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What do mathematical physicists need
to describe radiation?

A surface through which fluxes of energy, momentum,
and other conserved quantities flow.

Continuous symmetries - for each symmetry generator
there is a conserved observable.

Theoretical frameworks typically used:
either Noether charges and currents, or Hamiltonian charges and currents.
The latter ones are more suitable for the dynamics of GR.



On what surfaces do mathematical relativists define
and describe gravitational radiation

Asymptotic boundaries



On what surfaces do mathematical relativists define
and describe gravitational radiation

Asymptotic boundaries

Definition of ‘asymptotic’:



On what surfaces do mathematical relativists define
and describe gravitational radiation

Asymptotic boundaries

Definition of ‘asymptotic’:

The remark of the British Prime Minister Chamberlain in 1939 on
Czechoslovakia is relevant here: “This is a far far away country
about which we know very little.”
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On what surfaces do mathematical relativists define
and describe gravitational radiation

Asymptotic boundaries

A=0
null BMS group of symmetries
uniquely defined subgroup
of translations: 4-momentum
I—I— ENERGY >0
A>0

Symmetries:

all the diffeomorphisms of L T
Lack of unique notion of energy
or momentum, lack of the positivity.

spacelike I+
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What other surfaces?

Horizons: black hole, cosmological

Robust generalisation:

Non-expanding Horizons
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https://scholar.google.com/citations?user=YlcvqVsAAAAJ&hl=it&oi=sra
https://scholar.google.com/citations?user=YlcvqVsAAAAJ&hl=it&oi=sra

Non-expanding horizon: un-embedded

Non-expanding surface is a manifold JAN
endowed with a symmetric tensor q
of signature O+ ...+

and a torsion free covariant derivative [)

such that Dq — ()

A neet Lemma:

For every null vector field, that is such that : €_|q = 0

The following is true: ,ng = 0



Ingredients of the non-expanding structure
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Usual assumption: trivial topology:

The rotation 1-form potential W
Dt = w, 0P
V' = f¢ w' = w+dnf
The transversal expansion-shear Sab
“D,v=1
DanU —. _Sa,b
Surface gravity K
k= LW,

(* Dyl = Kkt

A=AxR
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Embedded non-expanding horizon

A C M becomes a co-dim 1 null surface
the spacetime Ricci

positivity assumptions and Raychaudhuri
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Embedded non-expanding horizon

A C M becomes a co-dim 1 null surface
the spacetime Ricci

_— Dok = Lowa + Rapl”
q D KT positivity ass:mptions and Raychaudhuri
= R0 =0 D,k = Lyw,
SAB
v = const | Dy Dyv =: =S4
n

< > n“ne =0 {'n, = —1

d - 1 1
W*"AB(“') = —k SaB(v) +Vawp) + wawp — 511’,.113 T ;x"\.(/.-u;..




Embedded non-expanding horizon

A C M becomes a co-dim 1 null surface
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Embedded non-expanding horizon

A C M becomes a co-dim 1 null surface
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q
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A
/

|
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D

the spacetime Ricci

»

D,k = Low, + R,pt°

positivity assumptions and Raychaudhuri

= R =0 D,k = Lyw,
via:

V' = f/¢ w' =w+dinf
we can make: k' =0

,Cg/w(/l =0

and even:



Embedded non-expanding horizons in 4d

A:SQXR
-
q9 D gT
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The extended BMS

A:SQXR
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The extended BMS
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The extended BMS
A = SQ X R

-l

q9 D

Y

< > 4AB ¢2 q AR - the round sphere metric

qABVAw =0 WwAB




The extended BMS
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The extended BMS

A =5 xR a conformal isometry
> T
- q— ] q=a’q
_..--a constant
O @) a‘O
the symmetries are all the T =y, 0 —Jf
@
A — A

the underlying structure
A that preserve ®

0]

O
g /]
LL/7 1
L D
JAB = — GAap <---- the round sphere metric

APV jop =0 WAB W = —dF + %xdB = *dB



The extended BMS

A =5 xR a conformal isometry
I q— fq=a’q
_..--a constant
o O alAO
the symmetries are all the T 0=l 0 — —f
84
A— A
the underlying structure
A that preserve o ©
O
O
i &/ q, /]

i
S I
dqAB = E GAap <--- the round sphere metric

a symmetry generator

EgAéab = 26 Gab LZ- po — _ (¢ + k) (¢ k is a constant
k=20 corresponds to the BMS ¢ — Zm amyl,m



The symmetry generators

§*=d*+ 8"+ R*+ B*
."

< 4 >
dilation " rotation boost
super translation g ‘
o v '.
d* = rd"

. BMS generators
surface gravity .

additional generator

& =V +HE, with V§ = (0(k+¢) + 5" and Hf = Dyy +qDyo

27



The symmetry generators

§*=d*+ 8"+ R*+ B*
."

< 4 »
dilation " rotation boost
super translation g ‘
o v '.
d* = rd"

BMS generators

surface Qravity
Example: one of the horizons in the
Kerr spacetime.

additional generator /{2 = 0; + Q0 &
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Spacetime extension important for the charges

}m

~

X =(vfi+ f2)0, + H 94 — rf10, —r X0y + rX04 + r*X70, .

A
Y

A } () The Newman-Unti coordinates




The currents and charges

L=L(¢)  SL=E() 06 +d8(6,69).

the.°fields symplectic potential

w(P, 019, 020) = 1 (0(¢,02¢)) — d2 (0(,010))

>

symplectic current



The currents and charges

1 the volyme element
L R—2A)e«""
(9) = 76 )€ 4
1 dy ef e
© ube (93 59) — e €abe (g Vi 5gc<f -V (Sgcd) ;

©— 0 +d()+ ()
on a null surface the right choice is:

|
Oube (95 69) = Ogbe(9399) — 5= 0((01) €abe) (9))

Wald, Zupas 2008, Chandrasekaran, Flanagan, Prabhu 2018 g
€abe +— N €dabe
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The currents and charges

|
Oube (95 09) = Ogve(9:69) — g—= 6((01) €ave)(9))

T

a generator of symmetry of 7—[

w(g,69, LLg) = 6 (8(g, Leg)) — Le (O(g, 59))
upon the pullback onto the null surface |

d(£29(g,09))

<
< Oy O

" Fe[My o] = / (g, Leg) = Qc[Cs] — QelCy
g S Hi s



The currents and charges

FelHy o] = /H (g, Leg) = QelCa] — QelC1]

1

ced
o Eabed V €

the Noether charge: Qg[g] —

1
the symplectic charge: Q¢ [C] = Q? C] — e jé 00) " €abe

-l D

— C >
>
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The metric perturbations

ab A) = ° ab A —() - ‘
g .1( ) Gab + a1\ |,\ 0 5 1\
, A\

: O.(/(l.b + )\ lhfu,b -+ 7 zhl(,‘() + ...

(l.(/u,b()‘) /\2 (12 .(/u.b()‘) |/\_() +

such that:

A is null to all the orders
the expansion and shear of / vanish to the Oth order

the expansion of ¢ vanishes to the 1st order due to the
the future boundary condition: the perturbed horizon approaches

a NEH
1
1°D,(0) = —592 — oo B — Ryp00°

faDa(5(9) = ( 060 = const = () to the 1st order
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The currents and charges

gabdzlrad:z:b = —r? ~vdv? + 2dvdr + 2r B4 dvdz? + JAB dz?dz? A:r=290
QY [C] = — kA[C d QY =0,
€= okalc] €)=
Q00 = ——— § BBy and  QUC] = ——— ¢ (26 — BG.) ew
167G C 167G C _
. @ kA M | l
forKerr: oic) = 72 = 0 aa7 = Q" 1 a0

QP (0] = = A'[C) =

167rG % Th % and Q(l) 0

Q' [C) =

c(nl 11 \ o
IGWG%R(ﬁcﬁL? h Be) %ab

Q' [C] = 167G 74 (20 'h— B(B. + 5 'hA)) “eas

(D, Q" = 0 F® =0
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The currents and charges

gapdz?dz’ = —r? vy dv® + 2dvdr + 2r B4 dvdz? + gapdz?dz?, A:r=0
2 2 1 c o
QY [C) = e }é — O A% and QY [C] = ~5eG .50 5

Q2 [C] = maf“@%

(2) [C] 16 G f 2¢ Zb BC (ﬂc 6ab)

1
FP Wizl = TR s [ (A1) %ape
1,2
1
Fs'Wial = 3G |, lomal? ('na) e
1 'mn m ] 0
FeWizl = g /. [lehmn)(lh ) = £ (DmR™) (*h) |eute
1

(2)[_/\/'1 2] _

167G [\ [(LBlhm")(lhmn) - %(DmBm)(QI—‘)J “abe.
1.2



@ Universal structure of NEHs was derived
@ Their symmetry group were investigated
@ Monopole moments for all NEHs were introduced

@ Charges and fluxes associated with the symmetry group were
calculated

Application: binary black holes coalescence, after a common horizon has
been formed it may be well approximated by our perturbed NEH. Then our
fluxes (times 2) describe absorbed energy, momentum, ...



Extremal Killing horizon to the 2nd order
dAB = JAB
V0% =: wyl® rotation 1-form n + 1-dim null surface

the first extremity equation:

n 1, 1
( )V(ACUB) +WwAawWwp — 5( )RAB —I—EAQAB:O

Hajicek 1970’s,

Isenberg, Moncrief 1983,
Ashtekar, Beetle, JL 2001,

JL, Pawlowski 2004

Kunduri, Lucietti 2013 (Liv. Rev.)

1

SAp = iﬁngAB n

- second extremity equation: Lucietti, Li 2016,
Kolanowski, Lewandowski, Szereszewski 2019

Sap:c® — Sap — 25 Rac) +2S°P Racep + 2w Sc.(ap) +3waS.5y — 3w Sap.c
_2("}(1453)0;(J + 2SC(A("}IC;); - 2"‘}C;BSA(] ~wawpS +wew”Sap =0

38



The Near Horizon Geometry spacetime
Pawfowski, JL, Jezierski 2004, Kundt 1961, Real 2003,
Given 77 dimensional manifold S endowed with gAaB,WA such that

1 1
(n)v(AwB) T WAWB — §(n)RAB ‘|‘5A9AB =0

Define on S X R xR

gudxtdr” = gAdeAde—

1 2
2du |dv — QUwAd:I;A — 51}2 ((”)VAwA + QwAwA + —A) du
n

Th
- (n+2)GW/ + AQW =0 and Sap =0

and H =S xR X% {U — ()} is an extremal Killing horizon

K =00, — ud,, L39: 0,  and non-extremal at the same time



The Near Horizon Geometry equation in 4d

S - a compact 2-manifold equipped with:

gapdz?dz? - a metric tensor, wadz?d - a 1-form

(2)V(ALUB) + WAWRB + — (A K)QAB =0

K - the Gauss curvature
A - the cosmological constant

40



The integrability conditions

dw =: () dArea rotation pseudo scalar

gaB = mamp +mamp dAreapc = i(mpmec — memp)

First integrability condition:

m (<2>VA+3wA)<K g | m) —0

Second integrability condition:

mAmB(Z)VA(Q)VB(K /3\ :iﬂ> — ()

Dobkowski-Rytko, Kaminski, JL, Szereszewski 2018




NHG equation for genus >0

Theorem  Dobkowski-Rytko, Kamiriski, JL, Szereszewski 2018
Suppose (g4, wa)are defined on a compact 2-manifold S

and satisfy the NHG equation:
1
v(AWB) T WAWRB T 5(/\ — K)gap =0 ;

Suppose

Then K=A<0, wa=0



NHG solutions for genus =0

S =95
axial _ t ] Kerr xtremal Kerr
WA — extrema e e
symmetry — YAB, WA 9AB , Why
_ _ JL, Pawfowski 2002,
uniqueness! no more solutions! JL, Buk 2020,
generalized to the Einstein-Maxwell case JL, Pawlowski 2002,
generalized to the Einstein-Yang-Mills case Kunduri, J. Lucietti 2009
Existence of non-symmetric solutions ?
only partial results known:
a unique candidate for the symmetry generator: i ( x (1,0) _ X(Oal))

(MViawp =0 = K=A>0, wa=0 Chrusciel, Reall, Tod 2005
(non-rotating)

the linearised equation about axisymmetric solution admits Chrusciel, Szybka,

only axisymmetric solutions - partly numeric Tod 2017
Applications to filing gaps in the BH uniqueness theorems Chrusciel, Costa,
43 Heusler 2012



Uniqueness of the extremal Kerr horizon
to the second order

Suppose S = S9 and 9AB,WA, SAB satisfy all the following as.:

axial symmetry,
the first and the second extremality equation with A = 0,

and SAA>O-

Then, gaB,wWa, S4B correspond to the extremal Kerr solution.

Generalisation to the Kerr-Newman is also available.

JL, Pawfowski 2003,
Lucietti, Li 2016
Kolanowski, JL, Szereszewski 2019
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The integrability condition in a new role

A -3
Uy = K — §+m7é0 and mAmB(Q)VA(Q)VB<K—%+iQ) ~ 0
<~
the non-extremal Killing horizon to the 2nd order
is of the Petrov type D Dobkowski-Rytko, Pawtowski, JL 2018

Therefore we call it: the type D equation.
recal: dw —=: () dArea  gAB = MaAMp +MAMp

dAreapc = i(mpmc — mempg)

Gauge transformations: w;l =wp + f A
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The type D equation on g>0 compact surfaces

Theorem 1 A pair (g,w) is a solution to the Petrov type D equation with a cosmological

constant A on a compact, orientable 2-surface of genus > 1 if and only if g has constant
Gauss curvature (Ricci scalar)

K = const # %

and w 18 closed

dw = 0.
Dobkowski-Rytko, Kaminski, JL, Szereszewski 2018
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No-hair theorem for axisymmetric solutions to the
type D equation on topological sphere S.

Dobkowski-Rytko, JL, Pawtowski 2018

Theorem 2 (no-hair):
The family of axisymmetric solutions of the type D

equation with (or without) cosmological constant defined
on a topological sphere can be parametrized by two
numbers (A,J):

the area and angular momentum, respectively. They take
the following valuesin R" x R:

A>0
127 A |AA 127
J € (—oo,oo) for A € (O’T> and |J| € [0,16—7T E—l) for A € (T’OO>
A <O

J € (—oo,oo) and A € <O,oo>



Rigidity of a bifurcated Petrov type D horizon

3

mAmB(2)VA(2)VB(K_é_|_Z'Q) 3:0 JAB,WA
PAmBOY v, (K A zQ) O axially symmetric

JL, Szereszeski 2018



Type horizon as the Hopf bundle structure

W, =K #0

a connection ........................................ +€ dw rot tion
a principal fiber bundle:
H

UL), R"= G | | >

rOtation pseudo Scalar ................................. > Q dArea




The results on the A-vacuum Petrov type D horizons of
the non-trivial bundle structure over 5

Dobkowski-Rytko, JL, Racz 2019

/QdArea: 2rkm =:n # 0
S

We found all the axisymmetric solutions. For every value of
the topological charge 77, and the cosmological constant
A they set a 3d family that can be parametrized by:

- the area radius 7

- surface gravity times 77l denoted by 7!
- and one more parameter 7)corresponding to the rotation

All together, there is a 4-dimensional family of solutions.
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I+ . :
< > Embedded in NUT spacetimes
M = Sg x R
- ~ ..
- D H
the Hopf bundle

=TT T T T - however, generically the null
e I Hs generators of the Killing

____________ horizons are not the fibres of
Q ) H, the bundle.

3

unless: A\ — |
a? + 212 + 2r?

a? — 2a®1? + 1* + 2a®r2 — 61%r3 + 1}

€+ . =
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