$

$\Rightarrow \mathbb{D}(T)$ reduces to $\mathbb{D}:\left\{H, J^{-}, \bar{J}^{-}\right\} \quad \rightarrow \quad$ the three "Hamiltonians" of Dirac

$$
a \partial_{+}^{\swarrow} i b x \partial_{+}^{\downarrow} \longrightarrow_{-i \bar{b}} \partial_{+} \quad \text { [Ananth, Brink and SM] }
$$

Outlook

Light-cone BMS algebra: key features

- BMS from residual gauge invariance in the bulk: No reference to asymptotic limits
- Dynamical part of the algebra enhanced to infinite-dimensional supertranslations
- Lorentz invariance of the Hamiltonian eliminates superrotations

Some open questions

- How is the light-cone initial data is related to null infinity data?
- Connections to on-shell amplitudes and geometry on null hypersurfaces
- Self-dual and anti self-dual gravity; double copy results

Outlook

Light-cone BMS algebra: key features

- BMS from residual gauge invariance in the bulk: No reference to asymptotic limits
- Dynamical part of the algebra enhanced to infinite-dimensional supertranslations
- Lorentz invariance of the Hamiltonian eliminates superrotations

Some open questions

- How is the light-cone initial data is related to null infinity data?
- Connections to on-shell amplitudes and geometry on null hypersurfaces
- Self-dual and anti self-dual gravity; double copy results

BMS symmetry as the asymptotic symmetry group at null infinity

