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Introduction

The Poincaré algebra

[Mi,Mj] = εijkMk, [Mi,Bj] = εijkBk, [Bi,Bj] =−εijkMk,

[Mi,Pj] = εijkPk, [Pi,Bj] = δijE, [Mi,E] = 0 [E,Bi] = Pi,

has (at least) two interesting contractions.

One is the familiar Galilean algebra (c →∞, Bi → 1
c Bi, E → cE)

[Mi,Mj] = εijkMk, [Mi,Bj] = εijkBk, [Bi,Bj] = 0,

[Mi,Pj] = εijkPk, [Pi,Bj] = 0, [Mi,E] = 0 [E,Bi] = Pi,

while the other is the Carroll algebra (c → 0, Bi → cBi, E → cE),

[Mi,Mj] = εijkMk, [Mi,Bj] = εijkBk, [Bi,Bj] = 0,

[Mi,Pj] = εijkPk, [Pi,Bj] = δijE, [Mi,E] = 0 [E,Bi] = 0.
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Introduction

The Galilean algebra (or rather, its central extension, the
Bargmann algebra, which has [Pi,Bj] = δijM rather than
[Pi,Bj] = 0) is relevant for the nonrelativistic limit of Einstein
theory (Newton-Cartan gravity)

while the Carroll algebra is relevant for its “ultrarelativistic limit”
(Carroll gravity).

The ultrarelativistic limit controls the dynamics of the
gravitational field near a spacelike singularity (BKL limit),

which has revealed intriguing connections with
infinite-dimensional Kac-Moody algebras (the most notable
example being E10 in M-theory).

It also appears in many other gravity-related contexts (BMS,
cosmology, etc... this workshop !).

The purpose of this talk is to describe algebraic and geometrical
properties of Carroll-invariant theories.
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Causality in Galilean-invariant and
Carroll-invariant theories

(Based on Henneaux 1979 and Henneaux + Salgado-Rebolledo 2021)

The light cones determine the causality structure in Minkowski
space, ruling Poincaré invariant field theories.

In the nonrelativistic limit, the light cones completely open to the
hyperplanes x0 = const.

It is the opposite in the Carrollian limit : the light cones collapse
to the lines xk = const generated by ∂

∂t .

The field at time t depends only on the field and a finite number
of its time derivatives at time t = 0 at the same spatial point.

(“ultrarelativistic = ultralocal”)

More generally, dynamical Carroll-invariant field equations
reduce to ordinary differential equations with respect to time.
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Electric and magnetic contractions

Just as in the case of the Galilean limit, there are two different
types of Carroll contractions,

the “electric” and the “magnetic” ones.

Galilean Electromagnetism in 4D : M. Le Bellac and J.-M.
Lévy-Leblond (1973)

Carrollian Electromagnetism in 4D : C. Duval, G. W. Gibbons,
P. A. Horvathy and P. M. Zhang (2014)

Generalization to p-forms, gravity, higher spins in arbitrary
dimension : M. Henneaux and P. Salgado-Rebolledo,
[arXiv :2109.06708 [hep-th]] (see also J. de Boer, J. Hartong,
N. A. Obers, W. Sybesma and S. Vandoren [arXiv :2110.02319
[hep-th]]
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πa1···ap Ȧa1···ap −A0a2···apG a2···ap −H

)
,

where

H = E E +E M ,

E E = p!c2

2
πa1···apπ

a1···ap , E M = 1

2(p+1)!
Fa1···ap+1 Fa1···ap+1 ,

and

G a1···ap−1 =−p∂aπ
aa1···ap−1 .

6 / 26



Carroll-invariant
field theories

Marc Henneaux

Introduction

Carrollian
causality –
p-forms

Carroll Geometry

Conditions for a
theory to be
Carroll invariant

Covariant actions

Gravity

Carrollian-BMS
groups

Conclusions and
comments

Carroll invariant limits of p-form gauge theories

The limits are most conveniently taken in the Hamiltonian
formulation of the theories.
The Hamiltonian action reads

S[Aa1···ap ,πa1···ap ,A0a1···ap−1 ]

=
∫

dDx
(
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Carroll invariant limits of p-form gauge theories

The magnetic limit is obtained by taking the direct limit c → 0

and yields

S =
∫

dDx
(
πa1···ap Ȧa1···ap −A0a2···apG a2···ap −E M

)
,

while the electric limit is obtained by first rescaling the fields as

Aµ1···µp → cAµ1···µp , πa1···ap → 1

c
πa1···ap

and then taking the limit c → 0, leading to

S =
∫

dDx
(
πa1···ap Ȧa1···ap −A0a2···apG a2···ap −E E

)
.

Note that both limits are compatible with gauge invariance.
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πa1···ap Ȧa1···ap −A0a2···apG a2···ap −E E

)
.

Note that both limits are compatible with gauge invariance.

7 / 26



Carroll-invariant
field theories

Marc Henneaux

Introduction

Carrollian
causality –
p-forms

Carroll Geometry

Conditions for a
theory to be
Carroll invariant

Covariant actions

Gravity

Carrollian-BMS
groups

Conclusions and
comments

Carroll invariant limits of p-form gauge theories

The magnetic limit is obtained by taking the direct limit c → 0

and yields

S =
∫

dDx
(
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“Minimal” Carroll geometry (Henneaux 1979)

Ingredients :

(i) Degenerate metric gαβ of rank D−1 which is positive

semi-definite, i.e. detgαβ = 0, gαβvαvβ ≥ 0, with gαβvαvβ = 0 if
and only if the vector vα is along the null direction (“null vector”)

(ii) Non-vanishing densityΩ of weight one (for integration)

Null vectors can then be “normalized” through

Gαβ =Ω2nαnβ

where Gαβ are the minors of gαβ (Gαβgγβ = 0 since detgαβ = 0).

In general the metric and the volume element depend on xµ,
gαβ(x),Ω(x). If they are constant, the Carroll geometry is flat.

No extra structure (parallel transport, unique foliation by
transverse hyperplanes etc) is introduced.
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“Minimal” Carroll geometry (Henneaux 1979)

Because the metric is degenerate, it has no inverse, i.e., there is
no tensor gαβ such that gαβgβγ = δαγ .
One can nevertheless raise indices by introducing the extra
structure of a one-form θα such that θαnα = 1.
One then defines the twice contravariant symmetric tensor
Gαβ(gρσ,nλ,θµ) such that

Gαβgβγ = δαγ −nαθγ.

If one imposes in addition the condition Gαβθαθγ = 0, the tensor
Gαβ is completely determined.
Since the one-form θα comes on top of the basic Carroll structure
defined by the degenerate metric gαβ and densityΩ, we shall
insist that “Carrollian physics” should not depend on θα.
For instance, the scalar product Gαβvαwα does not depend on
the choice of θα if the covectors vα and wα are both transverse
(nαvα = 0 = nαwα).
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Flat Carroll geometry

A flat Carroll structure is a vector space equipped with a Carroll
inner product

and a choice of normalization of the null vectors.

One can take

(gαβ) =
(
0 0
0 Id×d

)
, (nα) =


1
0
0
...
0

 , Ω= 1

One finds Lngαβ(=−2Kαβ) = 0,

so that metric-preserving, symmetric connections exist.

(One can take Γα
βγ

= 0, a choice adapted to the underlying linear
structure.)
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Carroll group

The Carroll group C(D) is the group of (inhomogeneous) linear
transformations that preserve this flat structure.
Infinitesimally,

δx0 = a0 +bkxk, δxk =ωk
mxm +ak, ωkm =−ωmk,

While the flat tensors gαβ andΩ are numerically invariant under
Carroll transformations (by definition of the Carroll group), this is
not so for the extra structure θα.
One finds

δθ0 = 0, δθm =−bm +θkω
k
m.

Since θ0 = θαnα = 1, one can use Carroll transformations to set
θk = 0, so that θα reads

(θα) = (
1 0 · · · 0

)
,

but this special form is not preserved in all Carroll frames.
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Carroll group

When θα takes that special form, the contravariant tensor Gαβ

reduces to

(Gαβ) =
(
0 0
0 Id×d

)

but in general ((θα) = (1,θa)), it reads

(Gαβ) =
(
δcdθcθd −δbcθc

−δacθc δab

)

It is thus not numerically invariant under Carroll boosts, for
which one can actually verify that

G′αβ ≡ ∂x′α

∂xµ
∂x′β

∂xν
Gλµ = Gαβ(gρσ,nτ,θ′γ ≡ θδ

∂xδ

∂xγ
).
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Sufficient conditions for a theory to be Carroll
invariant

We now consider Carroll-invariant local field theories.

A Carroll transformation is generated in the canonical formalism
by

a0E +akPk +bkBk + 1

2
ωkmMkm,

where the Carroll generators are given by integrals of local
densities involving the “energy density” E (x) and the
“momentum density” Pk(x).

The spacetime translations are generated by

E =
∫

ddxE (x), Pk =
∫

ddxPk(x),

while the generators of Carroll boosts and spatial rotations read

Bk =
∫

ddxxkE (x), Mrs =
∫

ddx(xrδsk −xsδrk)Pk(x).
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Sufficient conditions for a theory to be Carroll
invariant

A necessary and sufficient condition for the theory to be Carroll
invariant is that the generators fulfil the Carroll algebra

[Pk,Bm] = δm
k E,

[Pk,Mrs] = (δr
kδ

sl −δs
kδ

rl)Pl, [Bk,Mrs] =−Brδsk +Bsδrk,

[Mkm,Mrs] =−δkrMms +δmrMks +δksMmr −δmsMkr

Pk and Mrs are kinematical generators,

while E and Bk involve the dynamics.
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Sufficient conditions for a theory to be Carroll
invariant

The characteristic feature of Carroll-invariant field theories is the
Poisson bracket relation

[E E (x),E E (y)] = 0 (or [E M (x),E M (y)] = 0)

between the energy density at two different spatial points.

This implies straightforwardly

[E,Bk] = 0 [Bk,Bm] = 0

for E = ∫
d3xE and Bk = ∫

d3x xk E (with E = E E or E M ).

If one also requests that E (x) be a scalar under spatial isometries,
the other commutation relations of the Carroll algebra are all
fulfilled.

(In the Poincaré case,[E (x),E (y)] ∼ (P k(x)+P k(y))δ,k(x−y) :
Schwinger - Dirac)
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Flat space actions

The Hamiltonian actions of the flat space Carroll contractions
can be cast in a manifestly Carroll-covariant form.

We consider for definiteness electromagnetism

S[Ai,π
i,At ] =

∫
dt

[∫
ddxπaȦa −H +

∫
ddxAt∂aπ

a
]

, H =
∫

ddxE C

and start with the electric case (E C = E E = 1
2π

aπa).

By eliminating the momenta by means of their own field
equations, one gets SE [Ai,A0] = 1

2

∫
dDxF0iF i

0 ,

an expression equivalent to the manifestly Carroll-invariant
expression

SE [Aα] = 1

2

∫
dDx(nαFαβ)2.

The integrand GρσnαFαρnβFβσ is well-defined because Fαβnβ is

transverse, nαFαβnβ = 0.
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Flat space actions

The magnetic case, E C = E M = 1
4 FabFab, is more subtle.

One cannot express the momenta πi in terms of the velocities
through their equations of motion and for that reason, one looks
for a direct covariantization of the first-order Hamiltonian action.

For that purpose,

1 we postulate that the momenta πa are the spatial components of a
spacetime vector πα with the gauge invariance πα→πα+λnα (λ
arbitrary) to keep the number of degrees of freedom unchanged ;

2 we introduce a 1-form gauge field θα that enables one to define
Gαβ.
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Flat space actions

We then postulate the first-order action

SM [Aα,πβ,θγ] =
∫

dDx

(
παFαβnβ− 1

4
GαβGρσFαρFβσ

)
The gauge invariance πα→πα+λnα is obvious since Fαβ is
antisymmetric - π0 just drops.

Similarly, if one shifts θα as δθα =λα (with λαnα = 0) and at the
same time transforms πα as

δθα =λα, δπα =−GαρFρσλ
σ

the action is invariant (one has δGαβ =−nαλβ−nβλα).

One can go to the gauge θ0 = 1,θa = 0,

in which the above covariant action reduces to the Hamiltonian
one.

The construction can be generalized to arbitrary p-forms.
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antisymmetric - π0 just drops.

Similarly, if one shifts θα as δθα =λα (with λαnα = 0) and at the
same time transforms πα as

δθα =λα, δπα =−GαρFρσλ
σ

the action is invariant (one has δGαβ =−nαλβ−nβλα).

One can go to the gauge θ0 = 1,θa = 0,

in which the above covariant action reduces to the Hamiltonian
one.

The construction can be generalized to arbitrary p-forms.
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Electric Carrollian limit of gravity

Again, the limits are most conveniently taken in the Hamiltonian
formulation.

The (Dirac-ADM) Hamiltonian action for Einstein gravity reads

S[gij,π
ij,N ,N i] =

∫
dx0

∫
ddx(πijġij −NH −N iH i)

(where we do not write explicitly the surface terms, which
depend on the boundary conditions).

Here, H ≈ 0 is the Hamiltonian constraint and H i ≈ 0 is the
momentum constraint with the following explicit expressions (in
appropriate units and with appropriate rescalings, see below)

H = Gijkmπ
ijπmn − c6R

p
g, H i =−2π j

i |j.
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Electric Carrollian limit of gravity

One can consistently take the limit c → 0 since the constraints
remain first class in the limit,

[H E (x),H E (x′)] = 0,

[H E (x),Hk(x′)] = (H E (x)+H E (x′))δ,k(x−x′)
[Hm(x),Hk(x′)] =Hm(x′)δ,k(x−x′)+Hk(x)δ,m(x−x′)

where
H E = Gijkmπ

ijπmn
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Electric Carrollian limit of gravity

Putting back all the constants and rescaling the lapse as we
mentioned above so that N standardH standard = N rescH resc (and
dropping the “rescaled” as also done above !)

we get

N resc = 16πG

c2 N , H resc = Gijkmπ
ijπmn +ε c6

(16πG)2 R
p

g

and one sees therefore that c → 0 (Carroll limit) is equivalent to
G →∞ (strong coupling limit, Isham 1975) or ε= 0 (zero
Hamiltonian signature limit -Teitelboim 1978), keeping N resc

finite.
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Electric Carrollian limit of gravity

The action can be written in manifestly covariant form.

It reads

S[gαβ,Ω] ∼
∫

dDxΩ(KαβKαβ−K 2)

where Kαβ =− 1
2 Lngαβ is the Lie derivative (up to the factor − 1

2 )
of the degenerate metric along the null vector nα.

(Action well-defined, more in Henneaux 1979)
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Magnetic Carrollian limit of gravity

There is also a magnetic limit (Henneaux and Salgado-Rebolledo
2021).

This time, one drops the kinetic term in the Hamiltonian
constraint

and keeps the curvature term.

This is again consistent.

One now finds ġij ∼ 0.
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Ideals of the Carroll algebra

[Mi,Mj] = εijkMk , [Mi,Bj] = εijkBk , [Bi,Bj] = 0,

[Mi,Pj] = εijkPk , [Pi,Bj] = δijE, [Mi,E] = 0 [E,Bi] = 0.

Among the Carroll transformations, Pi are Mi are kinematical transformations
defined within equal time hypersurfaces,

while E and Bi are dynamical transformations involving time evolution.

The kinematical transformations form a subalgebra isomorphic to the algebra of
Euclidean displacements iso(3) (4D).

The dynamical transformations E and Bi form an abelian ideal D.

The quotient of the Carroll algebra by the ideal D is isomorphic to iso(3),
C
D

' iso(3).

The energy E (time translations) by itself also generates a one-dimensional
(abelian) ideal I .

The quotient of the Carroll algebra by the ideal I is isomorphic to the semi-direct
sum of iso(3) and a three-dimensional abelian algebra t3 transforming in the

vector representation of iso(3), C
I

' iso(3)⊕σ t3 ≡ d3 (of which t3 is an ideal).
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Carrollian BMS algebras

The subalgebra of homogeneous Carroll transformations is
spanned by the spatial rotations and the boosts. It is
six-dimensional and isomorphic to so(3)⊕σ t3.

Carroll-BMS (C -BMS) algebra : The Carroll algebra can be
extended by Carroll supertranslations, which form an
infinite-dimensional representation of the homogeneous Carroll
subalgebra and commute among themselves.

Supertranslations can be decomposed into an even part T and an
odd part W .

d3-BMS algebra : quotient by all even supertranslations (which
includes the energy).

iso(3)-BMS algebra : quotient by all even supertranslations and
the boosts.

(A. Pérez 2021 ; O. Fuentealba, M. Henneaux, Patricio
Salgado-Rebolledo and J. Salzer, in preparation)
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Conclusions and comments

The non-relativistic limit has been known for a long time to be
useful in general relativity,

and powerful methods exist to control developments in powers
of 1

c .

The opposite, “ultrarelativistic limit” is also useful.

It is connected to the BKL analysis in the vicinity of a spacelike
singularity.

and appears in many other gravity-related contexts (BMS,
cosmology, etc) - Booming field !

It has also been studied quantum-mechanically - Henneaux,
Pilati, Teitelboim 1982.

A systematic expansion in powers of c remains to be more fully
investigated.

THANK YOU !
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