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Energy for locally asymptotically hyperbolic manifolds
space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)
The energy-momentum vector of conformally compact
n-dimensional asymptotically locally hyperbolic manifolds
(M,g) with spherical infinity and with scalar curvature R(g)
satisfying R(g) ≥ −n(n − 1), n ≥ 3, is timelike future-pointing or
vanishes.

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)
The energy-momentum vector of conformally compact
n-dimensional asymptotically locally hyperbolic manifolds
(M,g) with spherical infinity and with scalar curvature R(g)
satisfying R(g) ≥ −n(n − 1), n ≥ 3, is timelike future-pointing or
lightlike future-pointing, or vanishes.

1 Known since 2001 for spin manifolds by Witten-type
methods (Wang, PTC-Herzlich).

2 Different story if topology at infinity is not spherical.
3 Huang, Jang, Martin (2019): lightlike cannot occur
4 if n ≥ 7, needs the higher-dimensional asymptotically flat

positive energy theorem (Lohkamp, Schoen & Yau)
5
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)
The energy-momentum vector of conformally compact
n-dimensional asymptotically locally hyperbolic manifolds
(M,g) with spherical infinity and with scalar curvature R(g)
satisfying R(g) ≥ −n(n − 1), n ≥ 3, is timelike future-pointing //or
/////////lightlike////////////////////future-pointing, or vanishes.

1 Known since 2001 for spin manifolds by Witten-type
methods (Wang, PTC-Herzlich).

2 Different story if topology at infinity is not spherical.
3 Huang, Jang, Martin (2019): lightlike cannot occur
4 if n ≥ 7, needs the higher-dimensional asymptotically flat

positive energy theorem (Lohkamp, Schoen & Yau)
5 key idea: the “Maskit gluing” by Isenberg, Lee & Stavrov

(2010)
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)
The energy-momentum vector of conformally compact
n-dimensional asymptotically locally hyperbolic manifolds
(M,g) with spherical infinity and with scalar curvature R(g)
satisfying R(g) ≥ −n(n − 1), n ≥ 3, is timelike future-pointing //or
/////////lightlike////////////////////future-pointing, or vanishes.

1 Known since 2001 for spin manifolds by Witten-type
methods (Wang, PTC-Herzlich).

2 Different story if topology at infinity is not spherical.
3 Huang, Jang, Martin (2019): lightlike cannot occur
4 if n ≥ 7, needs the higher-dimensional asymptotically flat

positive energy theorem (Lohkamp, Schoen & Yau)
5 Generalises to many ends and boundaries with H < n − 1

(PTC, Galloway, 2107.05603 [gr-qc])
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Locally asymptotically hyperbolic manifolds with
negative mass
space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with scalar
curvature R(g) satisfying

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass
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Locally asymptotically hyperbolic manifolds with
negative mass
space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with scalar
curvature R(g) satisfying

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass

the metric approaches a hyperbolic metric at large distances;
in dim 3 ≡ “asymptotically Birmingham-Kottler”
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Locally asymptotically hyperbolic manifolds with
negative mass
space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with scalar
curvature R(g) satisfying

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass

no interior boundary, only a boundary at infinity
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Locally asymptotically hyperbolic manifolds with
negative mass
space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with scalar
curvature R(g) satisfying

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass

no interior boundary, only a boundary at infinity
previously: either a black hole boundary, or two infinities after
doubling across the boundary
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Locally asymptotically hyperbolic manifolds with
negative mass
space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with scalar
curvature R(g) satisfying

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass

time-symmetric vacuum general relativistic initial data with
suitably normalised negative cosmological constant
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Locally asymptotically hyperbolic manifolds with
negative mass
space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with scalar
curvature R(g) satisfying

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass

previously: quotients of spheres, or tori
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Locally asymptotically hyperbolic manifolds with
negative mass
space-dimension 3

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)
There exist 3-dimensional conformally compact asymptotically
locally hyperbolic Riemannian manifolds (M,g) with scalar
curvature R(g) satisfying

R(g) = −6 ,

with connected conformal boundary at infinity with arbitrarily
high genus and with negative total mass

not clear how to generalise this to higher dims
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Energy for asymptotically hyperbolic manifolds
Why should we care?

Asymptotically hyperbolic manifolds are ubiquitous in
nowadays theoretical physics (supergravities, string theory,
holography, CFT/AdS).
They appear naturally as spacelike hypersurfaces in
solutions of Einstein equations, with or without a
cosmological constant Λ:
hyperbolic space itself occurs as a “static slice” of the
Anti-de Sitter spacetime (Λ < 0), or as a hyperboloid in
Minkowski spacetime Λ = 0.
Interesting mathematical problem anyway
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P.T. Chruściel Maskit gluing and hyperbolic mass



Model metrics: Kottler-Birmingham metrics
Static vacuum solutions of Einstein equations with a negative cosmological constant

gm = −V 2
mdt2 + V−2

m dr2 + r2hκ , V 2
m = r2 + κ− 2m

rn−2 .

where hκ is a t- and r -independent Einstein metric on a
(n − 1)-dim compact manifold, with scalar curvature
R(h) = (n − 1)(n − 2)κ.

The mass of gm relative to g := g0 is proportional to m
The metrics with m ̸= 0 are singular unless the Vm’s have
positive zeros, which then correspond to black hole
horizons
asymptotically BK is the same as locally asymptotically
hyperbolic in space-dimension 3
and is a special case of locally asymptotically hyperbolic in
higher dimensions
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Horowitz-Myers Instantons

Woolgar’s version of the Horowitz-Myers conjecture

gm = −V 2
mdt2///////// V 2

mdθ2+V−2
m dr2+r2(dθ2////−dt2+h′

0) , V 2
m = r2+κ///− 2m

rn−2 .

where h′
0 is a t-, θ-, and r -independent Ricci flat metric on a

(n − 3)-dim compact manifold.

For m > 0 the zero-sets of Vm are smooth totally-geodesic
submanifolds (“core geodesics” in n = 3) when the period
of θ is appropriately chosen, depending upon m.
conformal infinity changes if m changes at h′

0 fixed
The mass relative to g0 can be arbitrarily negative,
proportional to the negative of m.
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Horowitz-Myers Instantons
Woolgar’s version of the Horowitz-Myers conjecture

gm =

−V 2
mdt2/////////

V 2
mdθ2+V−2

m dr2+r2(

dθ2////

−dt2+h′
0) , V 2

m = r2

+κ///

− 2m
rn−2 .

where h′
0 is a t-, θ-, and r -independent Ricci flat metric on a

(n − 3)-dim compact manifold.
For m > 0 the zero-sets of Vm are smooth totally-geodesic
submanifolds (“core geodesics” in n = 3) when the period
of θ is appropriately chosen, depending upon m.
conformal infinity changes if m changes at h′

0 fixed
The mass relative to g0 can be arbitrarily negative,
proportional to the negative of m.
Horowitz-Myers conjecture: these are minima of energy at
prescribed conformal structure at infinity.
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Idea: use “gluing at infinity”
“Maskit gluing”

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay,
arXiv:1511.07858)
Given two asymptotically hyperbolic manifolds with constant
scalar curvature (or general relativistic vacuum initial data sets)
one can construct a new one by making a connected sum at
the conformal boundary at infinity. The construction can be
localised by a Carlotto-Schoen type hyperbolic gluing.
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Idea: use “gluing at infinity”
“Maskit gluing”

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay,
arXiv:1511.07858)
Given two asymptotically hyperbolic manifolds with constant
scalar curvature (or general relativistic vacuum initial data sets)
one can construct a new one by making a connected sum at
the conformal boundary at infinity. The construction can be
localised by a Carlotto-Schoen type hyperbolic gluing.

Question: What is the energy-momentum of the new initial data
set?
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How to define mass
Spacetime methods

1 Spacetime variational methods: “Noether charge” à la
Wald (∼ 1990) ≡ geometric Hamiltonian methods à la
Kijowski-Tulczyjew (1979)

2 A convenient geometric formula for total energy E :
if g approaches a Kottler-Birmingham metric with m = 0

E = − 1
16(n − 2)π

lim
R→∞

∫
r=R

DjV (Ri
j −

R
n
δi

j )dSi .

where Ri
j is the Ricci tensor of g and

V =
√

r2 + κ , κ ∈ {0,±1} . (∗∗)
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Idea: glue together two HM metrics at infinity

Theorem ( PTC, Delay, arXiv:1511.07858)
Given two ALH manifolds with constant scalar curvature (or
general relativistic vacuum initial data sets) one can construct a
new one by making a localised connected sum at the conformal
boundary at infinity.

glue
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Positive energy for asymptotically hyperbolic manifolds
Energy-momentum vector and localised Maskit gluing

glue−→

boost−→

boost−→ glue−→
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Energy-momentum vector and localised Maskit gluing
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Now energy-mometum is obviously additive

p(µ) = − 1
16(n − 2)π

lim
R→∞

∫
r=R

DjV(µ) (Ri
j −

R
n
δi

j )dSi .

where
V(0) =

√
r2 + 1 , V(i) = x i .
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Carlotto-Schoen type gluing, toroidal infinity

zoom
∂U1,ε

∂U1,2ε

∂M1

the metric is exactly hyperbolic inside the red half-ball
the boundary of the red half-ball is totally geodesic
the hyperbolic metric extends smoothly when any two such
boundaries touch

glue

the initial mass is defined with respect to a toroidal BK
metric; the final one with respect to a genus-two BK metric!
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P.T. Chruściel Maskit gluing and hyperbolic mass



Carlotto-Schoen type gluing, toroidal infinity

zoom
∂U1,ε

∂U1,2ε

∂M1

the metric is exactly hyperbolic inside the red half-ball
the boundary of the red half-ball is totally geodesic
the hyperbolic metric extends smoothly when any two such
boundaries touch

glue

the initial mass is defined with respect to a toroidal BK
metric; the final one with respect to a genus-two BK metric!
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Mass formula

initial toroidal background: b =
dr2

r2 + r2 (dθ2 + dφ2)︸ ︷︷ ︸
=:h0

final genus-two background:

b̄ =
dr̄2

r̄2 − 1
+ r̄2 (d θ̄2 + cosh2 θ̄dφ̄2)︸ ︷︷ ︸

=:h−1
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b̄ =
dr̄2

r̄2 − 1
+ r̄2 (d θ̄2 + cosh2 θ̄dφ̄2)︸ ︷︷ ︸

=:h−1

on each half of the glued manifold, h−1 is conformal to h0:

h−1 = eωh0
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Mass formula

initial toroidal background: b =
dr2

r2 + r2 (dθ2 + dφ2)︸ ︷︷ ︸
=:h0

final genus-two background:

b̄ =
dr̄2

r̄2 − 1
+ r̄2 (d θ̄2 + cosh2 θ̄dφ̄2)︸ ︷︷ ︸

=:h−1

on each half of the glued manifold, h−1 is conformal to h0:

h−1 = eωh0

the initial mass is defined with respect to b; the final one
with respect to b̄
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Mass formula

initial toroidal background: b =
dr2

r2 + r2 (dθ2 + dφ2)︸ ︷︷ ︸
=:h0

final genus-two background:

b̄ =
dr̄2

r̄2 − 1
+ r̄2 (d θ̄2 + cosh2 θ̄dφ̄2)︸ ︷︷ ︸

=:h−1

on each half of the glued manifold, h−1 is conformal to h0:

h−1 = eωh0

a calculation gives: r̄ = e−ω/2r+ lower order terms
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Mass formula

initial toroidal background: b =
dr2

r2 + r2 (dθ2 + dφ2)︸ ︷︷ ︸
=:h0

final genus-two background:

b̄ =
dr̄2

r̄2 − 1
+ r̄2 (d θ̄2 + cosh2 θ̄dφ̄2)︸ ︷︷ ︸

=:h−1

on each half of the glued manifold, h−1 is conformal to h0:

h−1 = eωh0

a calculation gives: r̄ = e−ω/2r+ lower order terms
mass of the initial torus

E = − 1
16π

lim
R→∞

∫
r=R

Dj r (Ri
j −

R
3
δi

j )dSi .
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a calculation gives: r̄ = e−ω/2r+ lower order terms
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E = − 1
16π

lim
R→∞

∫
r̄=R

Dj(
√

r̄2 − 1) (Ri
j −

R
3
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Mass formula

initial toroidal background: b =
dr2

r2 + r2 (dθ2 + dφ2)︸ ︷︷ ︸
=:h0

final genus-two background:

b̄ =
dr̄2

r̄2 − 1
+ r̄2 (d θ̄2 + cosh2 θ̄dφ̄2)︸ ︷︷ ︸

=:h−1

on each half of the glued manifold, h−1 is conformal to h0:

h−1 = eωh0

a calculation gives: r̄ = e−ω/2r+ lower order terms
mass of each half of the glued manifold

E = − 1
16π

lim
R→∞

∫
r̄=R

Dj(
√

r̄2 − 1) (Ri
j −

R
3
δi

j )dSi

= − 1
16π

lim
R→∞

∫
r=R

Dj(e−ω/2r) (Ri
j −

R
3
δi

j )dSi .
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Mass formula, space dimensions 3, somewhat more
generally:

Theorem
Let g be asymptotic to two backgrounds,

b =
dr2

r2 + κ
+ r2hκ and b̄ =

dr̄2

r̄2 + κ̄
+ r̄2hκ̄ , with hκ̄ = eωhκ .

Then

E = − 1
16π

lim
R→∞

∫
r=R

Dj r (Ri
j −

R
3
δi

j )dSi .

Ē = − 1
16π

lim
R→∞

∫
r=R

Dj(e−ω/2r) (Ri
j −

R
3
δi

j )dSi .
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Gluing torii

glue

mass of each half of the glued manifold

E = − 1
16π

lim
R→∞

∫
r=R

Dj(e−ω/2r) (Ri
j −

R
3
δi

j )dSi .
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Gluing torii

glue

mass of each half of the glued manifold

E = − 1
16π

lim
R→∞

∫
{r=R}×

(
T2\D(p,ϵ)

) Dj(e−ω/2r) (Ri
j −

R
3
δi

j )dSi .
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Gluing torii

glue

mass of each half of the glued manifold, ω depends on ϵ "

E = − 1
16π

lim
R→∞

∫
{r=R}×

(
T2\D(p,ϵ)

) Dj(e−ωϵ/2r) (Ri
j −

R
3
δi

j )dSi .
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Gluing torii, ϵ small needed

glue

mass of each half of the glued manifold, ω depends on ϵ "

E = − 1
16π

lim
R→∞

∫
{r=R}×

(
T2\D(p,ϵ)

) Dj(e−ωϵ/2r) (Ri
j −

R
3
δi

j )dSi .
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Gluing torii, limit ϵ → 0 needed

glue

mass of each half of the glued manifold, ω depends on ϵ "

E = − 1
16π

lim
R→∞

∫
{r=R}×

(
T2\D(p,ϵ)

) Dj(e−ωϵ/2r) (Ri
j −

R
3
δi

j )dSi .
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Taking the limit ϵ → 0

Theorem (PTC, E. Delay, R. Wutte)
When Maskit-gluing two Horowitz-Myers metrics with mass
parameter m, eωϵ tends to the conformal factor eω0 of a
punctured torus as ϵ tends to zero, with

Ē → − m
4π

∫
T2

e−ω0/2dµh0 < 0 (1)
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Taking the limit ϵ → 0

Theorem (PTC, E. Delay, R. Wutte)
When Maskit-gluing two Horowitz-Myers metrics with mass
parameter m, eωϵ tends to the conformal factor eω0 of a
punctured torus as ϵ tends to zero, with

Ē → − m
4π

∫
T2

e−ω0/2dµh0 < 0 (1)

It thus follows that the final mass is negative for ϵ small enough
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Taking the limit ϵ → 0

glue

Theorem (PTC, E. Delay, R. Wutte)
When Maskit-gluing two Horowitz-Myers metrics with mass
parameter m, eωϵ tends to the conformal factor eω0 of a
punctured torus as ϵ tends to zero, with

Ē → − m
4π

∫
T2

e−ω0/2dµh0 < 0 (1)

Probably follows from Wolpert, of from the Deligne-Mumford
compactification of the Teichmüller space ???
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Taking the limit ϵ → 0

glue

Theorem (PTC, E. Delay, R. Wutte)
When Maskit-gluing two Horowitz-Myers metrics with mass
parameter m, eωϵ tends to the conformal factor eω0 of a
punctured torus as ϵ tends to zero, with

Ē → − m
4π

∫
T2

e−ω0/2dµh0 < 0 (1)

The construction can be iterated
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Gluing with several punctures
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Gluing with several punctures
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“Topological instability at the conformal boundary”?

The above construction can be used to lower the total mass of
an ALH manifold by a localised deformation near the conformal
boundary at infinity, for geometries with very thin necks
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“Topological instability at the conformal boundary”?

The above construction can be used to lower the total mass of
an ALH manifold by a localised deformation near the conformal
boundary at infinity, for geometries with very thin necks
The existing higher-genus-inequalities, which include conditions
such as existence of a strictly negative mass aspect function
(Lee & Neves; Gibbons), or product topology (Galloway et al.),
cannot be improved without further conditions
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Conjectures:

glue

For any genus of the conformal boundary at infinity there
exists mc ≤ 0, depending only upon the conformal class of
conformal infinity, such that

E ≥ mc ,

with mc < 0 unless the boundary is spherical.
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Conjectures:

glue

For any genus of the conformal boundary at infinity there
exists mc ≤ 0, depending only upon the conformal class of
conformal infinity, such that

E ≥ mc ,

with mc < 0 unless the boundary is spherical.
mc is attained on a static metric.
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Hyperbolic mass, asymptotically Birmingham-Kottler
metrics
Conformally compact, with or without black-hole boundary

Negative mass solutions:
toroidal: Horowitz-Myers (1998)
quotients of a sphere: Clarkson & Mann (2006), dim 4+1
higher genus: PTC, Delay, Wutte (XII 2021), dim 3+1
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