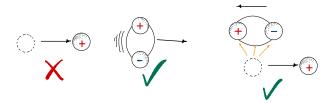
Fractons on curved spacetime

Based on 2111.03668 with L. Bidussi, J. Hartong, J. Musaeus and S. Prohazka

Emil Have



What are fractons?

- Fracton phases of matter characterised by immobile excitations [Chamon '04; Haah '11; Pretko '17]
- Immobility can be understood as a consequence of dipole moment conservation

$$0 = \dot{\vec{d}} = q\dot{\vec{x}} \Rightarrow \dot{\vec{x}} = 0$$

Has potential applications for self-correcting quantum memory
 [Hash '11]

The plan

- 1 Field theories with dipole symmetry
- 2 Aristotelian geometry
- 3 Fractons on Aristotelian geometry

Conserved dipole charge

- Consider a theory of a complex scalar Φ described by the action $S[\Phi]$
- If invariant under $\delta_{\alpha}\Phi=i\alpha\Phi$, Noether charge $Q_{(0)}$ given by

$$\delta_{lpha(t)}S[\Phi] = \int dt \, \dot{lpha}(t)Q_{(0)} = \int dt \int d^dx \, \delta_{lpha(t)}[ext{kin. term}]
onumber \ = \int dt \, \dot{lpha}(t) \int d^dx \,
ho$$

ullet Conserved dipole charge $Q^i_{(2)}=\int d^dx\,x^i
ho$ corresponds to the global symmetry

$$\delta_{\beta}\Phi = i\beta_i x^i \Phi$$

Field theories with (linear) dipole symmetry

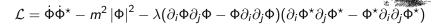
- Dipole symmetry strongly constrains terms with spatial derivatives, e.g., $\partial_i \Phi \partial_i \Phi^*$ not allowed
- Can classify Lagrangians $\mathcal{L}[\Phi, \dot{\Phi}, \partial_i \Phi, \partial_i \partial_j \Phi, \text{c.c.}]$ with the symmetry $\delta \Phi = i(\alpha + \beta_i x^i)\Phi$ amounts to

$$\delta \mathcal{L} = (\alpha + \beta_k x^k) \left[i \Phi \frac{\partial \mathcal{L}}{\partial \Phi} + i \dot{\Phi} \frac{\partial \mathcal{L}}{\partial \dot{\Phi}} + i \partial_i \Phi \frac{\partial \mathcal{L}}{\partial \partial_i \Phi} + i \partial_i \partial_j \Phi \frac{\partial \mathcal{L}}{\partial \partial_i \partial_j \Phi} + \text{c.c.} \right]$$
$$+ \beta_i \left[i \Phi \frac{\partial \mathcal{L}}{\partial (\partial_i \Phi)} + 2i \partial_j \Phi \frac{\partial \mathcal{L}}{\partial (\partial_i \partial_j \Phi)} + \text{c.c.} \right] = 0$$

In particular includes the archetypical fracton Lagrangian

$$\mathcal{L} = \dot{\Phi}\dot{\Phi}^{\star} - m^2 |\Phi|^2 - \lambda(\partial_i \Phi \partial_j \Phi - \Phi \partial_i \partial_j \Phi)(\partial_i \Phi^{\star} \partial_j \Phi^{\star} - \Phi^{\star} \partial_i \partial_j \Phi^{\star})$$

⇒ non-Gaussian



[Pretko '18]

Symmetry algebra

The Lagrangian

is invariant under rotations, spacetime translations and $\delta \Phi = i(\alpha + \beta_i x^i) \Phi$. The charge algebra is

$$\{M_{ij}, M_{kl}\} = -4\delta_{[k[i}M_{j]l]}$$
 $\{M_{jk}, P_i\} = -2\delta_{i[j}P_{k]}$

$$\{P_i, Q_j^{(2)}\} = \delta_{ij} Q^{(0)}$$
 $\{M_{jk}, Q_i^{(2)}\} = -2\delta_{i[j} Q_{k]}^{(2)}$

Gauging the dipole symmetry

- We want our Lagrangian to be invariant under gauge transformations of the form $\delta_{\Lambda}\Phi=i\Lambda(x,t)\Phi$
- Introduce symmetric tensor gauge field and a scalar gauge field with the gauge transformations [Pretko '19]

$$\delta_{\Lambda}A_{ij} = \partial_i\partial_j\Lambda(x,t), \qquad \delta_{\Lambda}\phi = \dot{\Lambda}(x,t)$$

Leads to gauge invariant Lagrangian

$$\begin{split} \mathcal{L} &= (\partial_t \Phi - i\phi \Phi)(\partial_t \Phi^* + i\phi \Phi^*) - m^2 \left| \Phi \right|^2 \\ &- \lambda (\partial_i \Phi \partial_j \Phi - \Phi \partial_i \partial_j \Phi + iA_{ij} \Phi^2)(\partial_i \Phi^* \partial_j \Phi^* - \Phi^* \partial_i \partial_j \Phi^* - iA_{ij} \Phi^{*2}) \end{split}$$

 These can be made dynamical, but will remain background fields for us

Aristotelian geometry

- Aristostelian geometry describes abolute time and space [Penrose '68; de Boer et al. '20]
- The geometric data consists of $(au_{\mu}, v^{\mu}, h_{\mu\nu}, h^{\mu\nu})$, satisfying

$$\label{eq:tau_energy} \mathsf{v}^\mu \tau_\mu = -1 \,, \qquad \delta^\mu_\nu = -\mathsf{v}^\mu \tau_\nu + \mathsf{h}^{\mu\rho} \mathsf{h}_{\rho\nu}$$

• Minimal "metric compatibility" of affine connection ∇ with components

$$\Gamma^{\rho}_{\mu\nu} = -v^{\rho}\partial_{\mu}\tau_{\nu} + \frac{1}{2}h^{\rho\lambda}\left(\partial_{\mu}h_{\lambda\nu} + \partial_{\nu}h_{\lambda\mu} - \partial_{\lambda}h_{\mu\nu}\right) - h^{\rho\lambda}\tau_{\nu}K_{\mu\lambda}$$

• Simplifying assumption: vanishing intrinsic torsion [Figueroa-O'Farrill '20]

$$(d\tau)_{\mu\nu} = 0$$
, $-\frac{1}{2}\mathcal{L}_{\nu}h_{\mu\nu} =: K_{\mu\nu} = 0$

Field theory on Aristotelian backgrounds

General variation of action $S[\Phi; \tau, h_{\mu\nu}]$

$$\delta \mathcal{S} = \int \mathsf{d}^{d+1} \mathsf{x} \; \mathsf{e} igg(egin{array}{ccc} m{T}^{\mu} & \delta au_{\mu} + rac{1}{2} & m{T}^{\mu
u} & \delta h_{\mu
u} + m{\mathcal{E}}_{m{\Phi}} \; \delta m{\Phi} igg) \end{array}$$

- Energy current
- Momentum-stress tensor
- E-L eq. for Φ

Energy-momentum tensor given by [de Boer et al. '20]

$$T^{\mu}{}_{\nu} = -T^{\mu}\tau_{\nu} + T^{\mu\rho}h_{\rho\nu}$$

Reparameterisation Ward identity tells us that

$$abla_{\mu} T^{\mu}{}_{
u} + \mathsf{torsion} = 0$$

Complex scalar theory on curved spacetime

$$\mathcal{L} = (\partial_t \Phi - i\phi \Phi)(\partial_t \Phi^* + i\phi \Phi^*) - m^2 |\Phi|^2 - \lambda(\partial_i \Phi \partial_j \Phi - \Phi \partial_i \partial_j \Phi + iA_{ij} \Phi^2)(\partial_i \Phi^* \partial_j \Phi^* - \Phi^* \partial_i \partial_j \Phi^* - iA_{ij} \Phi^{*2})$$

Introduce the curved space field $A_{\mu\nu}$ satisfying $v^\mu A_{\mu\nu}=0$ and ϕ transforming as

$$\delta A_{\mu\nu}=P^{
ho}_{\mu}P^{\sigma}_{
u}
abla_{
ho}\partial_{\sigma}\Lambda\,,\qquad \delta\phi=-v^{\mu}\partial_{\mu}\Lambda$$
 with $P^{\mu}_{
u}=h^{\mu
ho}h_{
ho
u}=\delta^{\mu}_{
u}+v^{\mu} au_{
u}$

$$\mathcal{L} = (-v^{\mu}\partial_{\mu}\Phi - i\phi\Phi)(-v^{\mu}\partial_{\mu}\Phi^{*} + i\phi\Phi^{*}) - m^{2}|\Phi|^{2}$$
$$-h^{\mu\nu}h^{\rho\sigma}\lambda(\partial_{\mu}\Phi\partial_{\nu}\Phi - \Phi\partial_{\mu}\partial_{\nu}\Phi + iA_{\mu\nu}\Phi^{2})(\partial_{\rho}\Phi^{*}\partial_{\sigma}\Phi^{*} - \Phi^{*}\partial_{\rho}\partial_{\sigma}\Phi^{*} - iA_{\rho\sigma}\Phi^{*2})$$

Outlook

- We have shown how to couple "fractonic" theories to curved spacetime
- A derivation of the scalar field theory from a lattice description is still lacking
- Fracton fluids using geometric methods
- ...and much more!

THANK YOU FOR YOUR ATTENTION