Gravity in Flatland Black holes in lower dimensions

Daniel Grumiller
Institute for Theoretical Physics
TU Wien

Colloquium, U. Würzburg, November 2019

" O day and night, but this is wondrous strange"

Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Black holes hide key secrets to Nature

 Seeing is believing...
Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Some open issues in gravity

- IR (classical gravity)

Some open issues in gravity

- IR (classical gravity)
- asymptotic symmetries
- soft physics
- near horizon symmetries

Take-away slogan

Equivalence principle needs modification

Some open issues in gravity

- IR (classical gravity)
- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)

Some open issues in gravity

- IR (classical gravity)
- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
- numerous conceptual issues
- black hole evaporation and unitarity
- black hole microstates

> Take-away homework

Find 'hydrogen-atom' of quantum gravity

Some open issues in gravity

- IR (classical gravity)
- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
- numerous conceptual issues
- black hole evaporation and unitarity
- black hole microstates
- UV/IR (holography)

See book by Erdmenger or lecture notes 1807.09872

Some open issues in gravity

- IR (classical gravity)
- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
- numerous conceptual issues
- black hole evaporation and unitarity
- black hole microstates
- UV/IR (holography)
- AdS/CFT and applications (see Erdmenger, Meyer and collaborators)
- precision holography
- generality of holography

Take-away question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in D dimensions?

Some open issues in gravity

- IR (classical gravity)
- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
- numerous conceptual issues
- black hole evaporation and unitarity
- black hole microstates
- UV/IR (holography)
- AdS/CFT and applications (see Erdmenger, Meyer and collaborators)
- precision holography
- generality of holography
- all issues above can be addressed in lower dimensions
- lower dimensions technically simpler
- hope to resolve conceptual problems

Gravity in various dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)

Caveat: just counting tensor components can be misleading as measure of complexity

Example: large D limit actually simple for some problems (Emparan et al.)

Gravity in various dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- 1D: 0 (space or time but not both \Rightarrow no lightcones)

Apply as mantra the slogan "as simple as possible, but not simpler"

Gravity in various dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- 2D: lowest dimension exhibiting black holes (BHs)
- Simplest gravitational theories with BHs in 2D
- No Einstein gravity

Gravity in various dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- 2D: lowest dimension exhibiting black holes (BHs)
- Simplest gravitational theories with BHs in 2D
- No Einstein gravity
- 3D: lowest dimension exhibiting BHs and gravitons
- Simplest gravitational theories with BHs and gravitons in 3D
- Lowest dimension for Einstein gravity (BHs but no gravitons)

Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Spectrum of BTZ black holes and related physical states

 Could this black hole be the 'hydrogen atom' for quantum gravity?

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$

$$
I_{\mathrm{EH}}[g]=-\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

Usually choose also topology of \mathcal{M}, e.g. cylinder

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$

$$
I_{\mathrm{EH}}[g]=-\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

Usually choose also topology of \mathcal{M}, e.g. cylinder Main features:

- no local physical degrees of freedom

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$

$$
I_{\mathrm{EH}}[g]=-\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

Usually choose also topology of \mathcal{M}, e.g. cylinder Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS_{3}

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$
Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS_{3}
- rotating (BTZ) black hole solutions analogous to Kerr

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}} \mathrm{~d} t^{2}+\frac{\ell^{2} r^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

t : time, $\varphi \sim \varphi+2 \pi$: angular coordinate, r : radial coordinate
$r \rightarrow \infty$: asymptotic region
$r \rightarrow r_{+} \geq r_{-}$: black hole horizon
$r \rightarrow r_{-} \geq 0$: inner horizon
$r_{+} \rightarrow r_{-}>0$: extremal BTZ
$r_{-} \rightarrow 0$: non-rotating BTZ

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$
Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS_{3}
- rotating (BTZ) black hole solutions analogous to Kerr

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}} \mathrm{~d} t^{2}+\frac{\ell^{2} r^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- conserved mass $M=\left(r_{+}^{2}+r_{-}^{2}\right) / \ell^{2}$ and angular mom. $J=2 r_{+} r_{-} / \ell$

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$
Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS_{3}
- rotating (BTZ) black hole solutions analogous to Kerr

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{\ell^{2} r^{2}} \mathrm{~d} t^{2}+\frac{\ell^{2} r^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- conserved mass $M=\left(r_{+}^{2}+r_{-}^{2}\right) / \ell^{2}$ and angular mom. $J=2 r_{+} r_{-} / \ell$
- Bekenstein-Hawking entropy

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=\frac{\pi r_{+}}{2 G}
$$

Hawking-Unruh temperature: $T=\left(r_{+}^{2}-r_{-}^{2}\right) /\left(2 \pi r_{+} \ell^{2}\right)$

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$

- Choice of boundary conditions

Crucial to define theory - yields spectrum of 'edge states' Pick whatever suits best to describe relevant physics

Choice of theory

- Choice of bulk action

Pick Einstein-Hilbert action with negative cc $\left(\Lambda=-1 / \ell^{2}\right)$

- Choice of boundary conditions

Crucial to define theory - yields spectrum of 'edge states' Pick whatever suits best to describe relevant physics

- Goal: understand holography beyond AdS/CFT
- Explain first in general how edge states emerge

Physics with boundaries
Science is a differential equation. Religion is a boundary condition. - Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically

Physics with boundaries
Science is a differential equation. Religion is a boundary condition. - Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect

Physics with boundaries

Science is a differential equation. Religion is a boundary condition. - Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically

Physics with boundaries

Science is a differential equation. Religion is a boundary condition. - Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Physics with boundaries

Science is a differential equation. Religion is a boundary condition. - Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries
- Choice of boundary conditions determines asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate r_{b} : value of r at boundary (could be ∞)

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate
r_{b} : value of r at boundary (could be ∞)
x^{i} : remaining coordinates ("boundary" coordinates)

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate
r_{b} : value of r at boundary (could be ∞)
x^{i} : remaining coordinates
$g_{\mu \nu}$: metric compatible with bc's

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate
r_{b} : value of r at boundary (could be ∞)
x^{i} : remaining coordinates
$g_{\mu \nu}$: metric compatible with bc's
$\bar{g}_{\mu \nu}$: (asymptotic) background metric

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate
r_{b} : value of r at boundary (could be ∞)
x^{i} : remaining coordinates
$g_{\mu \nu}$: metric compatible with bc's
$\bar{g}_{\mu \nu}$: (asymptotic) background metric
$\delta g_{\mu \nu}$: fluctuations permitted by bc's

Asymptotic symmetries in gravity

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate
r_{b} : value of r at boundary (could be ∞)
x^{i} : remaining coordinates
$g_{\mu \nu}$: metric compatible with bc's
$\bar{g}_{\mu \nu}$: (asymptotic) background metric
$\delta g_{\mu \nu}$: fluctuations permitted by bc's

- bcpgt's generated by asymptotic Killing vectors ξ :

$$
\mathcal{L}_{\xi} g_{\mu \nu} \stackrel{!}{=} \mathcal{O}\left(\delta g_{\mu \nu}\right)
$$

Asymptotic symmetries in gravity - modification of equivalence principle

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

r : some convenient ("radial") coordinate
r_{b} : value of r at boundary (could be ∞)
x^{i} : remaining coordinates
$g_{\mu \nu}$: metric compatible with bc's
$\bar{g}_{\mu \nu}$: (asymptotic) background metric
$\delta g_{\mu \nu}$: fluctuations permitted by bc's

- bcpgt's generated by asymptotic Killing vectors ξ :

$$
\mathcal{L}_{\xi} g_{\mu \nu} \stackrel{!}{=} \mathcal{O}\left(\delta g_{\mu \nu}\right)
$$

- typically, Killing vectors can be expanded radially

$$
\xi^{\mu}\left(r_{b}, x^{i}\right)=\xi_{(0)}^{\mu}\left(r_{b}, x^{i}\right)+\text { subleading terms }
$$

$\xi_{(0)}^{\mu}\left(r_{b}, x^{i}\right)$: generates asymptotic symmetries/changes physical state subleading terms: generate trivial diffeos

Asymptotic symmetries in gravity - modification of equivalence principle

- Impose some bc's at (asymptotic or actual) boundary:

$$
\lim _{r \rightarrow r_{b}} g_{\mu \nu}\left(r, x^{i}\right)=\bar{g}_{\mu \nu}\left(r_{b}, x^{i}\right)+\delta g_{\mu \nu}\left(r_{b}, x^{i}\right)
$$

$g_{\mu \nu}$: metric compatible with bc's
$\bar{g}_{\mu \nu}$: (asymptotic) background metric
$\delta g_{\mu \nu}$: fluctuations permitted by bc's

- bcpgt's generated by asymptotic Killing vectors ξ :

$$
\mathcal{L}_{\xi} g_{\mu \nu} \stackrel{!}{=} \mathcal{O}\left(\delta g_{\mu \nu}\right)
$$

- typically, Killing vectors can be expanded radially

$$
\xi^{\mu}\left(r_{b}, x^{i}\right)=\xi_{(0)}^{\mu}\left(r_{b}, x^{i}\right)+\text { trivial diffeos }
$$

Definition of asymptotic symmetry algebra

Lie bracket quotient algebra of asymptotic Killing vectors modulo trivial diffeos

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum
simple example: quantum mechanics of free particle on half-line $x \geq 0$

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum
simple example: quantum mechanics of free particle on half-line $x \geq 0$ time-independent Schrödinger equation:

$$
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \psi(x)=E \psi(x)
$$

look for (normalizable) bound state solutions, $E<0$

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum
simple example: quantum mechanics of free particle on half-line $x \geq 0$ time-independent Schrödinger equation:

$$
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \psi(x)=E \psi(x)
$$

look for (normalizable) bound state solutions, $E<0$

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states
- Robin bc's

$$
\left.\left(\psi+\alpha \psi^{\prime}\right)\right|_{x=0^{+}}=0 \quad \alpha \in \mathbb{R}^{+}
$$

lead to one bound state

$$
\left.\psi(x)\right|_{x \geq 0}=\sqrt{\frac{2}{\alpha}} e^{-x / \alpha}
$$

with energy $E=-1 / \alpha^{2}$, localized exponentially near $x=0$

Canonical boundary charges
God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: either use Noether's second theorem and covariant phase space analysis or perform Hamiltonian analysis in presence of boundaries

Some references:

- covariant phase space: Lee, Wald '90, Iyer, Wald '94 and Barnich, Brandt '02
- review: see Compère, Fiorucci '18 and refs. therein
- canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim '74 and Brown, Henneaux '86
- review: see Bañados, Reyes '16 and refs. therein

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$
\delta G[\epsilon]=\int_{\Sigma}(\text { bulk term }) \epsilon \delta \Phi-\int_{\partial \Sigma}(\text { boundary term }) \epsilon \delta \Phi
$$

not functionally differentiable in general (Σ : constant time slice)
Φ : shorthand for phase space variables
ϵ : smearing function/parameter of gauge trafos
δ : arbitrary field variation

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$
\delta G[\epsilon]=\int_{\Sigma}(\text { bulk term }) \epsilon \delta \Phi-\int_{\partial \Sigma}(\text { boundary term }) \epsilon \delta \Phi
$$

not functionally differentiable in general (Σ : constant time slice)

- add boundary term to restore functional differentiability

$$
\delta \Gamma[\epsilon]=\delta G[\epsilon]+\delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma}(\text { bulk term }) \epsilon \delta \Phi
$$

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$
\delta G[\epsilon]=\int_{\Sigma}(\text { bulk term }) \epsilon \delta \Phi-\int_{\partial \Sigma}(\text { boundary term }) \epsilon \delta \Phi
$$

not functionally differentiable in general (Σ : constant time slice)

- add boundary term to restore functional differentiability

$$
\delta \Gamma[\epsilon]=\delta G[\epsilon]+\delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma}(\text { bulk term }) \epsilon \delta \Phi
$$

- yields (variation of) canonical boundary charges

$$
\delta Q[\epsilon]=\int_{\partial \Sigma}(\text { boundary term }) \epsilon \delta \Phi
$$

Canonical boundary charges

God made the bulk; surfaces were invented by the devil - Wolfgang Pauli

- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$
\delta G[\epsilon]=\int_{\Sigma}(\text { bulk term }) \epsilon \delta \Phi-\int_{\partial \Sigma}(\text { boundary term }) \epsilon \delta \Phi
$$

not functionally differentiable in general (Σ : constant time slice)

- add boundary term to restore functional differentiability

$$
\delta \Gamma[\epsilon]=\delta G[\epsilon]+\delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma}(\text { bulk term }) \epsilon \delta \Phi
$$

- yields (variation of) canonical boundary charges

$$
\delta Q[\epsilon]=\int_{\partial \Sigma}(\text { boundary term }) \epsilon \delta \Phi
$$

Trivial gauge transformations generated by some ϵ with $Q[\epsilon]=0$

Soap bubble metaphor for AdS_{3}

Brown-Henneaux example of asymptotically AdS_{3}

- Given some bc's it is easy to determine asymptotic Killing vectors

Brown-Henneaux example of asymptotically AdS_{3}

- Given some bc's it is easy to determine asymptotic Killing vectors
- Brown-Henneaux imposed following bc's

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+e^{2 r / \ell} \mathrm{d} x^{+} \mathrm{d} x^{-}+\mathcal{O}(1) \mathrm{d} x^{+2}+\mathcal{O}(1) \mathrm{d} x^{-2}+\ldots
$$

Brown-Henneaux example of asymptotically AdS_{3}

- Given some bc's it is easy to determine asymptotic Killing vectors
- Brown-Henneaux imposed following bc's

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+e^{2 r / \ell} \mathrm{d} x^{+} \mathrm{d} x^{-}+\mathcal{O}(1) \mathrm{d} x^{+2}+\mathcal{O}(1) \mathrm{d} x^{-2}+\ldots
$$

- Metrics above preserved by asymptotic Killing vectors

$$
\xi=\varepsilon^{+}\left(x^{+}\right) \partial_{+}+\varepsilon^{-}\left(x^{-}\right) \partial_{-}+\ldots
$$

Brown-Henneaux example of asymptotically AdS_{3}

- Given some bc's it is easy to determine asymptotic Killing vectors
- Brown-Henneaux imposed following bc's

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+e^{2 r / \ell} \mathrm{d} x^{+} \mathrm{d} x^{-}+\mathcal{O}(1) \mathrm{d} x^{+2}+\mathcal{O}(1) \mathrm{d} x^{-2}+\ldots
$$

- Metrics above preserved by asymptotic Killing vectors

$$
\xi=\varepsilon^{+}\left(x^{+}\right) \partial_{+}+\varepsilon^{-}\left(x^{-}\right) \partial_{-}+\ldots
$$

- Introducing (Fourier) modes $l_{n}^{ \pm} \sim \xi\left(\varepsilon^{ \pm}=e^{i n x^{ \pm}}\right)$yields ASA

$$
\left[l_{n}^{ \pm}, l_{m}^{ \pm}\right]_{\mathrm{Lie}}=(n-m) l_{n+m}^{ \pm}
$$

Brown-Henneaux example of asymptotically AdS_{3}

- Given some bc's it is easy to determine asymptotic Killing vectors
- Brown-Henneaux imposed following bc's

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+e^{2 r / \ell} \mathrm{d} x^{+} \mathrm{d} x^{-}+\mathcal{O}(1) \mathrm{d} x^{+2}+\mathcal{O}(1) \mathrm{d} x^{-2}+\ldots
$$

- Metrics above preserved by asymptotic Killing vectors

$$
\xi=\varepsilon^{+}\left(x^{+}\right) \partial_{+}+\varepsilon^{-}\left(x^{-}\right) \partial_{-}+\ldots
$$

- Introducing (Fourier) modes $l_{n}^{ \pm} \sim \xi\left(\varepsilon^{ \pm}=e^{i n x^{ \pm}}\right)$yields ASA

$$
\left[l_{n}^{ \pm}, l_{m}^{ \pm}\right]_{\mathrm{Lie}}=(n-m) l_{n+m}^{ \pm}
$$

- Introduce also Fourier modes for charges $L_{n}^{ \pm}=Q\left[l_{n}^{ \pm}\right]$

Brown-Henneaux example of asymptotically AdS_{3}

- Given some bc's it is easy to determine asymptotic Killing vectors
- Brown-Henneaux imposed following bc's

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+e^{2 r / \ell} \mathrm{d} x^{+} \mathrm{d} x^{-}+\mathcal{O}(1) \mathrm{d} x^{+2}+\mathcal{O}(1) \mathrm{d} x^{-2}+\ldots
$$

- Metrics above preserved by asymptotic Killing vectors

$$
\xi=\varepsilon^{+}\left(x^{+}\right) \partial_{+}+\varepsilon^{-}\left(x^{-}\right) \partial_{-}+\ldots
$$

- Introducing (Fourier) modes $l_{n}^{ \pm} \sim \xi\left(\varepsilon^{ \pm}=e^{i n x^{ \pm}}\right)$yields ASA

$$
\left[l_{n}^{ \pm}, l_{m}^{ \pm}\right]_{\mathrm{Lie}}=(n-m) l_{n+m}^{ \pm}
$$

- Introduce also Fourier modes for charges $L_{n}^{ \pm}=Q\left[l_{n}^{ \pm}\right]$
- Canonical realization of asymptotic symmetries

$$
i\left\{L_{n}^{ \pm}, L_{m}^{ \pm}\right\}=(n-m) L_{n+m}^{ \pm}+\frac{c_{\mathrm{BH}}}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
$$

with central charge

$$
c_{\mathrm{BH}}=\frac{3 \ell}{2 G}
$$

Brown-Henneaux example of asymptotically AdS_{3}

- Given some bc's it is easy to determine asymptotic Killing vectors
- Brown-Henneaux imposed following bc's

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+e^{2 r / \ell} \mathrm{d} x^{+} \mathrm{d} x^{-}+\mathcal{O}(1) \mathrm{d} x^{+2}+\mathcal{O}(1) \mathrm{d} x^{-2}+\ldots
$$

- Metrics above preserved by asymptotic Killing vectors

$$
\xi=\varepsilon^{+}\left(x^{+}\right) \partial_{+}+\varepsilon^{-}\left(x^{-}\right) \partial_{-}+\ldots
$$

- Introducing (Fourier) modes $l_{n}^{ \pm} \sim \xi\left(\varepsilon^{ \pm}=e^{i n x^{ \pm}}\right)$yields ASA

$$
\left[l_{n}^{ \pm}, l_{m}^{ \pm}\right]_{\mathrm{Lie}}=(n-m) l_{n+m}^{ \pm}
$$

- Introduce also Fourier modes for charges $L_{n}^{ \pm}=Q\left[l_{n}^{ \pm}\right]$
- Canonical realization of asymptotic symmetries

$$
i\left\{L_{n}^{ \pm}, L_{m}^{ \pm}\right\}=(n-m) L_{n+m}^{ \pm}+\frac{c_{\mathrm{BH}}}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
$$

with central charge

$$
c_{\mathrm{BH}}=\frac{3 \ell}{2 G}
$$

- Dual field theory, if it exists, must be CFT_{2} !

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable
ok, fine, so what about...

- ...correlation functions?

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- e.g. 5-point stress-tensor correlator in CFT_{2} Bagchi, DG, Merbis '15
$\mathrm{CFT}_{2}: \quad\left\langle T_{++}\left(z_{1}\right) T_{++}\left(z_{2}\right) T_{++}\left(z_{3}\right) T_{++}\left(z_{4}\right) T_{++}\left(z_{5}\right)\right\rangle=\frac{4 c g_{5}(\gamma, \zeta)}{\prod_{1 \leq i \leq 5} z_{i j}}$ $\gamma=z_{12} z_{34} /\left(z_{13} z_{24}\right), \zeta=z_{25} z_{34} /\left(z_{35} z_{24}\right), z_{i j}=z_{i}-z_{j}$ and
$g_{5}(\gamma, \zeta)=\frac{\gamma+\zeta}{2(\gamma-\zeta)}-\frac{\gamma^{2}-\gamma \zeta+\zeta^{2}}{\gamma(\gamma-1) \zeta(\zeta-1)(\gamma-\zeta)}([\gamma(\gamma-1)+1][\zeta(\zeta-1)+1]-\gamma \zeta)$

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- e.g. 5-point stress-tensor correlator in CFT_{2} Bagchi, DG, Merbis '15
$\mathrm{CFT}_{2}: \quad\left\langle T_{++}\left(z_{1}\right) T_{++}\left(z_{2}\right) T_{++}\left(z_{3}\right) T_{++}\left(z_{4}\right) T_{++}\left(z_{5}\right)\right\rangle=\frac{4 c g_{5}(\gamma, \zeta)}{\prod_{1 \leq i \leq 5} z_{i j}}$ $\gamma=z_{12} z_{34} /\left(z_{13} z_{24}\right), \zeta=z_{25} z_{34} /\left(z_{35} z_{24}\right), z_{i j}=z_{i}-z_{j}$ and
$g_{5}(\gamma, \zeta)=\frac{\gamma+\zeta}{2(\gamma-\zeta)}-\frac{\gamma^{2}-\gamma \zeta+\zeta^{2}}{\gamma(\gamma-1) \zeta(\zeta-1)(\gamma-\zeta)}([\gamma(\gamma-1)+1][\zeta(\zeta-1)+1]-\gamma \zeta)$
- on gravity side given by 5 th functional variation of action w.r.t. metric

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- e.g. 5-point stress-tensor correlator in CFT_{2} Bagchi, DG, Merbis '15
$\mathrm{CFT}_{2}: \quad\left\langle T_{++}\left(z_{1}\right) T_{++}\left(z_{2}\right) T_{++}\left(z_{3}\right) T_{++}\left(z_{4}\right) T_{++}\left(z_{5}\right)\right\rangle=\frac{4 c g_{5}(\gamma, \zeta)}{\prod_{1 \leq i \leq 5} z_{i j}}$

$$
\gamma=z_{12} z_{34} /\left(z_{13} z_{24}\right), \zeta=z_{25} z_{34} /\left(z_{35} z_{24}\right), z_{i j}=z_{i}-z_{j} \text { and }
$$

$g_{5}(\gamma, \zeta)=\frac{\gamma+\zeta}{2(\gamma-\zeta)}-\frac{\gamma^{2}-\gamma \zeta+\zeta^{2}}{\gamma(\gamma-1) \zeta(\zeta-1)(\gamma-\zeta)}([\gamma(\gamma-1)+1][\zeta(\zeta-1)+1]-\gamma \zeta)$

- on gravity side given by 5th functional variation of action w.r.t. metric
- result on gravity side

$$
\frac{\delta^{5} I_{\mathrm{EH}}\left[g_{\mu \nu}\right]}{\delta g^{++}\left(z_{1}\right) \delta g^{++}\left(z_{2}\right) \delta g^{++}\left(z_{3}\right) \delta g^{++}\left(z_{4}\right) \delta g^{++}\left(z_{5}\right)}=\frac{4 c g_{5}(\gamma, \zeta)}{\prod_{1 \leq i \leq 5} z_{i j}}
$$

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable
ok, fine, so what about...

- ...correlation functions?
- ...entropy?

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable
ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- asymptotic density of states in CFT_{2} given by Cardy formula

$$
S_{\mathrm{CFT}_{2}}=S_{\mathrm{Cardy}}=2 \pi \sqrt{\frac{c}{6}(M+J)}+2 \pi \sqrt{\frac{c}{6}(M-J)}
$$

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- asymptotic density of states in CFT_{2} given by Cardy formula

$$
S_{\mathrm{CFT}_{2}}=S_{\mathrm{Cardy}}=2 \pi \sqrt{\frac{c}{6}(M+J)}+2 \pi \sqrt{\frac{c}{6}(M-J)}
$$

- on gravity side entropy given by Bekenstein-Hawking formula

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=\frac{\pi r_{+}}{2 G}=2 \pi \sqrt{\frac{\ell}{4 G}(M+J)}+2 \pi \sqrt{\frac{\ell}{4 G}(M-J)}
$$

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- asymptotic density of states in CFT_{2} given by Cardy formula

$$
S_{\mathrm{CFT}_{2}}=S_{\mathrm{Cardy}}=2 \pi \sqrt{\frac{c}{6}(M+J)}+2 \pi \sqrt{\frac{c}{6}(M-J)}
$$

- on gravity side entropy given by Bekenstein-Hawking formula

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=\frac{\pi r_{+}}{2 G}=2 \pi \sqrt{\frac{\ell}{4 G}(M+J)}+2 \pi \sqrt{\frac{\ell}{4 G}(M-J)}
$$

entropy formulas coincide for

$$
c=\frac{3 \ell}{2 G}
$$

matches precisely Brown-Henneaux result $c=c_{\text {BH }}$

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- ...entanglement entropy?

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable
ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- ...entanglement entropy?
- EE in CFT_{2} for entangling region of length L Cardy, Calabrese '04

$$
S_{\mathrm{EE}}=\frac{c}{3} \ln \frac{L}{\epsilon}
$$

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- ...entanglement entropy?
- EE in CFT_{2} for entangling region of length L Cardy, Calabrese '04

$$
S_{\mathrm{EE}}=\frac{c}{3} \ln \frac{L}{\epsilon}
$$

- Ryu-Takayanagi prescription: EE = length of geodesic anchored at boundary entangling region

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- ...entanglement entropy?
- ...boundary conditions different from Brown-Henneaux?

Some checks of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Every AdS_{3} gravity observable must correspond to some CFT_{2} observable ok, fine, so what about...

- ...correlation functions?
- ...entropy?
- ...entanglement entropy?
- ...boundary conditions different from Brown-Henneaux?

Different boundary conditions may lead to other symmetries, hence no $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$!

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86

$$
\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right]=(n-m) L_{n+m}^{ \pm}+\frac{c_{\mathrm{BH}}}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{\mathrm{BH}}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =\frac{k}{2} n \delta_{n+m, 0}
\end{aligned}
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13

$$
\begin{aligned}
{\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right] } & =(n-m) L_{n+m}^{ \pm}+\frac{c_{\mathrm{BH}}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}^{ \pm}, J_{m}^{ \pm}\right] } & =-m J_{n+m}^{ \pm} \\
{\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] } & =\frac{k}{2} n \delta_{n+m, 0}
\end{aligned}
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13 CFT with $u(1)$ currents
- Avery-Poojary-Suryanarayana '13

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{\mathrm{BH}}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{n}^{a}\right] } & =-m J_{n+m}^{a} \\
{\left[J_{n}^{a}, J_{m}^{b}\right] } & =(a-b) J_{n+m}^{a+b}-k n \kappa_{a b} \delta_{n+m, 0}
\end{aligned}
$$

$$
a, b=-1,0,1
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13 CFT with $u(1)$ currents
- Avery-Poojary-Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay-Giribet-González-Pino '15

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13 CFT with $u(1)$ currents
- Avery-Poojary-Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay-Giribet-González-Pino '15 centerless warped CFT
- Afshar-Detournay-DG-Oblak '15

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{\mathrm{BH}}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13 CFT with $u(1)$ currents
- Avery-Poojary-Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay-Giribet-González-Pino '15 centerless warped CFT
- Afshar-Detournay-DG-Oblak '15 twisted warped CFT
- Afshar-Detournay-DG-Merbis-Perez-Tempo-Troncoso '16

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right]=\frac{k}{2} n \delta_{n+m, 0}
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13 CFT with $u(1)$ currents
- Avery-Poojary-Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay-Giribet-González-Pino '15 centerless warped CFT
- Afshar-Detournay-DG-Oblak '15 twisted warped CFT
- Afshar-Detournay-DG-Merbis-Perez-Tempo-Troncoso '16 u(1)'s

Is there some set of bc's encompassing all of the above? Is there a loosest set of bc's?

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13 CFT with $u(1)$ currents
- Avery-Poojary-Suryanarayana '13 non-abelian warped CFT (sI(2))
- Donnay-Giribet-González-Pino '15 centerless warped CFT
- Afshar-Detournay-DG-Oblak '15 twisted warped CFT
- Afshar-Detournay-DG-Merbis-Perez-Tempo-Troncoso '16u(1)'s

Is there some set of bc's encompassing all of the above? Is there a loosest set of bc's?

- DG-Riegler '16: yes and yes

$$
\left[J_{n}^{a \pm}, J_{m}^{b \pm}\right]=(a-b) J_{n+m}^{a+b \pm}-k n \kappa_{a b} \delta_{n+m, 0}
$$

Brief history of boundary conditions in AdS_{3} (and their ASAs)

- Brown-Henneaux '86 CFT
- Compère-Song-Strominger '13 warped CFT
- Troessaert '13 CFT with $u(1)$ currents
- Avery-Poojary-Suryanarayana '13 non-abelian warped CFT (sl(2))
- Donnay-Giribet-González-Pino '15 centerless warped CFT
- Afshar-Detournay-DG-Oblak '15 twisted warped CFT
- Afshar-Detournay-DG-Merbis-Perez-Tempo-Troncoso '16 u(1)'s

Is there some set of bc's encompassing all of the above? Is there a loosest set of bc's?

- DG-Riegler '16: yes and yes ASA: sl(2) currents
(How) does this work in higher dimensions? Don't know (yet)!

What about non-AdS holography?

Key question
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in D dimensions?

What about flat space holography?

Key question
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

What about flat space holography?

Key question
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

See work by Bagchi et al.

What about flat space holography?

Key question
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

See work by Bagchi et al.
Would like concrete model for flat space holography

Outline

Motivation

Gravity in three dimensions

Gravity in two dimensions

Selected list of models
Black holes in (A)dS 2 , asymptotically flat or arbitrary spaces (Wheeler property)

Model	$U(X)$	$V(X)$
1. Schwarzschild (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2 b^{2} X$
4. CGHS (1992)	0	-2Λ
5. (A)dS2 ground state (1994)	$-\frac{a}{X}$	$B X$
6. Rindler ground state (1996)	$-\frac{a}{X}$	$B X^{a}$
7. Black Hole attractor (2003)	0	$B X^{-1}$
8. Spherically reduced gravity $(N>3)$	$-\frac{N-3}{(N-2) X}$	$-\lambda^{2} X^{(N-4) /(N-2)}$
9. All above: ab-family (1997)	$-\frac{a}{X}$	$B X^{a+b}$
10. Liouville gravity	a	$b e^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}+\frac{Q^{2}}{X}$
12. Schwarzschild-(A)dS	$-\frac{1}{2 X}$	$-\lambda^{2}-\ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^{2}-\Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^{2}}{X}-\frac{J}{4 X^{3}}-\Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2} X\left(c-X^{2}\right)$
16. KK red. conf. flat (2006)	$-\frac{1}{2} \tanh (X / 2)$	$A \sinh X$
17. 2D type 0A string Black Hole	$-\frac{1}{X}$	$-2 b^{2} X+\frac{b^{2} q^{2}}{8 \pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Choice of theory (review: see hep-th/0204253)

- Choice of bulk action

Einstein-Hilbert action not useful

Choice of theory (review: see hep-th/0204253)

- Choice of bulk action

Einstein-Hilbert action not useful
Dilaton gravity in two dimensions ($X=$ dilaton):

$$
I\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

- kinetic potential $U(X)$ and dilaton potential $V(X)$
- constant dilaton and linear dilaton solutions
- all solutions known in closed form globally for all choices of potentials
- simple choice (Jackiw-Teitelboim):

$$
U(X)=0 \quad V(X)=\Lambda X
$$

- for negative $\Lambda=-1 / \ell^{2}$ leads to AdS_{2} solutions

Choice of theory (review: see hep-th/0204253)

- Choice of bulk action

JT model:

$$
I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X R-2 \Lambda X]
$$

Leads to (A)dS ${ }_{2}$ solutions

$$
R=2 \Lambda
$$

Choice of theory (review: see hep-th/0204253)

- Choice of bulk action

JT model:

$$
I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X R-2 \Lambda X]
$$

Leads to $(A) d S_{2}$ solutions

$$
R=2 \Lambda
$$

- Flat space choice of bulk action

CGHS model

$$
I_{\mathrm{CGHS}}\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X R-2 \Lambda]
$$

Leads to flat solutions

$$
R=0
$$

Flat space holography proposal: Afshar, González, DG, Vassilevich '19

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)
Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)
Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\text {SYK }}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\text {SYK }}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{1 / 2}(\pi \tau / \beta)
$$

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\text {SYK }}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{2 \Delta}(\pi \tau / \beta) \quad \text { conformal weight } \Delta=1 / 4
$$

- $S L(2, \mathbb{R})$ covariant $x \rightarrow(a x+b) /(c x+d)$ with $x=\tan (\pi \tau / \beta)$

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\text {SYK }}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{1 / 2}(\pi \tau / \beta)
$$

- $S L(2, \mathbb{R})$ covariant $x \rightarrow(a x+b) /(c x+d)$ with $x=\tan (\pi \tau / \beta)$
- effective action at large N and large J : Schwarzian action

$$
\Gamma[h] \sim-\frac{N}{J} \int_{0}^{\beta} \mathrm{d} \tau\left[\dot{h}^{2}+\frac{1}{2}\{h ; \tau\}\right] \quad\{h ; \tau\}=\frac{\dddot{h}}{\dot{h}}-\frac{3}{2} \frac{\ddot{h}^{2}}{\dot{h}^{2}}
$$

Interlude: SYK in one slide (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large N (N is number of Majorana fermions ψ^{a})

- Hamiltonian $H_{\text {SYK }}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{1 / 2}(\pi \tau / \beta)
$$

- $S L(2, \mathbb{R})$ covariant $x \rightarrow(a x+b) /(c x+d)$ with $x=\tan (\pi \tau / \beta)$
- effective action at large N and large J : Schwarzian action

$$
\Gamma[h] \sim-\frac{N}{J} \int_{0}^{\beta} \mathrm{d} \tau\left[\dot{h}^{2}+\frac{1}{2}\{h ; \tau\}\right] \quad\{h ; \tau\}=\frac{\dddot{h}}{\dot{h}}-\frac{3}{2} \frac{\ddot{h}^{2}}{\dot{h}^{2}}
$$

- Schwarzian action also follows from JT gravity

Flat space holography and complex SYK 1911.05739 Q\&A's:

- Q1: What is the flat space analogue of JT?

Flat space holography and complex SYK 1911.05739
Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model

Flat space holography and complex SYK 1911.05739
Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?

Flat space holography and complex SYK 1911.05739
Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

Flat space holography and complex SYK 1911.05739 Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?

Flat space holography and complex SYK 1911.05739 Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped symmetries

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

and the two-dimensional Maxwell symmetries ($L_{1}, L_{0}, J_{-1}, J_{0}$)

Flat space holography and complex SYK 1911.05739 Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?

Flat space holography and complex SYK 1911.05739 Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?
- A4: Complex SYK for large specific heat and zero compressibility

Flat space holography and complex SYK 1911.05739 Q\&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?
- A4: Complex SYK for large specific heat and zero compressibility

Concrete model for flat space holography

Summary

- General lessons
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist

Summary

- General lessons
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist
- Specific recent topics
- most general boundary conditions in AdS_{3}
- near horizon soft hair (not mentioned in colloquium)
- flat space holography and complex SYK

Summary

- General lessons
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist
- Specific recent topics
- most general boundary conditions in AdS_{3}
- near horizon soft hair (not mentioned in colloquium)
- flat space holography and complex SYK
- Selected challenges for the future
- Good model for dS holography?
- Complete model of evaporating black hole?
- How general is holography?

Summary

- General lessons
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist
- Specific recent topics
- most general boundary conditions in AdS_{3}
- near horizon soft hair (not mentioned in colloquium)
- flat space holography and complex SYK
- Selected challenges for the future
- Good model for dS holography?
- Complete model of evaporating black hole?
- How general is holography?
- Numerous open questions in gravity and holography
- Many can be addressed in lower dimensions
- If you are stuck in higher D try $D=3$ or $D=2$

Thank you for your attention!

Simple example: abelian Chern-Simons

- abelian Chern-Simons action (on cylinder)

$$
I[A]=\frac{k}{4 \pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{~d} A
$$

Note: topological QFT with no local physical degrees of freedom

Simple example: abelian Chern-Simons

- abelian Chern-Simons action (on cylinder)

$$
I[A]=\frac{k}{4 \pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{~d} A
$$

- gauge trafos $\delta_{\epsilon} A=\mathrm{d} \epsilon$

Simple example: abelian Chern-Simons

- abelian Chern-Simons action (on cylinder)

$$
I[A]=\frac{k}{4 \pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{~d} A
$$

- gauge trafos $\delta_{\epsilon} A=\mathrm{d} \epsilon$
- canonical analysis yields boundary charges (background independent)

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \oint_{\partial \Sigma} \epsilon \delta A
$$

Simple example: abelian Chern-Simons

- abelian Chern-Simons action (on cylinder)

$$
I[A]=\frac{k}{4 \pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{~d} A
$$

- gauge trafos $\delta_{\epsilon} A=\mathrm{d} \epsilon$
- canonical analysis yields boundary charges (background independent)

$$
Q[\epsilon]=\frac{k}{2 \pi} \oint_{\partial \Sigma} \epsilon A
$$

- choice of bc's

$$
\lim _{r \rightarrow \infty} A=\mathcal{J}(\varphi) \mathrm{d} \varphi+\mu \mathrm{d} t \quad \delta \mathcal{J}=\mathcal{O}(1) \quad \delta \mu=0
$$

preserved by $\epsilon=\eta(\varphi)+$ subleading

Simple example: abelian Chern-Simons

- abelian Chern-Simons action (on cylinder)

$$
I[A]=\frac{k}{4 \pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{~d} A
$$

- gauge trafos $\delta_{\epsilon} A=\mathrm{d} \epsilon$
- canonical analysis yields boundary charges (background independent)

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \oint_{\partial \Sigma} \epsilon \delta A
$$

- choice of bc's

$$
\lim _{r \rightarrow \infty} A=\mathcal{J}(\varphi) \mathrm{d} \varphi+\mu \mathrm{d} t \quad \delta \mathcal{J}=\mathcal{O}(1) \quad \delta \mu=0
$$

preserved by $\epsilon=\eta(\varphi)+$ subleading
asymptotic symmetry algebra has non-trivial central term

$$
\left\{Q\left[\eta_{1}\right], Q\left[\eta_{2}\right]\right\}=\delta_{\eta_{1}} Q\left[\eta_{2}\right]=\frac{k}{2 \pi} \oint_{\partial_{\Sigma}} \eta_{2} \eta_{1}^{\prime} \mathrm{d} \varphi
$$

Simple example: abelian Chern-Simons

- abelian Chern-Simons action (on cylinder)

$$
I[A]=\frac{k}{4 \pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{~d} A
$$

- gauge trafos $\delta_{\epsilon} A=\mathrm{d} \epsilon$
- canonical analysis yields boundary charges (background independent)

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \oint_{\partial \Sigma} \epsilon \delta A
$$

- choice of bc's

$$
\lim _{r \rightarrow \infty} A=\mathcal{J}(\varphi) \mathrm{d} \varphi+\mu \mathrm{d} t \quad \delta \mathcal{J}=\mathcal{O}(1) \quad \delta \mu=0
$$

preserved by $\epsilon=\eta(\varphi)+$ subleading
asymptotic symmetry algebra has non-trivial central term

$$
\left\{Q\left[\eta_{1}\right], Q\left[\eta_{2}\right]\right\}=\delta_{\eta_{1}} Q\left[\eta_{2}\right]=\frac{k}{2 \pi} \oint_{\partial_{\Sigma}} \eta_{2} \eta_{1}^{\prime} \mathrm{d} \varphi
$$

- Fourier modes $J_{n} \sim \oint \mathcal{J} e^{i n \varphi}$ yield $u(1)_{k}$ current algebra, $i\left\{J_{n}, J_{m}\right\}=\frac{k}{2} n \delta_{n+m, 0}$

Edge states

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state

Edge states

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states

Edge states

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern-Simons example:
- asymptotic symmetry algebra (with $i\{,\} \rightarrow[$,$])$

$$
\left[J_{n}, J_{m}\right]=\frac{k}{2} n \delta_{n+m, 0}
$$

Edge states

```
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94
```

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern-Simons example:
- asymptotic symmetry algebra

$$
\left[J_{n}, J_{m}\right]=\frac{k}{2} n \delta_{n+m, 0}
$$

- define (highest weight) vacuum

$$
J_{n}|0\rangle=0 \quad \forall n \geq 0
$$

Edge states
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern-Simons example:
- asymptotic symmetry algebra

$$
\left[J_{n}, J_{m}\right]=\frac{k}{2} n \delta_{n+m, 0}
$$

- define vacuum

$$
J_{n}|0\rangle=0 \quad \forall n \geq 0
$$

- descendants of vacuum are examples of edge states

$$
\left|\operatorname{edge}\left(\left\{n_{i}\right\}\right)\right\rangle=\prod_{\left\{n_{i}>0\right\}} J_{-n_{i}}|0\rangle
$$

e.g.

$$
|\operatorname{edge}(\{1,1,42\})\rangle=J_{-1}^{2} J_{-42}|0\rangle
$$

Edge states

```
see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94
```

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern-Simons example:
- asymptotic symmetry algebra

$$
\left[J_{n}, J_{m}\right]=\frac{k}{2} n \delta_{n+m, 0}
$$

- define vacuum

$$
J_{n}|0\rangle=0 \quad \forall n \geq 0
$$

- descendants of vacuum are examples of edge states

$$
\left|\operatorname{edge}\left(\left\{n_{i}\right\}\right)\right\rangle=\prod_{\left\{n_{i}>0\right\}} J_{-n_{i}}|0\rangle
$$

e.g.

$$
|\operatorname{edge}(\{1,1,42\})\rangle=J_{-1}^{2} J_{-42}|0\rangle
$$

- theories with no local physical degrees of freedom can have edge states! \Rightarrow perhaps cleanest example of holography

