Gravity in Flatland Black holes in lower dimensions

Daniel Grumiller

Institute for Theoretical Physics TU Wien

Colloquium, U. Würzburg, November 2019

"O day and night, but this is wondrous strange"

Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Black holes hide key secrets to Nature Seeing is believing...

Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

► IR (classical gravity)

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries

Take-away slogan

Equivalence principle needs modification

► IR (classical gravity)

- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates

Take-away homework

Find 'hydrogen-atom' of quantum gravity

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates
- UV/IR (holography)

See book by Erdmenger or lecture notes 1807.09872

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates
- UV/IR (holography)
 - AdS/CFT and applications (see Erdmenger, Meyer and collaborators)
 - precision holography
 - generality of holography

Take-away question(s)

(When) is quantum gravity in D + 1 dimensions equivalent to (which) quantum field theory in D dimensions?

► IR (classical gravity)

- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates

UV/IR (holography)

- AdS/CFT and applications (see Erdmenger, Meyer and collaborators)
- precision holography
- generality of holography
 - all issues above can be addressed in lower dimensions
 - Iower dimensions technically simpler
 - hope to resolve conceptual problems

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)

Caveat: just counting tensor components can be misleading as measure of complexity

Example: large D limit actually simple for some problems (Emparan et al.)

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- ▶ 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- ▶ 1D: 0 (space or time but not both \Rightarrow no lightcones)

Apply as mantra the slogan "as simple as possible, but not simpler"

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- ▶ 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
 - 2D: lowest dimension exhibiting black holes (BHs)
 - Simplest gravitational theories with BHs in 2D
 - No Einstein gravity

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- ▶ 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
 - 2D: lowest dimension exhibiting black holes (BHs)
 - Simplest gravitational theories with BHs in 2D
 - No Einstein gravity
 - ► 3D: lowest dimension exhibiting **BHs** and gravitons
 - Simplest gravitational theories with BHs and gravitons in 3D
 - Lowest dimension for Einstein gravity (BHs but no gravitons)

Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Spectrum of BTZ **black holes** and related physical states Could this **black hole** be the 'hydrogen atom' for quantum gravity?

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda = -1/\ell^2$)

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of \mathcal{M} , e.g. cylinder

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2)$

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of $\ensuremath{\mathcal{M}}$, e.g. cylinder Main features:

no local physical degrees of freedom

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2)$

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of $\ensuremath{\mathcal{M}}$, e.g. cylinder Main features:

no local physical degrees of freedom

all solutions locally and asymptotically AdS₃

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda = -1/\ell^2$) Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS₃
- rotating (BTZ) black hole solutions analogous to Kerr

$$\mathrm{d}s^2 = -\frac{(r^2 - r_+^2)(r^2 - r_-^2)}{\ell^2 r^2} \, \mathrm{d}t^2 + \frac{\ell^2 r^2 \, \mathrm{d}r^2}{(r^2 - r_+^2)(r^2 - r_-^2)} + r^2 \left(\,\mathrm{d}\varphi - \frac{r_+ r_-}{\ell r^2} \, \mathrm{d}t \right)^2$$

t: time,
$$\varphi \sim \varphi + 2\pi$$
: angular coordinate, r: radial coordinate
 $r \rightarrow \infty$: asymptotic region
 $r \rightarrow r_+ \geq r_-$: **black hole** horizon
 $r \rightarrow r_- \geq 0$: inner horizon
 $r_+ \rightarrow r_- > 0$: extremal BTZ
 $r_- \rightarrow 0$: non-rotating BTZ

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2)$ Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS₃
- rotating (BTZ) black hole solutions analogous to Kerr

$$\mathrm{d}s^{2} = -\frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}} \,\mathrm{d}t^{2} + \frac{\ell^{2}r^{2}\,\mathrm{d}r^{2}}{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})} + r^{2}\left(\,\mathrm{d}\varphi - \frac{r_{+}r_{-}}{\ell r^{2}}\,\mathrm{d}t\right)^{2}$$

 \blacktriangleright conserved mass $M=(r_+^2+r_-^2)/\ell^2$ and angular mom. $J=2r_+r_-/\ell$

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda = -1/\ell^2$) Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS₃
- rotating (BTZ) black hole solutions analogous to Kerr

$$\mathrm{d}s^{2} = -\frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}} \,\mathrm{d}t^{2} + \frac{\ell^{2}r^{2}\,\mathrm{d}r^{2}}{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})} + r^{2}\left(\,\mathrm{d}\varphi - \frac{r_{+}r_{-}}{\ell r^{2}}\,\mathrm{d}t\right)^{2}$$

conserved mass $M = (r_+^2 + r_-^2)/\ell^2$ and angular mom. $J = 2r_+r_-/\ell$

Bekenstein–Hawking entropy

$$S_{\rm BH} = \frac{A}{4G} = \frac{\pi r_+}{2G}$$

Hawking–Unruh temperature: $T=(r_+^2-r_-^2)/(2\pi r_+\ell^2)$

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda = -1/\ell^2$)

Choice of boundary conditions

Crucial to define theory — yields spectrum of 'edge states' Pick whatever suits best to describe relevant physics

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda = -1/\ell^2$)

Choice of boundary conditions

Crucial to define theory — yields spectrum of 'edge states' Pick whatever suits best to describe relevant physics

Goal: understand holography beyond AdS/CFTExplain first in general how edge states emerge

Science is a differential equation. Religion is a boundary condition. — Alan Turing

Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries
- Choice of boundary conditions determines asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate r_b : value of *r* at boundary (could be ∞)

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, \boldsymbol{x}^i) = \bar{g}_{\mu\nu}(r_b, \boldsymbol{x}^i) + \delta g_{\mu\nu}(r_b, \boldsymbol{x}^i)$$

r: some convenient ("radial") coordinate

- r_b : value of r at boundary (could be ∞)
- x^i : remaining coordinates ("boundary" coordinates)

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

- r_b : value of r at boundary (could be ∞)
- x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

Asymptotic symmetries in gravity

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \overline{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

- x^i : remaining coordinates
- $g_{\mu\nu}$: metric compatible with bc's
- $\bar{g}_{\mu\nu}$: (asymptotic) background metric

Asymptotic symmetries in gravity

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

 $\delta g_{\mu\nu}$: fluctuations permitted by bc's

Asymptotic symmetries in gravity

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

- r_b : value of r at boundary (could be ∞)
- x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

 $\delta g_{\mu\nu}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

 $\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

Asymptotic symmetries in gravity — modification of equivalence principle

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

- r: some convenient ("radial") coordinate
- $r_b:$ value of r at boundary (could be $\infty)$
- x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

 $\delta g_{\mu
u}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

$$\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

typically, Killing vectors can be expanded radially

 $\xi^{\mu}(r_b, x^i) = \xi^{\mu}_{(0)}(r_b, x^i) + \text{subleading terms}$

 $\xi^{\mu}_{(0)}(r_b,\,x^i)$: generates asymptotic symmetries/changes physical state subleading terms: generate trivial diffeos

Asymptotic symmetries in gravity — modification of equivalence principle

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

 $g_{\mu\nu}$: metric compatible with bc's $\bar{g}_{\mu\nu}$: (asymptotic) background metric $\delta g_{\mu\nu}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

$$\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

typically, Killing vectors can be expanded radially

 $\xi^{\mu}(r_b, x^i) = \xi^{\mu}_{(0)}(r_b, x^i) + \text{trivial diffeos}$

Definition of asymptotic symmetry algebra

Lie bracket quotient algebra of asymptotic Killing vectors modulo trivial diffeos

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

 changing boundary conditions can change physical spectrum simple example: quantum mechanics of free particle on half-line x > 0

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line $x \ge 0$ time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line $x \ge 0$ time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states
- Robin bc's

$$(\psi + \alpha \psi')\big|_{x=0^+} = 0 \qquad \alpha \in \mathbb{R}^+$$

lead to one bound state

$$\psi(x)\big|_{x\geq 0} = \sqrt{\frac{2}{\alpha}} e^{-x/\alpha}$$

with energy $E=-1/\alpha^2,$ localized exponentially near x=0

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: either use Noether's second theorem and covariant phase space analysis or perform Hamiltonian analysis in presence of boundaries

Some references:

- covariant phase space: Lee, Wald '90, Iyer, Wald '94 and Barnich, Brandt '02
- review: see Compère, Fiorucci '18 and refs. therein
- canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim '74 and Brown, Henneaux '86
- review: see Bañados, Reyes '16 and refs. therein

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

- $\Phi :$ shorthand for phase space variables
- $\epsilon:$ smearing function/parameter of gauge trafos
- δ : arbitrary field variation

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \epsilon \, \delta\Phi$$

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \epsilon \, \delta\Phi$$

yields (variation of) canonical boundary charges

$$\delta Q[\epsilon] = \int_{\partial \Sigma} (\text{boundary term}) \epsilon \, \delta \Phi$$

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \epsilon \, \delta\Phi$$

yields (variation of) canonical boundary charges

(

$$\delta Q[\epsilon] = \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

Trivial gauge transformations generated by some ϵ with $Q[\epsilon]=0$

Soap bubble metaphor for AdS₃

Given some bc's it is easy to determine asymptotic Killing vectors

Given some bc's it is easy to determine asymptotic Killing vectors
 Brown-Henneaux imposed following bc's

$$ds^{2} = dr^{2} + e^{2r/\ell} dx^{+} dx^{-} + \mathcal{O}(1) dx^{+2} + \mathcal{O}(1) dx^{-2} + \dots$$

Given some bc's it is easy to determine asymptotic Killing vectors
 Brown–Henneaux imposed following bc's

 $ds^{2} = dr^{2} + e^{2r/\ell} dx^{+} dx^{-} + \mathcal{O}(1) dx^{+2} + \mathcal{O}(1) dx^{-2} + \dots$

Metrics above preserved by asymptotic Killing vectors

$$\xi = \varepsilon^+(x^+)\partial_+ + \varepsilon^-(x^-)\partial_- + \dots$$

Given some bc's it is easy to determine asymptotic Killing vectors
 Brown–Henneaux imposed following bc's

 $ds^{2} = dr^{2} + e^{2r/\ell} dx^{+} dx^{-} + \mathcal{O}(1) dx^{+2} + \mathcal{O}(1) dx^{-2} + \dots$

Metrics above preserved by asymptotic Killing vectors

$$\xi = \varepsilon^+(x^+)\partial_+ + \varepsilon^-(x^-)\partial_- + \dots$$

► Introducing (Fourier) modes $l_n^{\pm} \sim \xi(\varepsilon^{\pm} = e^{inx^{\pm}})$ yields ASA

$$[l_n^{\pm}, l_m^{\pm}]_{\text{Lie}} = (n-m) \, l_{n+m}^{\pm}$$

Given some bc's it is easy to determine asymptotic Killing vectors
 Brown–Henneaux imposed following bc's

 $ds^{2} = dr^{2} + e^{2r/\ell} dx^{+} dx^{-} + \mathcal{O}(1) dx^{+2} + \mathcal{O}(1) dx^{-2} + \dots$

Metrics above preserved by asymptotic Killing vectors

$$\xi = \varepsilon^+(x^+)\partial_+ + \varepsilon^-(x^-)\partial_- + \dots$$

► Introducing (Fourier) modes $l_n^{\pm} \sim \xi(\varepsilon^{\pm} = e^{inx^{\pm}})$ yields ASA $[l_n^{\pm}, l_m^{\pm}]_{\text{Lie}} = (n-m) l_{n+m}^{\pm}$

▶ Introduce also Fourier modes for charges $L_n^{\pm} = Q[l_n^{\pm}]$

Given some bc's it is easy to determine asymptotic Killing vectors
 Brown–Henneaux imposed following bc's

 $ds^{2} = dr^{2} + e^{2r/\ell} dx^{+} dx^{-} + \mathcal{O}(1) dx^{+2} + \mathcal{O}(1) dx^{-2} + \dots$

Metrics above preserved by asymptotic Killing vectors

$$\xi = \varepsilon^+(x^+)\partial_+ + \varepsilon^-(x^-)\partial_- + \dots$$

► Introducing (Fourier) modes $l_n^{\pm} \sim \xi(\varepsilon^{\pm} = e^{inx^{\pm}})$ yields ASA $[l_n^{\pm}, l_m^{\pm}]_{\text{Lie}} = (n-m) l_{n\pm m}^{\pm}$

• Introduce also Fourier modes for charges $L_n^{\pm} = Q[l_n^{\pm}]$

Canonical realization of asymptotic symmetries

$$i\{L_n^{\pm}, L_m^{\pm}\} = (n-m)L_{n+m}^{\pm} + \frac{c_{\rm BH}}{12}(n^3-n)\delta_{n+m,0}$$

with central charge

$$c_{\rm BH} = \frac{5c}{2G}$$

20

Brown–Henneaux example of asymptotically AdS_3

Given some bc's it is easy to determine asymptotic Killing vectors
 Brown–Henneaux imposed following bc's

 $ds^{2} = dr^{2} + e^{2r/\ell} dx^{+} dx^{-} + \mathcal{O}(1) dx^{+2} + \mathcal{O}(1) dx^{-2} + \dots$

Metrics above preserved by asymptotic Killing vectors

$$\xi = \varepsilon^+(x^+)\partial_+ + \varepsilon^-(x^-)\partial_- + \dots$$

► Introducing (Fourier) modes $l_n^{\pm} \sim \xi(\varepsilon^{\pm} = e^{inx^{\pm}})$ yields ASA $[l_n^{\pm}, l_m^{\pm}]_{\text{Lie}} = (n-m) l_{n\pm m}^{\pm}$

▶ Introduce also Fourier modes for charges $L_n^{\pm} = Q[l_n^{\pm}]$

Canonical realization of asymptotic symmetries

$$i\{L_n^{\pm}, L_m^{\pm}\} = (n-m)L_{n+m}^{\pm} + \frac{c_{\rm BH}}{12}(n^3-n)\delta_{n+m,0}$$

with central charge

$$c_{\rm BH} = \frac{5c}{2G}$$

20

Dual field theory, if it exists, must be CFT₂!

ok, fine, so what about...

ok, fine, so what about...

…correlation functions?

ok, fine, so what about...

...correlation functions?

• e.g. 5-point stress-tensor correlator in CFT₂ Bagchi, DG, Merbis '15

CFT₂:
$$\langle T_{++}(z_1)T_{++}(z_2)T_{++}(z_3)T_{++}(z_4)T_{++}(z_5)\rangle = \frac{4c g_5(\gamma, \zeta)}{\prod_{1 \le i \le 5} z_{ij}}$$

 $\gamma = z_{12}z_{34}/(z_{13}z_{24}), \ \zeta = z_{25}z_{34}/(z_{35}z_{24}), \ z_{ij} = z_i - z_j \text{ and}$
 $_5(\gamma, \zeta) = \frac{\gamma + \zeta}{2(\gamma - \zeta)} - \frac{\gamma^2 - \gamma\zeta + \zeta^2}{\gamma(\gamma - 1)\zeta(\zeta - 1)(\gamma - \zeta)} \left([\gamma(\gamma - 1) + 1] [\zeta(\zeta - 1) + 1] - \gamma\zeta \right)$

g

ok, fine, so what about...

…correlation functions?

• e.g. 5-point stress-tensor correlator in CFT₂ Bagchi, DG, Merbis '15

CFT₂:
$$\langle T_{++}(z_1)T_{++}(z_2)T_{++}(z_3)T_{++}(z_4)T_{++}(z_5)\rangle = \frac{4c g_5(\gamma, \zeta)}{\prod_{1\le i\le 5} z_{ij}}$$

 $\gamma = z_{12}z_{34}/(z_{13}z_{24}), \ \zeta = z_{25}z_{34}/(z_{35}z_{24}), \ z_{ij} = z_i - z_j \text{ and}$
 $z_5(\gamma, \zeta) = \frac{\gamma + \zeta}{2(\gamma - \zeta)} - \frac{\gamma^2 - \gamma\zeta + \zeta^2}{\gamma(\gamma - 1)\zeta(\zeta - 1)(\gamma - \zeta)} \left([\gamma(\gamma - 1) + 1] [\zeta(\zeta - 1) + 1] - \gamma\zeta \right)$

• on gravity side given by 5th functional variation of action w.r.t. metric

g

ok, fine, so what about...

- …correlation functions?
- e.g. 5-point stress-tensor correlator in CFT₂ Bagchi, DG, Merbis '15

CFT₂:
$$\langle T_{++}(z_1)T_{++}(z_2)T_{++}(z_3)T_{++}(z_4)T_{++}(z_5)\rangle = \frac{4c g_5(\gamma, \zeta)}{\prod_{1 \le i \le 5} z_{ij}}$$

$$\gamma = z_{12}z_{34}/(z_{13}z_{24}), \ \zeta = z_{25}z_{34}/(z_{35}z_{24}), \ z_{ij} = z_i - z_j \ \text{and}$$

$$g_5(\gamma,\,\zeta) = \frac{\gamma+\zeta}{2(\gamma-\zeta)} - \frac{\gamma^2-\gamma\zeta+\zeta^2}{\gamma(\gamma-1)\zeta(\zeta-1)(\gamma-\zeta)} \left([\gamma(\gamma-1)+1][\zeta(\zeta-1)+1]-\gamma\zeta \right)$$

on gravity side given by 5th functional variation of action w.r.t. metric
 result on gravity side

$$\frac{\delta^5 I_{\text{EH}}[g_{\mu\nu}]}{\delta g^{++}(z_1)\delta g^{++}(z_2)\delta g^{++}(z_3)\delta g^{++}(z_4)\delta g^{++}(z_5)} = \frac{4c\,g_5(\gamma,\,\zeta)}{\prod_{1\le i\le 5}z_{ij}}$$

ok, fine, so what about...

- …correlation functions?
- …entropy?

ok, fine, so what about...

- …correlation functions?
- …entropy?
- asymptotic density of states in CFT₂ given by Cardy formula

$$S_{\text{CFT}_2} = S_{\text{Cardy}} = 2\pi \sqrt{\frac{c}{6} (M+J)} + 2\pi \sqrt{\frac{c}{6} (M-J)}$$

ok, fine, so what about...

- …correlation functions?
- …entropy?
- asymptotic density of states in CFT₂ given by Cardy formula

$$S_{\text{CFT}_2} = S_{\text{Cardy}} = 2\pi \sqrt{\frac{c}{6} (M+J)} + 2\pi \sqrt{\frac{c}{6} (M-J)}$$

on gravity side entropy given by Bekenstein–Hawking formula

$$S_{\rm BH} = \frac{A}{4G} = \frac{\pi r_+}{2G} = 2\pi \sqrt{\frac{\ell}{4G} \left(M + J\right)} + 2\pi \sqrt{\frac{\ell}{4G} \left(M - J\right)}$$

ok, fine, so what about...

- …correlation functions?
- …entropy?
- asymptotic density of states in CFT₂ given by Cardy formula

$$S_{\text{CFT}_2} = S_{\text{Cardy}} = 2\pi \sqrt{\frac{c}{6} (M+J)} + 2\pi \sqrt{\frac{c}{6} (M-J)}$$

on gravity side entropy given by Bekenstein–Hawking formula

$$S_{\rm BH} = \frac{A}{4G} = \frac{\pi r_+}{2G} = 2\pi \sqrt{\frac{\ell}{4G} \left(M + J\right)} + 2\pi \sqrt{\frac{\ell}{4G} \left(M - J\right)}$$

entropy formulas coincide for

$$c = \frac{3\ell}{2G}$$

matches precisely Brown–Henneaux result $c=c_{\rm BH}$

00

ok, fine, so what about...

- …correlation functions?
- …entropy?
- …entanglement entropy?

ok, fine, so what about...

- …correlation functions?
- …entropy?
- …entanglement entropy?
- EE in CFT₂ for entangling region of length L Cardy, Calabrese '04

$$S_{\rm EE} = \frac{c}{3} \, \ln \frac{L}{\epsilon}$$

ok, fine, so what about...

- …correlation functions?
- …entropy?
- …entanglement entropy?
- EE in CFT₂ for entangling region of length L Cardy, Calabrese '04

$$S_{\rm EE} = \frac{c}{3} \, \ln \frac{L}{\epsilon}$$

Ryu–Takayanagi prescription: EE = length of geodesic anchored at boundary entangling region

ok, fine, so what about...

- …correlation functions?
- …entropy?
- …entanglement entropy?
- …boundary conditions different from Brown–Henneaux?

ok, fine, so what about...

- …correlation functions?
- …entropy?
- …entanglement entropy?
- ...boundary conditions different from Brown–Henneaux?

Different boundary conditions may lead to other symmetries, hence no $\mathsf{AdS}_3/\mathsf{CFT}_2!$

Brown–Henneaux '86

$$[L_n^{\pm}, L_m^{\pm}] = (n-m) L_{n+m}^{\pm} + \frac{c_{\rm BH}}{12} (n^3 - n) \delta_{n+m,0}$$

Brown–Henneaux '86 CFT

Compère–Song–Strominger '13

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c_{\rm BH}}{12} (n^3 - n) \delta_{n+m,0}$$
$$[L_n, J_m] = -m J_{n+m}$$
$$[J_n, J_m] = \frac{k}{2} n \delta_{n+m,0}$$

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13

$$\begin{split} [L_n^{\pm}, L_m^{\pm}] &= (n-m) L_{n+m}^{\pm} + \frac{c_{\rm BH}}{12} (n^3 - n) \,\delta_{n+m,0} \\ [L_n^{\pm}, J_m^{\pm}] &= -m \, J_{n+m}^{\pm} \\ [J_n^{\pm}, J_m^{\pm}] &= \frac{k}{2} \, n \, \delta_{n+m,0} \end{split}$$

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13 CFT with u(1) currents
- Avery–Poojary–Suryanarayana '13

$$[L_n, L_m] = (n - m) L_{n+m} + \frac{c_{\text{BH}}}{12} (n^3 - n) \delta_{n+m,0}$$
$$[L_n, J_n^a] = -m J_{n+m}^a$$
$$[J_n^a, J_m^b] = (a - b) J_{n+m}^{a+b} - k n \kappa_{ab} \delta_{n+m,0}$$
$$a, b = -1, 0, 1$$

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13 CFT with u(1) currents
- ► Avery–Poojary–Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay–Giribet–González–Pino '15

$$[L_n, L_m] = (n - m) L_{n+m}$$

 $[L_n, J_m] = -m J_{n+m}$
 $[J_n, J_m] = 0$

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13 CFT with u(1) currents
- ► Avery–Poojary–Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay–Giribet–González–Pino '15 centerless warped CFT

Afshar–Detournay–DG–Oblak '15

$$[L_n, L_m] = (n-m) L_{n+m} + \frac{c_{\rm BH}}{12} (n^3 - n) \delta_{n+m,0}$$
$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m,0}$$
$$[J_n, J_m] = 0$$

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13 CFT with u(1) currents
- ► Avery–Poojary–Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay–Giribet–González–Pino '15 centerless warped CFT
- Afshar–Detournay–DG–Oblak '15 twisted warped CFT
- Afshar–Detournay–DG–Merbis–Perez–Tempo–Troncoso '16

$$[J_n^{\pm}, J_m^{\pm}] = \frac{k}{2} n \,\delta_{n+m,0}$$

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13 CFT with u(1) currents
- Avery–Poojary–Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay–Giribet–González–Pino '15 centerless warped CFT
- Afshar–Detournay–DG–Oblak '15 twisted warped CFT
- ▶ Afshar–Detournay–DG–Merbis–Perez–Tempo–Troncoso '16 *u*(1)'s

Is there some set of bc's encompassing all of the above? Is there a loosest set of bc's?

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13 CFT with u(1) currents
- Avery–Poojary–Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay–Giribet–González–Pino '15 centerless warped CFT
- Afshar–Detournay–DG–Oblak '15 twisted warped CFT
- ▶ Afshar–Detournay–DG–Merbis–Perez–Tempo–Troncoso '16 u(1)'s

Is there some set of bc's encompassing all of the above? Is there a loosest set of bc's?

DG–Riegler '16: yes and yes

$$[J_n^{a\,\pm}, \, J_m^{b\,\pm}] = (a-b) \, J_{n+m}^{a+b\,\pm} - k \, n \, \kappa_{ab} \, \delta_{n+m,\,0}$$

- Brown–Henneaux '86 CFT
- Compère–Song–Strominger '13 warped CFT
- Troessaert '13 CFT with u(1) currents
- Avery–Poojary–Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay–Giribet–González–Pino '15 centerless warped CFT
- Afshar–Detournay–DG–Oblak '15 twisted warped CFT
- Afshar–Detournay–DG–Merbis–Perez–Tempo–Troncoso '16 u(1)'s

Is there some set of bc's encompassing all of the above? Is there a loosest set of bc's?

DG-Riegler '16: yes and yes ASA: sl(2) currents

(How) does this work in higher dimensions? Don't know (yet)!

What about non-AdS holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent to (which) quantum field theory in D dimensions?

What about flat space holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:

More modest question (How) does holography work in flat space? What about flat space holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:

More modest question

(How) does holography work in flat space?

See work by Bagchi et al.

What about flat space holography?

Key question

(When) is quantum gravity in D + 1 dimensions equivalent to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:

More modest question

(How) does holography work in flat space?

See work by Bagchi et al.

Would like concrete model for flat space holography

Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Selected list of models

Black holes in (A)dS₂, asymptotically flat or arbitrary spaces (Wheeler property)

Model	U(X)	V(X)
1. Schwarzschild (1916)	$-\frac{1}{2X}$	$-\lambda^2$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2b^2X$
4. CGHS (1992)	0	-2Λ
5. $(A)dS_2$ ground state (1994)	$-\frac{a}{X}$	BX
6. Rindler ground state (1996)	$-\frac{a}{X} \\ -\frac{a}{X}$	BX^a
7. Black Hole attractor (2003)	0	BX^{-1}
8. Spherically reduced gravity $(N > 3)$	$-\frac{N-3}{(N-2)X}$	$-\lambda^2 X^{(N-4)/(N-2)}$
9. All above: <i>ab</i> -family (1997)	$-\frac{a}{X}$	BX^{a+b}
10. Liouville gravity	a	$be^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2X}$	$-\lambda^2 + \frac{Q^2}{X}$
12. Schwarzschild- $(A)dS$	$-\frac{1}{2X} \\ -\frac{1}{2X}$	$-\lambda^2 - \ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^2 - \Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^2}{X} - \frac{J}{4X^3} - \Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2}X(c-X^2)$
16. KK red. conf. flat (2006)	$-\frac{1}{2} \tanh{(X/2)}$	$A \sinh X$
17. 2D type 0A string Black Hole	$-\frac{1}{X}$	$-2b^2X + \frac{b^2q^2}{8\pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Daniel Grumiller — Gravity in Flatland

Gravity in two dimensions

 Choice of bulk action Einstein–Hilbert action not useful

Choice of bulk action

Einstein-Hilbert action not useful

Dilaton gravity in two dimensions (X = dilaton):

$$I[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left[XR - U(X)(\nabla X)^2 - 2V(X) \right]$$

- kinetic potential U(X) and dilaton potential V(X)
- constant dilaton and linear dilaton solutions
- all solutions known in closed form globally for all choices of potentials
- simple choice (Jackiw–Teitelboim):

$$U(X)=0 \qquad V(X)=\Lambda X$$

• for negative $\Lambda = -1/\ell^2$ leads to AdS_2 solutions

Choice of bulk action JT model:

$$I_{\rm JT}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \, [XR - 2\Lambda X]$$

Leads to $(A)dS_2$ solutions

 $R = 2\Lambda$

Choice of bulk action JT model:

$$I_{\rm JT}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \, [XR - 2\Lambda X]$$

Leads to $(A)dS_2$ solutions

$$R = 2\Lambda$$

 Flat space choice of bulk action CGHS model

$$I_{\rm CGHS}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left[XR - 2\Lambda \right]$$

Leads to flat solutions

$$R = 0$$

Flat space holography proposal: Afshar, González, DG, Vassilevich '19

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

▶ Hamiltonian $H_{\rm SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

▶ Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$ ▶ Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

- ▶ Hamiltonian $H_{\rm SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- ▶ Gaussian random interaction $\langle j^2_{abcd} \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

- ▶ Hamiltonian $H_{\rm SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- \blacktriangleright Gaussian random interaction $\langle j^2_{abcd}\rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- sum melonic diagrams $G(\omega)=1/(-i\omega-\Sigma(\omega))$ with $\Sigma(au)=J^2G^3(au)$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

- ▶ Hamiltonian $H_{\rm SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- \blacktriangleright Gaussian random interaction $\langle j^2_{abcd} \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- ▶ sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

 $G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

- ▶ Hamiltonian $H_{\rm SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- \blacktriangleright Gaussian random interaction $\langle j^2_{abcd} \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau)\psi^a(0) \rangle$
- ▶ sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

 $G(\tau) \sim \operatorname{sign}(\tau) / \sin^{2\Delta}(\pi \tau / \beta)$ conformal weight $\Delta = 1/4$

• $SL(2, \mathbb{R})$ covariant $x \to (ax+b)/(cx+d)$ with $x = \tan(\pi \tau/\beta)$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

- ▶ Hamiltonian $H_{\rm SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- \blacktriangleright Gaussian random interaction $\langle j^2_{abcd} \rangle = J^2/N^3$
- ▶ 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- ▶ sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

$$G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$$

SL(2, ℝ) covariant x → (ax + b)/(cx + d) with x = tan(πτ/β)
 effective action at large N and large J: Schwarzian action

$$\Gamma[h] \sim -\frac{N}{J} \int_{0}^{\beta} \mathrm{d}\tau \left[\dot{h}^{2} + \frac{1}{2} \{h; \tau\} \right] \qquad \{h; \tau\} = \frac{\ddot{h}}{\dot{h}} - \frac{3}{2} \frac{\ddot{h}^{2}}{\dot{h}^{2}}$$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^a)

- ▶ Hamiltonian $H_{\rm SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- ▶ Gaussian random interaction $\langle j^2_{abcd} \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- ▶ sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

$$G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$$

SL(2, ℝ) covariant x → (ax + b)/(cx + d) with x = tan(πτ/β)
 effective action at large N and large J: Schwarzian action

$$\Gamma[h] \sim -\frac{N}{J} \int_{0}^{\beta} \mathrm{d}\tau \left[\dot{h}^{2} + \frac{1}{2} \{h; \tau\} \right] \qquad \{h; \tau\} = \frac{\ddot{h}}{\dot{h}} - \frac{3}{2} \frac{\ddot{h}^{2}}{\dot{h}^{2}}$$

Schwarzian action also follows from JT gravity

Q&A's:

Q1: What is the flat space analogue of JT?

- Q1: What is the flat space analogue of JT?
- ► A1: Essentially the CGHS model

- Q1: What is the flat space analogue of JT?
- ► A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} \mathrm{d}\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

Q&A's:

- ▶ Q1: What is the flat space analogue of JT?
- ► A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} \mathrm{d}\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?

Q&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} \mathrm{d}\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped symmetries

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m,0}$$

$$[J_n, J_m] = 0$$

and the two-dimensional Maxwell symmetries (L_1, L_0, J_{-1}, J_0)

- ▶ Q1: What is the flat space analogue of JT?
- ► A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} \mathrm{d}\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- ► A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?

Flat space holography and complex SYK 1911.05739

Q&A's:

- ▶ Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} \mathrm{d}\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- ► A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?
- A4: Complex SYK for large specific heat and zero compressibility

Flat space holography and complex SYK 1911.05739

Q&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} \mathrm{d}\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?
- A4: Complex SYK for large specific heat and zero compressibility

Concrete model for flat space holography

General lessons

- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist

General lessons

- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist

Specific recent topics

- most general boundary conditions in AdS₃
- near horizon soft hair (not mentioned in colloquium)
- flat space holography and complex SYK

General lessons

- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist
- Specific recent topics
 - most general boundary conditions in AdS₃
 - near horizon soft hair (not mentioned in colloquium)
 - flat space holography and complex SYK
- Selected challenges for the future
 - Good model for dS holography?
 - Complete model of evaporating black hole?
 - How general is holography?

General lessons

- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist
- Specific recent topics
 - most general boundary conditions in AdS₃
 - near horizon soft hair (not mentioned in colloquium)
 - flat space holography and complex SYK
- Selected challenges for the future
 - Good model for dS holography?
 - Complete model of evaporating black hole?
 - How general is holography?
 - Numerous open questions in gravity and holography
 - Many can be addressed in lower dimensions
 - If you are stuck in higher D try D = 3 or D = 2

Thank you for your attention!

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

Note: topological QFT with no local physical degrees of freedom

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

• gauge trafos $\delta_{\epsilon} A = d\epsilon$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = \mathrm{d}\epsilon$
- canonical analysis yields boundary charges (background independent)

$$\delta Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, \delta A$$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, A$$

choice of bc's

 $\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t \qquad \delta \mathcal{J} = \mathcal{O}(1) \quad \delta \mu = 0$

preserved by $\epsilon = \eta(\varphi) + {\rm subleading}$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$\delta Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, \delta A$$

choice of bc's

$$\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t \qquad \delta \mathcal{J} = \mathcal{O}(1) \quad \delta \mu = 0$$

preserved by $\epsilon=\eta(\varphi)+{\rm subleading}$

asymptotic symmetry algebra has non-trivial central term

$$\{Q[\eta_1],\,Q[\eta_2]\}=\delta_{\eta_1}Q[\eta_2]=rac{k}{2\pi}\,\oint_{\partial_\Sigma}\eta_2\,\eta_1'\,\mathrm{d}arphi$$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$\delta Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, \delta A$$

choice of bc's

$$\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t \qquad \delta \mathcal{J} = \mathcal{O}(1) \quad \delta \mu = 0$$

preserved by $\epsilon = \eta(\varphi) + {\rm subleading}$

asymptotic symmetry algebra has non-trivial central term

$$\{Q[\eta_1],\,Q[\eta_2]\}=\delta_{\eta_1}Q[\eta_2]=rac{k}{2\pi}\,\oint_{\partial_\Sigma}\eta_2\,\eta_1'\,\mathrm{d}arphi$$

Fourier modes $J_n \sim \oint \mathcal{J}e^{in\varphi}$ yield $u(1)_k$ current algebra, $i\{J_n, J_m\} = \frac{k}{2} n \, \delta_{n+m, 0}$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

changing boundary charges changes physical state

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
 - asymptotic symmetry algebra (with $i\{,\} \rightarrow [,]$)

 $[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m,0}$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
 - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m, 0}$$

define (highest weight) vacuum

$$J_n |0\rangle = 0 \qquad \forall n \ge 0$$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
 - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m, 0}$$

define vacuum

$$J_n |0\rangle = 0 \qquad \forall n \ge 0$$

descendants of vacuum are examples of edge states

$$|\text{edge}(\{n_i\})\rangle = \prod_{\{n_i>0\}} J_{-n_i}|0\rangle$$

e.g.

$$|\text{edge}(\{1,1,42\})\rangle = J_{-1}^2 J_{-42}|0\rangle$$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
 - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m, 0}$$

define vacuum

$$J_n |0\rangle = 0 \qquad \forall n \ge 0$$

descendants of vacuum are examples of edge states

$$|\text{edge}(\{n_i\})\rangle = \prod_{\{n_i>0\}} J_{-n_i}|0\rangle$$

e.g.

$$|\text{edge}(\{1,1,42\})\rangle = J_{-1}^2 J_{-42} |0\rangle$$

► theories with no local physical degrees of freedom can have edge states! ⇒ perhaps cleanest example of holography