Hyperbolic mass and Maskit gluings

Piotr T. Chruściel

University of Vienna

Vienna, February 2022

with Erwann Delay and Raphaela Wutte

P.T. Chruściel Maskit gluing and hyperbolic mass

臣

Energy for locally asymptotically hyperbolic manifolds space-dimension *n*

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact *n*-dimensional asymptotically locally hyperbolic manifolds (M, g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or vanishes.

Energy for locally asymptotically hyperbolic manifolds space-dimension *n*

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact *n*-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or vanishes.

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

A (1) > A (2) > A (2)

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or lightlike future-pointing, or vanishes.

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or lightlike future-pointing, or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Oifferent story if topology at infinity is not spherical.
- Huang, Jang, Martin (2019): lightlike cannot occur
- If n ≥ 7, needs the higher-dimensional asymptotically flat positive energy theorem (Lohkamp, Schoen & Yau)

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing or lightlike future-pointing, or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Oifferent story if topology at infinity is not spherical.
- Ituang, Jang, Martin (2019): lightlike cannot occur
- If $n \ge 7$, needs the higher-dimensional asymptotically flat positive energy theorem (Lohkamp, Schoen & Yau)

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing of *lightlike* future-pointing or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- Oifferent story if topology at infinity is not spherical.
- Ituang, Jang, Martin (2019): lightlike cannot occur
- If $n \ge 7$, needs the higher-dimensional asymptotically flat positive energy theorem (Lohkamp, Schoen & Yau)

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing of *lightlike future-pointing* or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- 2 Different story if topology at infinity is not spherical.
- Ituang, Jang, Martin (2019): lightlike cannot occur
- if $n \ge 7$, needs the higher-dimensional asymptotically flat positive energy theorem (Lohkamp, Schoen & Yau)

Positive energy for asymptotically hyperbolic manifolds

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing of *lightlike* future-pointing or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- ② Different story if topology at infinity is not spherical.
- Ituang, Jang, Martin (2019): lightlike cannot occur
- if $n \ge 7$, needs the higher-dimensional asymptotically flat positive energy theorem (Lohkamp, Schoen & Yau)
- key idea: the "Maskit gluing" by Isenberg, Lee & Stavrov (2010)

Positive energy for asymptotically hyperbolic manifolds

space-dimension n

Theorem (with E. Delay, arXiv:1901.05263)

The energy-momentum vector of conformally compact n-dimensional asymptotically locally hyperbolic manifolds (M,g) with spherical infinity and with scalar curvature R(g) satisfying $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future-pointing of *lightlike* future-pointing or vanishes.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, PTC-Herzlich).
- 2 Different story if topology at infinity is not spherical.
- Ituang, Jang, Martin (2019): lightlike cannot occur
- if $n \ge 7$, needs the higher-dimensional asymptotically flat positive energy theorem (Lohkamp, Schoen & Yau)
- Generalises to many ends and boundaries with H < n 1 (PTC, Galloway, 2107.05603 [gr-qc])

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

the metric approaches a hyperbolic metric at large distances;

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

the metric approaches a hyperbolic metric at large distances; in dim 3 \equiv "asymptotically Birmingham-Kottler"

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

no interior boundary, only a boundary at infinity

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

no interior boundary, only a boundary at infinity previously: either a black hole boundary, or two infinities after doubling across the boundary

< 日 > < 回 > < 回 > < 回 > < 回 > <

臣

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

time-symmetric vacuum general relativistic initial data with suitably normalised negative cosmological constant

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

previously: quotients of spheres, or tori

Theorem (with E. Delay and R. Wutte, arxiv:2112.00095)

There exist 3-dimensional conformally compact asymptotically locally hyperbolic Riemannian manifolds (M, g) with scalar curvature R(g) satisfying

$$R(g)=-6\,,$$

with connected conformal boundary at infinity with arbitrarily high genus and with negative total mass

not clear how to generalise this to higher dims

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ: hyperbolic space itself occurs as a *"static slice"* of the
 - Anti-de Sitter spacetime ($\Lambda < 0$), or as a *hyperboloid* in Minkowski spacetime $\Lambda = 0$.
- Interesting mathematical problem anyway

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ: hyperbolic space itself occurs as a *"static slice"* of the Anti-de Sitter spacetime (Λ < 0), or as a *hyperboloid* in Minkowski spacetime Λ = 0.
- Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:

hyperbolic space itself occurs as a *"static slice"* of the Anti-de Sitter spacetime ($\Lambda < 0$), or as a *hyperboloid* in Minkowski spacetime $\Lambda = 0$.

Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:
 hyperbolic space itself occurs as a *"static slice"* of the Anti-de Sitter spacetime (Λ < 0), or as a hyperboloid in Minkowski spacetime Λ = 0
- Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ:

hyperbolic space itself occurs as a *"static slice"* of the Anti-de Sitter spacetime ($\Lambda < 0$), or as a *hyperboloid* in Minkowski spacetime $\Lambda = 0$.

Interesting mathematical problem anyway

- Asymptotically hyperbolic manifolds are ubiquitous in nowadays theoretical physics (supergravities, string theory, holography, CFT/AdS).
- They appear naturally as spacelike hypersurfaces in solutions of Einstein equations, with or without a cosmological constant Λ: hyperbolic space itself occurs as a *"static slice"* of the Anti-de Sitter spacetime (Λ < 0), or as a *hyperboloid* in Minkowski spacetime Λ = 0.
- Interesting mathematical problem anyway

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

where h_{κ} is a *t*- and *r*-independent Einstein metric on a (n-1)-dim compact manifold, with scalar curvature $R(h) = (n-1)(n-2)\kappa$.

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

where h_{κ} is a *t*- and *r*-independent Einstein metric on a (n-1)-dim compact manifold, with scalar curvature $R(h) = (n-1)(n-2)\kappa$.

• The mass of \mathbf{g}_m relative to $\overline{\mathbf{g}} := \mathbf{g}_0$ is proportional to m

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

where h_{κ} is a *t*- and *r*-independent Einstein metric on a (n-1)-dim compact manifold, with scalar curvature $R(h) = (n-1)(n-2)\kappa$.

- The metrics with m ≠ 0 are singular unless the V_m's have positive zeros, which then correspond to black hole horizons

< 日 > < 回 > < 回 > < 回 > < 回 > <

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

where h_{κ} is a *t*- and *r*-independent Einstein metric on a (n-1)-dim compact manifold, with scalar curvature $R(h) = (n-1)(n-2)\kappa$.

- The mass of \mathbf{g}_m relative to $\overline{\mathbf{g}} := \mathbf{g}_0$ is proportional to m
- The metrics with m ≠ 0 are singular unless the V_m's have positive zeros, which then correspond to black hole horizons
- asymptotically BK is the same as locally asymptotically hyperbolic in space-dimension 3

< 日 > < 回 > < 回 > < 回 > < 回 > <

Static vacuum solutions of Einstein equations with a negative cosmological constant

$$\mathbf{g}_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_{\kappa}, \qquad V_m^2 = r^2 + \kappa - \frac{2m}{r^{n-2}}.$$

where h_{κ} is a *t*- and *r*-independent Einstein metric on a (n-1)-dim compact manifold, with scalar curvature $R(h) = (n-1)(n-2)\kappa$.

- The mass of \mathbf{g}_m relative to $\overline{\mathbf{g}} := \mathbf{g}_0$ is proportional to m
- The metrics with m ≠ 0 are singular unless the V_m's have positive zeros, which then correspond to black hole horizons
- asymptotically BK is the same as locally asymptotically hyperbolic in space-dimension 3
- and is a special case of locally asymptotically hyperbolic in higher dimensions

۲

$$\mathbf{g}_{m} = \# M_{m}^{2} / dt^{2} V_{m}^{2} d\theta^{2} + V_{m}^{-2} dr^{2} + r^{2} (d\theta^{2} - dt^{2} + h_{0}'), V_{m}^{2} = r^{2} \# k - \frac{2m}{r^{n-2}}$$

where h'_0 is a *t*-, θ -, and *r*-independent Ricci flat metric on a (n-3)-dim compact manifold.

臣

Horowitz-Myers Instantons

۲

$$\mathbf{g}_m = \mathbf{V}_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h_0'), \ V_m^2 = r^2 - \frac{2m}{r^{n-2}}$$

where h'_0 is a *t*-, θ -, and *r*-independent Ricci flat metric on a (n-3)-dim compact manifold.

臣

Horowitz-Myers Instantons

$$\mathbf{g}_m = \mathbf{V}_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h_0'), \ V_m^2 = r^2 - \frac{2m}{r^{n-2}}$$

where h'_0 is a *t*-, θ -, and *r*-independent Ricci flat metric on a (n-3)-dim compact manifold.

For *m* > 0 the zero-sets of *V_m* are smooth totally-geodesic submanifolds ("core geodesics" in *n* = 3) when the period of *θ* is appropriately chosen, depending upon *m*.

$$\mathbf{g}_m = \mathbf{V}_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h_0'), \ V_m^2 = r^2 - \frac{2m}{r^{n-2}}$$

where h'_0 is a *t*-, θ -, and *r*-independent Ricci flat metric on a (n-3)-dim compact manifold.

- For *m* > 0 the zero-sets of *V_m* are smooth totally-geodesic submanifolds ("core geodesics" in *n* = 3) when the period of *θ* is appropriately chosen, depending upon *m*.
- conformal infinity changes if m changes at h₀ fixed

$$\mathbf{g}_m = \mathbf{V}_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h_0'), \ V_m^2 = r^2 - \frac{2m}{r^{n-2}}$$

where h'_0 is a *t*-, θ -, and *r*-independent Ricci flat metric on a (n-3)-dim compact manifold.

- For *m* > 0 the zero-sets of *V_m* are smooth totally-geodesic submanifolds ("core geodesics" in *n* = 3) when the period of *θ* is appropriately chosen, depending upon *m*.
- conformal infinity changes if m changes at h₀ fixed
- The mass relative to **g**₀ can be arbitrarily negative, proportional to the negative of *m*.

۲

A (B) > A (B) > A (B) >

Horowitz-Myers Instantons

Woolgar's version of the Horowitz-Myers conjecture

$$\mathbf{g}_m = \frac{V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2}{r^2} \left(-\frac{dt^2}{r^2} + h_0' \right), \ V_m^2 = r^2 - \frac{2m}{r^{n-2}}$$

where h'_0 is a *t*-, θ -, and *r*-independent Ricci flat metric on a (n-3)-dim compact manifold.

- For *m* > 0 the zero-sets of *V_m* are smooth totally-geodesic submanifolds ("core geodesics" in *n* = 3) when the period of *θ* is appropriately chosen, depending upon *m*.
- conformal infinity changes if m changes at h₀ fixed
- The mass relative to **g**₀ can be arbitrarily negative, proportional to the negative of *m*.
- Horowitz-Myers conjecture: these are minima of energy at prescribed conformal structure at infinity.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Idea: use "gluing at infinity"

"Maskit gluing'

Theorem (Isenberg, Lee & Stavrov 2010, PC Delay

Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carloto-Schoen type hyperbolic gluing.
Idea: use "gluing at infinity"

"Maskit gluing'

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay

Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carloto-Schoen type hyperbolic gluing.

"Maskit gluing"

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay, arXiv:1511.07858)

Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

"Maskit gluing"

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay, arXiv:1511.07858)

Given two asymptotically hyperbolic manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

Question: What is the energy-momentum of the new initial data set?

How to define mass

Spacetime methods

Spacetime variational methods: "Noether charge" à la Wald (~ 1990) ≡ geometric Hamiltonian methods à la Kijowski-Tulczyjew (1979)

How to define mass

Spacetime methods

- Spacetime variational methods: "Noether charge" à la Wald (~ 1990) ≡ geometric Hamiltonian methods à la Kijowski-Tulczyjew (1979)
- A convenient geometric formula for total energy E: if g approaches a Kottler-Birmingham metric with m = 0

$$\boldsymbol{E} = -\frac{1}{16(n-2)\pi} \lim_{R \to \infty} \int_{r=R} D^j \boldsymbol{V} \left(\mathbf{R}^i_j - \frac{\mathbf{R}}{n} \delta^i_j \right) dS_j.$$

where \mathbf{R}^{i}_{j} is the Ricci tensor of g and

$$V = \sqrt{r^2 + \kappa}$$
, $\kappa \in \{0, \pm 1\}$. (**)

Theorem (PTC, Delay, arXiv:1511.07858)

Given two ALH manifolds with constant scalar curvature (or general relativistic vacuum initial data sets) one can construct a new one by making a localised connected sum at the conformal boundary at infinity.

Energy-momentum vector and localised Maskit gluing

P.T. Chruściel Maskit gluing and hyperbolic mass

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

E

Energy-momentum vector and localised Maskit gluing

P.T. Chruściel Maskit gluing and hyperbolic mass

□▶★■▶★■▶

臣

Energy-momentum vector and localised Maskit gluing

P.T. Chruściel Maskit gluing and hyperbolic mass

Energy-momentum vector and localised Maskit gluing

P.T. Chruściel Maskit gluing and hyperbolic mass

Now energy-mometum is obviously additive

$$\boldsymbol{p}_{(\mu)} = -\frac{1}{16(n-2)\pi} \lim_{R \to \infty} \int_{r=R} D^{j} V_{(\mu)} \left(\mathbf{R}^{i}_{j} - \frac{\mathbf{R}}{n} \delta^{i}_{j} \right) dS_{i}.$$

where

$$V_{(0)} = \sqrt{r^2 + 1}, \quad V_{(i)} = x^i.$$

< E > E

P.T. Chruściel Maskit gluing and hyperbolic mass

the metric is exactly hyperbolic inside the red half-ball

P.T. Chruściel Maskit gluing and hyperbolic mass

臣

- the metric is exactly hyperbolic inside the red half-ball
- the boundary of the red half-ball is totally geodesic

- the metric is exactly hyperbolic inside the red half-ball
- the boundary of the red half-ball is totally geodesic
- the hyperbolic metric extends smoothly when any two such boundaries touch

- the metric is exactly hyperbolic inside the red half-ball
- the boundary of the red half-ball is totally geodesic
- the hyperbolic metric extends smoothly when any two such boundaries touch

 the *initial mass* is defined with respect to a toroidal BK metric; the *final one* with respect to a genus-two BK metric!

• initial toroidal background:
$$b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$$

P.T. Chruściel Maskit gluing and hyperbolic mass

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 の Q @

• initial toroidal background:
$$b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$$

• final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2)}_{=:h_{-1}}$$

• initial toroidal background:
$$b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$$

• final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2)}_{=:h_{-1}}$$

on each half of the glued manifold, h₋₁ is conformal to h₀:

$$h_{-1} = e^{\omega} h_0$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

• initial toroidal background:
$$b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$$

• final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2)}_{=:h_{-1}}$$

• on each half of the glued manifold, h_{-1} is conformal to h_0 :

$$h_{-1} = e^{\omega} h_0$$

the *initial mass* is defined with respect to b; the *final one* with respect to b

• initial toroidal background:
$$b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$$

• final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2)}_{=:h_{-1}}$$

on each half of the glued manifold, h₋₁ is conformal to h₀:

$$h_{-1} = \frac{e^{\omega}h_0}{2}$$

• a calculation gives: $\bar{r} = e^{-\omega/2}r$ + lower order terms

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

• initial toroidal background:
$$b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$$

• final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2)}_{=:h_{-1}}$$

on each half of the glued manifold, h₋₁ is conformal to h₀:

$$h_{-1} = e^{\omega} h_0$$

- a calculation gives: $\bar{r} = e^{-\omega/2}r$ + lower order terms
- mass of the *initial* torus

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^{j} r \left(\mathbf{R}^{j} - \frac{\mathbf{R}}{3} \delta^{j}_{j} \right) dS_{j}.$$

• initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$

• final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2)}_{=:h_{-1}}$$

• on each half of the glued manifold, h_{-1} is conformal to h_0 :

$$h_{-1} = \frac{e^{\omega}h_0}{2}$$

- a calculation gives: $\bar{r} = e^{-\omega/2}r + \text{ lower order terms}$
- mass of each half of the glued manifold

$$\boldsymbol{\mathsf{E}} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\bar{r}=R} D^{j}(\sqrt{\bar{r}^{2}-1}) \left(\mathbf{R}^{i}_{j}-\frac{\mathbf{R}}{3}\delta^{i}_{j}\right) dS_{i}$$

- initial toroidal background: $b = \frac{dr^2}{r^2} + r^2 \underbrace{(d\theta^2 + d\varphi^2)}_{=:h_0}$
- final genus-two background:

$$\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 - 1} + \bar{r}^2 \underbrace{(d\bar{\theta}^2 + \cosh^2\bar{\theta}d\bar{\varphi}^2)}_{=:h_{-1}}$$

• on each half of the glued manifold, h_{-1} is conformal to h_0 :

$$h_{-1} = e^{\omega} h_0$$

- a calculation gives: $\bar{r} = e^{-\omega/2}r + \text{ lower order terms}$
- mass of each half of the glued manifold

$$= -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\overline{r}=R} D^{j}(\sqrt{\overline{r}^{2}-1}) \left(\mathbf{R}^{i}_{j} - \frac{\mathbf{R}}{3} \delta^{i}_{j} \right) dS_{i}$$

$$= -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^{j}(e^{-\omega/2}r) \left(\mathbf{R}^{i}_{j} - \frac{\mathbf{R}}{3} \delta^{i}_{j} \right) dS_{i} .$$

Mass formula, space dimensions 3, somewhat more generally:

Theorem

Let g be asymptotic to two backgrounds,

$$b = \frac{dr^2}{r^2 + \kappa} + r^2 h_{\kappa}$$
 and $\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 + \bar{\kappa}} + \bar{r}^2 h_{\bar{\kappa}}$, with $h_{\bar{\kappa}} = e^{\omega} h_{\kappa}$.
Then

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j r \left(\boldsymbol{R}^j_{\ j} - \frac{\boldsymbol{R}}{3} \delta^j_j \right) dS_j.$$

$$\overline{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^{j}(e^{-\omega/2}r) \left(R^{i}_{j} - \frac{R}{3}\delta^{i}_{j}\right) dS_{i}.$$

・ロ・ ・ 四・ ・ 回・ ・ 日・

E

Mass formula, space dimensions 3, somewhat more generally:

Theorem

Let g be asymptotic to two backgrounds ???,

$$b = \frac{dr^2}{r^2 + \kappa} + r^2 h_{\kappa}$$
 and $\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 + \bar{\kappa}} + \bar{r}^2 h_{\bar{\kappa}}$, with $h_{\bar{\kappa}} = e^{\omega} h_{\kappa}$.
Then

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^{j} r \left(\boldsymbol{R}^{j}_{j} - \frac{\boldsymbol{R}}{3} \delta^{j}_{j} \right) dS_{j}.$$

$$\overline{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j (e^{-\omega/2} r) \left(R^i_j - \frac{R}{3} \delta^i_j \right) dS_j.$$

E

Mass formula, space dimensions 3, somewhat more generally:

Theorem

Let g be asymptotic to two backgrounds, $b = \frac{dr^2}{r^2 + \kappa} + r^2 h_{\kappa}$ and $\bar{b} = \frac{d\bar{r}^2}{\bar{r}^2 + \bar{\kappa}} + \bar{r}^2 h_{\bar{\kappa}}$, with $h_{\bar{\kappa}} = e^{\omega} h_{\kappa}$. Then

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j r \left(\boldsymbol{R}^j_{\ j} - \frac{\boldsymbol{R}}{3} \delta^j_j \right) dS_j.$$

$$\overline{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^j(e^{-\omega/2}r) \left(\frac{R^i}{j} - \frac{R}{3}\delta^j_j\right) dS_i.$$

Gluing torii

mass of each half of the glued manifold

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{r=R} D^{j}(\boldsymbol{e}^{-\omega/2}\boldsymbol{r}) \left(\boldsymbol{\mathsf{R}}^{i}_{j} - \frac{\boldsymbol{\mathsf{R}}}{3}\delta^{i}_{j}\right) d\boldsymbol{S}_{i}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Gluing torii

mass of each half of the glued manifold

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(\rho,\epsilon)\right)} D^j(\boldsymbol{e}^{-\omega/2}r) \left(\mathsf{R}^j_j - \frac{\mathsf{R}}{3}\delta^j_j\right) dS_j.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Gluing torii

• mass of each half of the glued manifold, ω depends on ϵ A

$$\boldsymbol{\mathsf{E}} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(\rho,\epsilon)\right)} D^j(\boldsymbol{e}^{-\omega_{\epsilon}/2}r) \left(\mathsf{R}^i_{\ j} - \frac{\mathsf{R}}{3}\delta^i_j\right) dS_j.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Gluing torii, c small needed

• mass of each half of the glued manifold, ω depends on ϵ A

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(p,\epsilon)\right)} D^j(\boldsymbol{e}^{-\omega_{\epsilon}/2}r) \left(\mathsf{R}^i_{\ j} - \frac{\mathsf{R}}{3}\delta^j_j\right) dS_j.$$

Gluing torii, limit $\epsilon \rightarrow 0$ needed

• mass of each half of the glued manifold, ω depends on ϵ \wedge

$$\boldsymbol{E} = -\frac{1}{16\pi} \lim_{R \to \infty} \int_{\{r=R\} \times \left(\mathbb{T}^2 \setminus D(p,\epsilon)\right)} D^j(\boldsymbol{e}^{-\omega_{\epsilon}/2}r) \left(\mathsf{R}^i_{\ j} - \frac{\mathsf{R}}{3}\delta^j_j\right) dS_j.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (PTC, E. Delay, R. Wutte)

When Maskit-gluing two Horowitz-Myers metrics with mass parameter m, $e^{\omega_{\epsilon}}$ tends to the conformal factor $e^{\omega_{0}}$ of a punctured torus as ϵ tends to zero, with

$$\bar{\boldsymbol{E}} \to -\frac{m}{4\pi} \int_{\mathbb{T}^2} \boldsymbol{e}^{-\omega_0/2} d\mu_{h_0} < 0 \tag{1}$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Theorem (PTC, E. Delay, R. Wutte)

When Maskit-gluing two Horowitz-Myers metrics with mass parameter m, $e^{\omega_{\epsilon}}$ tends to the conformal factor $e^{\omega_{0}}$ of a punctured torus as ϵ tends to zero, with

$$\bar{\boldsymbol{E}} \to -\frac{m}{4\pi} \int_{\mathbb{T}^2} \boldsymbol{e}^{-\omega_0/2} d\mu_{h_0} < 0 \tag{1}$$

It thus follows that the final mass is negative for ϵ small enough

・ロ・ ・ 四・ ・ 回・ ・ 日・

Theorem (PTC, E. Delay, R. Wutte)

When Maskit-gluing two Horowitz-Myers metrics with mass parameter m, $e^{\omega_{\epsilon}}$ tends to the conformal factor $e^{\omega_{0}}$ of a punctured torus as ϵ tends to zero, with

$$\bar{\boldsymbol{E}} \to -\frac{m}{4\pi} \int_{\mathbb{T}^2} \boldsymbol{e}^{-\omega_0/2} d\mu_{h_0} < 0 \tag{1}$$

Probably follows from Wolpert, of from the Deligne-Mumford compactification of the Teichmüller space ???

Theorem (PTC, E. Delay, R. Wutte)

When Maskit-gluing two Horowitz-Myers metrics with mass parameter m, $e^{\omega_{\epsilon}}$ tends to the conformal factor $e^{\omega_{0}}$ of a punctured torus as ϵ tends to zero, with

$$\bar{\boldsymbol{E}} \to -\frac{m}{4\pi} \int_{\mathbb{T}^2} \boldsymbol{e}^{-\omega_0/2} d\mu_{h_0} < 0 \tag{1}$$

The construction can be iterated

臣
Gluing with several punctures

P.T. Chruściel Maskit gluing and hyperbolic mass

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Gluing with several punctures

P.T. Chruściel Maskit gluing and hyperbolic mass

"Topological instability at the conformal boundary"?

The above construction can be used to lower the total mass of an ALH manifold by a localised deformation near the conformal boundary at infinity, *for geometries with very thin necks*

"Topological instability at the conformal boundary"?

The above construction can be used to lower the total mass of an ALH manifold by a localised deformation near the conformal boundary at infinity, *for geometries with very thin necks* The existing higher-genus-inequalities, which include conditions such as *existence of a strictly negative mass aspect function* (Lee & Neves; Gibbons), or *product topology* (Galloway et al.), cannot be improved without further conditions

Conjectures:

 For any genus of the conformal boundary at infinity there exists m_c ≤ 0, depending only upon the conformal class of conformal infinity, such that

$$E \geq m_c$$
,

with $m_c < 0$ unless the boundary is spherical.

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Conjectures:

 For any genus of the conformal boundary at infinity there exists m_c ≤ 0, depending only upon the conformal class of conformal infinity, such that

$$E \geq m_c$$
,

with $m_c < 0$ unless the boundary is spherical.

• *m_c* is attained on a static metric.

Conformally compact, with or without black-hole boundary

P.T. Chruściel Maskit gluing and hyperbolic mass

Conformally compact, with or without black-hole boundary

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Conformally compact, with or without black-hole boundary

Negative mass solutions:

• toroidal: Horowitz-Myers (1998)

Conformally compact, with or without black-hole boundary

Negative mass solutions:

- toroidal: Horowitz-Myers (1998)
- quotients of a sphere: Clarkson & Mann (2006), dim 4+1

・ロト ・雪 ・ ・ ヨ ・

Conformally compact, with or without black-hole boundary

Negative mass solutions:

- toroidal: Horowitz-Myers (1998)
- quotients of a sphere: Clarkson & Mann (2006), dim 4+1
- higher genus: PTC, Delay, Wutte (XII 2021), dim 3+1