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Some open issues in gravity

I IR (classical gravity)

I asymptotic symmetries
I soft physics
I near horizon symmetries

I UV (quantum gravity)

I numerous conceptual issues
I black hole evaporation and unitarity
I black hole microstates

I UV/IR (holography)

I AdS/CFT
I precision holography
I generality of holography

I all issues above can be addressed in lower dimensions

I lower dimensions technically simpler

I hope to find “hydrogen atom” of quantum gravity
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Gravity in various dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)

I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)
I 1D: 0 (space or time but not both ⇒ no lightcones)

Caveat: just counting tensor components can be misleading as measure of complexity

Example: large D limit actually simple for some problems (Emparan et al.)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I 3D: lowest dimension exhibiting BHs and gravitons∗

I Simplest gravitational theories with BHs and gravitons in 3D

∗ at least off-shell; in higher derivative theories also on-shell
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Spectrum of BTZ black holes and related physical states
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Choice of theory

I Choice of bulk action
Pick Einstein–Hilbert action with negative cc (Λ = −1/`2)

IEH[g] = − 1

16πG

∫
M

d3x
√
−g
(
R+

2

`2

)
Usually choose also topology of M, e.g. cylinder

I Choice of formulation
I Choice of boundary conditions

Crucial to define theory — yields spectrum of ‘edge states’
Pick whatever suits best to describe relevant physics

I Goal: apply this to specific set of boundary
conditions inspired by near horizon physics

I Explain first in general how edge states emerge
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16πG

∫
M

d3x
√
−g
(
R+

2

`2

)
Usually choose also topology of M, e.g. cylinder

Main features:
I no local physical degrees of freedom
I all solutions locally and asymptotically AdS3

I rotating (BTZ) black hole solutions analogous to Kerr

ds2 = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2+

`2r2 dr2

(r2 − r2+)(r2 − r2−)
+r2

(
dϕ−r+r−

`r2
dt
)2

I conserved mass M = (r2+ + r2−)/`2 and angular mom. J = 2r+r−/`
I Bekenstein–Hawking entropy

SBH =
A

4G
=
πr+
2G

= 2π
√

c
6 L

+
0 + 2π

√
c
6 L
−
0

Cardy formula with c = 3`/(2G) and L±
0 = (`M ± J)/(8G)
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(
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1

6`2
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)

ea: dreibein, ωa = 1
2 ε

a
bc ω

bc: dualized spin-connection
Rewrite as gauge theory of Chern–Simons type (k = `/(4G))

ICS[A] =
k

4π

∫
M
〈A ∧ dA+ 2

3 A ∧A ∧A〉

A: so(2, 2) connection (Achucarro, Townsend ’86; Witten ’88)

A = eaPa+ωaJa [Pa, Pb] = εab
c Jc = [Ja, Jb] [Ja, Pb] = εab

c Pc

bilinear form: 〈Ja, Pb〉 = ηab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0
EOM: F = dA+A ∧A = 0 ⇒ gauge flat connections!
3d gravity = topological gauge theory

I Choice of boundary conditions
Crucial to define theory — yields spectrum of ‘edge states’
Pick whatever suits best to describe relevant physics

I Goal: apply this to specific set of boundary
conditions inspired by near horizon physics

I Explain first in general how edge states emerge
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k

4π

∫
M
〈A ∧ dA+ 2

3 A ∧A ∧A〉

I Choice of boundary conditions
Crucial to define theory — yields spectrum of ‘edge states’
Pick whatever suits best to describe relevant physics
‘holographic’ ansatz that often works in Chern–Simons formulation:

A = b−1
(

d+a
)
b b = b(r) a = at(t, ϕ) dt+ aϕ(t, ϕ) dϕ

with variations constrained as

δb = 0 δa = O(1)

all info about physical state captured by boundary connection a!
group element b describes radial dependence of connection

I Goal: apply this to specific set of boundary
conditions inspired by near horizon physics

I Explain first in general how edge states emerge
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Physics with boundaries
Science is a differential equation. Religion is a boundary condition. — Alan Turing

I Many QFT applications employ “natural boundary conditions”:
fields and fluctuations tend to zero asymptotically

I Notable exceptions exist in gauge theories with boundaries:
e.g. in Quantum Hall effect

I Natural boundary conditions not applicable in gravity:
metric must not vanish asymptotically

I Gauge or gravity theories in presence of (asymptotic) boundaries:
asymptotic symmetries

I Choice of boundary conditions determines asymptotic symmetries

All boundary condition preserving gauge transformations
(bcpgt’s) modulo trivial gauge transformations

Definition of asymptotic symmetries
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Asymptotic symmetries in gravity

I Impose some bc’s at (asymptotic or actual) boundary:

lim
r→rb

gµν(r, xi) = ḡµν(rb, x
i) + δgµν(rb, x

i)

I bcpgt’s generated by asymptotic Killing vectors ξ:

Lξgµν
!

= O(δgµν)

I typically, Killing vectors can be expanded radially

ξµ(rb, x
i) = ξµ(0)(rb, x

i)+

Lie bracket quotient algebra of asymptotic
Killing vectors modulo trivial diffeos

Definition of asymptotic symmetry algebra
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Canonical boundary charges
God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

I changing boundary conditions can change physical spectrum

I to distinguish asymptotic symmetries from trivial gauge trafos:
perform Hamiltonian analysis in presence of boundaries

I in Hamiltonian language: gauge generator G[ε] varies as

δG[ε] =

∫
Σ

(bulk term) ε δΦ−
∫
∂Σ

(boundary term) ε δΦ

not functionally differentiable in general (Σ: constant time slice)
I add boundary term to restore functional differentiability

δΓ[ε] = δG[ε] + δQ[ε]
!

=

∫
Σ

(bulk term) ε δΦ

I yields (variation of) canonical boundary charges

δQ[ε] =

∫
∂Σ

(boundary term) ε δΦ

Trivial gauge transformations generated by some ε with Q[ε] = 0
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ψ + αψ′
)∣∣
x=0+

= 0 α ∈ R+
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ψ(x)
∣∣
x≥0 =

√
2

α
e−x/α
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Simple example: abelian Chern–Simons

I abelian Chern–Simons action (on cylinder)

I[A] =
k

4π

∫
R×Σ

A ∧ dA

Note: topological QFT with no local physical degrees of freedom

I gauge trafos δεA = dε
I canonical analysis yields boundary charges (background independent)

Q[ε] =
k

2π

∮
∂Σ
εA

I choice of bc’s

lim
r→∞

A = J (ϕ) dϕ+ µ dt δJ = O(1) δµ = 0

preserved by ε = η(ϕ)+ subleading
I asymptotic symmetry algebra has non-trivial central term

{Q[η1], Q[η2]} = δη1Q[η2] =
k

2π

∮
∂Σ

η2 η
′
1 dϕ

I Fourier modes Jn ∼
∮
J einϕ yield u(1)k current algebra, i{Jn, Jm} = k

2
n δn+m, 0
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Edge states
see e.g. Halperin ’82, Witten ’89, or Balachandran, Chandar, Momen ’94

I changing boundary charges changes physical state

I boundary charges (if non-trivial) thus generate edge states
I back to abelian Chern–Simons example:

I asymptotic symmetry algebra

[Jn, Jm] = k
2 n δn+m, 0

I define vacuum
Jn|0〉 = 0 ∀n ≥ 0

I descendants of vacuum are examples of edge states

|edge({ni})〉 =
∏
{ni>0}

J−ni
|0〉

e.g.
|edge({1, 1, 42})〉 = J2

−1J−42|0〉

I theories with no local physical degrees of freedom can have edge
states! ⇒ perhaps cleanest example of holography
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Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

JT/SYK correspondence

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 15/32



Motivation for near horizon boundary conditions
Old idea by Strominger ’97 and Carlip ’98

Impose existence of non-extremal horizon
as boundary condition on state space

Main idea

Motivations:

I Want to ask conditional questions “given a black hole, what are the
probabilities for some scattering process”

I Want to understand Bekenstein–Hawking entropy

SBH =
A

4G
+O(ln(A/G))
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Motivation for near horizon boundary conditions
Old idea by Strominger ’97 and Carlip ’98

Impose existence of non-extremal horizon
as boundary condition on state space

Main idea

Motivations:
I Want to ask conditional questions “given a black hole, what are the

probabilities for some scattering process”
I Want to understand Bekenstein–Hawking entropy

SBH =
A

4G
+O(ln(A/G))

1. Why only semi-classical input for entropy?
2. What are microstates?
3. Semi-classical construction of microstates?
4. Does counting of microstates reproduce SBH?
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Explicit form of near horizon boundary conditions
See Donnay, Giribet, Gonzalez, Pino ’15 and Afshar et al ’16

Postulates of near horizon boundary conditions:

1. Rindler approximation

ds2 = −κ2r2 dt2 + dr2 + Ωab(t, x
c) dxa dxb + . . .

r → 0: Rindler horizon
κ: surface gravity
Ωab: metric transversal to horizon
. . . : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

δκ = 0

3. Metric transversal to horizon is state-dependent

δΩab = O(1)

4. Remaining terms fixed by consistency of canonical boundary charges

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 17/32

https://arxiv.org/abs/1511.08687
https://arxiv.org/abs/1603.04824


Explicit form of near horizon boundary conditions
See Donnay, Giribet, Gonzalez, Pino ’15 and Afshar et al ’16

Postulates of near horizon boundary conditions:

1. Rindler approximation

ds2 = −κ2r2 dt2 + dr2 + Ωab(t, x
c) dxa dxb + . . .

r → 0: Rindler horizon
κ: surface gravity
Ωab: metric transversal to horizon
. . . : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

δκ = 0

3. Metric transversal to horizon is state-dependent

δΩab = O(1)

4. Remaining terms fixed by consistency of canonical boundary charges

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 17/32

https://arxiv.org/abs/1511.08687
https://arxiv.org/abs/1603.04824


Explicit form of near horizon boundary conditions
See Donnay, Giribet, Gonzalez, Pino ’15 and Afshar et al ’16

Postulates of near horizon boundary conditions:

1. Rindler approximation

ds2 = −κ2r2 dt2 + dr2 + Ωab(t, x
c) dxa dxb + . . .

r → 0: Rindler horizon
κ: surface gravity
Ωab: metric transversal to horizon
. . . : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

δκ = 0

3. Metric transversal to horizon is state-dependent

δΩab = O(1)

4. Remaining terms fixed by consistency of canonical boundary charges

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 17/32

https://arxiv.org/abs/1511.08687
https://arxiv.org/abs/1603.04824


Explicit form of near horizon boundary conditions
See Donnay, Giribet, Gonzalez, Pino ’15 and Afshar et al ’16

Postulates of near horizon boundary conditions:

1. Rindler approximation

ds2 = −κ2r2 dt2 + dr2 + Ωab(t, x
c) dxa dxb + . . .

r → 0: Rindler horizon
κ: surface gravity
Ωab: metric transversal to horizon
. . . : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

δκ = 0

3. Metric transversal to horizon is state-dependent

δΩab = O(1)

4. Remaining terms fixed by consistency of canonical boundary charges

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 17/32

https://arxiv.org/abs/1511.08687
https://arxiv.org/abs/1603.04824


Explicit form of near horizon boundary conditions
See Donnay, Giribet, Gonzalez, Pino ’15 and Afshar et al ’16

Postulates of near horizon boundary conditions:

1. Rindler approximation

ds2 = −κ2r2 dt2 + dr2 + Ωab(t, x
c) dxa dxb + . . .

r → 0: Rindler horizon
κ: surface gravity
Ωab: metric transversal to horizon
. . . : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

δκ = 0

3. Metric transversal to horizon is state-dependent

δΩab = O(1)

4. Remaining terms fixed by consistency of canonical boundary charges

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 17/32

https://arxiv.org/abs/1511.08687
https://arxiv.org/abs/1603.04824


Black holes can be deformed into black flowers Afshar et al. 16

Horizon can get excited by area preserving shear-deformations
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Near horizon symmetries = “asymptotic symmetries” for near horizon bc’s
Restrict for the time being to AdS3 black holes (BTZ)

Simplification in 3d:

ds2 =
[
− κ2r2 dt2 + dr2 + γ2(ϕ) dϕ2 + 2κω(ϕ) r2 dt dϕ

] (
1 +O(r2)

)
I Map from round S1 to Fourier-excited S1: diffeo γ(ϕ) dϕ = dϕ̃

I
I Canonical analysis yields

Q±[ε±] ∼
∮

dϕ ε±(ϕ)
(
γ(ϕ)± ω(ϕ)

)
I Near horizon symmetry algebra Fourier modes J ±n = Q±[ε± = einϕ]

[J ±n , J ±m ] = 1
2 n δn+m, 0

I Isomorphic to Heisenberg algebras plus center

[Xn, Pm] = i δn,m [P0, Xn] = 0 = [X0, Pn]

P0 = J +
0 + J −0 , Xn = J +

n − J −−n, Pn = 2i/n(J +
−n + J −n ) for n 6= 0
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Unique features of near horizon boundary conditions

1. All states allowed by bc’s have same temperature

By contrast: asymptotically AdS or flat space bc’s allow for black
hole states at different masses and hence different temperatures

2. All states allowed by bc’s are regular
(in particular, they have no conical singularities at the horizon in the Euclidean

formulation)

3. There is a non-trivial reducibility parameter (= Killing vector)
4. Technical feature: in Chern–Simons formulation of 3d gravity simple

expressions in diagonal gauge

A± = b∓1
(

d+a±
)
b±1

a± = L0

((
γ(ϕ)± ω(ϕ)

)
dϕ+ κ dt

)
b = exp

[(
L+ − L−

)
r/2
]

L± are sl(2, R) raising/lowering generators
L0 is sl(2, R) Cartan subalgebra generator

5. Leads to soft Heisenberg hair (see next slides!)
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Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian = boundary charge associated with unit

time-translations
H = Q[∂t] = κP0

commutes with all generators J ±n
I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 21/32

https://arxiv.org/abs/1601.00921


Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?

I Near horizon Hamiltonian = boundary charge associated with unit
time-translations

H = Q[∂t] = κP0

commutes with all generators J ±n
I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 21/32

https://arxiv.org/abs/1601.00921


Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian = boundary charge associated with unit

time-translations∗

H = Q[∂t] = κP0

commutes with all generators J ±n

∗ units defined by specifying κ

I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 21/32

https://arxiv.org/abs/1601.00921


Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian = boundary charge associated with unit

time-translations
H = Q[∂t] = κP0

commutes with all generators J ±n
I H-eigenvalue of black flower = H-eigenvalue of black hole

I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 21/32

https://arxiv.org/abs/1601.00921


Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian = boundary charge associated with unit

time-translations
H = Q[∂t] = κP0

commutes with all generators J ±n
I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 21/32

https://arxiv.org/abs/1601.00921


Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian = boundary charge associated with unit

time-translations
H = Q[∂t] = κP0

commutes with all generators J ±n
I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16

Call it “soft Heisenberg hair”

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 21/32

https://arxiv.org/abs/1601.00921


Soft Heisenberg hair for BTZ

I Black flower excitations = hair of black holes
Algebraically, excitations from descendants

|black flower〉 ∼
∏
n±
i >0

J +

−n+
i

J −−n−
i

|black hole〉

I What is energy of such excitations?
I Near horizon Hamiltonian = boundary charge associated with unit

time-translations
H = Q[∂t] = κP0

commutes with all generators J ±n
I H-eigenvalue of black flower = H-eigenvalue of black hole
I Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of
Hawking, Perry and Strominger ’16
Call it “soft Heisenberg hair”

Daniel Grumiller — Gravity and holography in lower dimensions Near horizon soft hair 21/32

https://arxiv.org/abs/1601.00921


New entropy formula

Express entropy in terms of near horizon charges:

S = 2π P0

I Entropy = parity inv. combination of near horizon charge zero modes
I Obeys simple near horizon first law

δS =
2π

κ
δ
(
κP0

)
⇒ T δS = δH

with Hawking–Unruh-temperature

T =
κ

2π
I Formula is universal (even when Bekenstein–Hawking does not apply)

higher derivative theories, higher spin theories, higher-dimensional
theories, (A)dS, flat space, warped AdS, ...

I entropy in Cardy-like form (but linear in charges!)

Can we understand entropy law microscopically?
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Semi-classical microstates?

Given our soft Heisenberg hair, attack now entropy questions

1. Why only semi-classical input for entropy?
2. What are microstates?
3. Semi-classical construction of microstates?
4. Does counting of microstates reproduce SBH?

Regarding 1. and 3.: may expect decoupling of scales so that description
of microstates does not need info about UV completion, but rather only
some semi-classical “Bohr-like” input

Evidence for this: universality of BH entropy for large black holes

SBH =
A

4G
+ . . .

Assume it is possible to construct microstates for large
black holes semi-classically using soft-hair excitations

Possible obstacles:

I TMI: no upper bound on soft hair excitations
I possible resolution: cut-off on soft hair spectrum!
I TLI Mirbabayi, Porrati ’16; Bousso, Porrati ’17; Donnelly, Giddings ’17: for

asymptotic observer no information from soft hair states
I possible resolution: do not consider asymptotic but near horizon

observer (i.e., employ near horizon bc’s and symmetry algebra)
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Fluff proposal (with Afshar, Sheikh-Jabbari ’16 and also with Yavartanoo ’17)

Semi-classical BTZ black hole microstates as near horizon descendants of vacuum

Highest weight vacuum |0〉
J ±n |0〉 = 0 ∀n ≥ 0

Black hole microstates:

|B({n±i })〉 =
∏
{n±
i >0}

(
J +

−n+
i

· J −−n−
i

)
|0〉

subject to spectral constraint depending on black hole mass M and
angular momentum J (measured by asymptotic observer)∑

i

n±i =
c

2
(M ± J)

derived from Bohr-type quantization conditions
I quantization of central charge c = 3/(2G) in integers
I quantization of conical deficit angles in integers over c
I black hole/particle correspondence

(black hole = gas of coherent states of particles on AdS3)
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Selected list of models
Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

Model U(X) V (X)

1. Schwarzschild (1916) − 1
2X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX
3. Witten Black Hole (1991) − 1

X
−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − a
X

BX
6. Rindler ground state (1996) − a

X
BXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3
(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − a
X

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordström (1916) − 1
2X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 1
2X

−λ2 − `X
13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X
− J

4X3 − ΛX
15. KK reduced CS (2003) 0 1

2
X(c−X2)

16. KK red. conf. flat (2006) − 1
2

tanh (X/2) A sinhX

17. 2D type 0A string Black Hole − 1
X

−2b2X + b2q2

8π

18. exact string Black Hole (2005) lengthy lengthy
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Choice of theory (review: see hep-th/0204253)

I Choice of bulk action
Einstein–Hilbert action not useful

I Choice of formulation

I Choice of boundary conditions
Analogous to AdS3:

A = b−1(d+a) b X = b−1 x b

with b = b(ρ), a = aτ (τ) dτ , x = x(τ), δb = 0 and δa = O(1) = δx
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Choice of theory (review: see hep-th/0204253)

I Choice of bulk action
Einstein–Hilbert action not useful

Dilaton gravity in two dimensions (X = dilaton):

I[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g|
[
XR− U(X)(∇X)2 − 2V (X)

]
I kinetic potential U(X) and dilaton potential V (X)
I constant dilaton and linear dilaton solutions
I all solutions known in closed form globally for all choices of potentials
I simple choice (Jackiw–Teitelboim):

U(X) = 0 V (X) = ΛX

I for negative Λ = −1/`2 leads to AdS2 solutions

I Choice of formulation
I Choice of boundary conditions

Analogous to AdS3:

A = b−1(d+a) b X = b−1 x b

with b = b(ρ), a = aτ (τ) dτ , x = x(τ), δb = 0 and δa = O(1) = δx
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Choice of theory (review: see hep-th/0204253)

I Choice of bulk action
JT model:

IJT[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g| [XR− 2ΛX]

I Choice of formulation
Use again Cartan formulation

ICartan[ea, ω, Xa, X] =
1

8πG2

∫
M

(
XaTa +XR− εabea ∧ eb ΛX

)
torsion 2-form T a = dea + εabω ∧ eb and curvature 2-form R = dω

I Choice of boundary conditions
Analogous to AdS3:

A = b−1(d+a) b X = b−1 x b

with b = b(ρ), a = aτ (τ) dτ , x = x(τ), δb = 0 and δa = O(1) = δx
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∫
M

(
XaTa +XR− εabea ∧ eb ΛX

)
torsion 2-form T a = dea + εabω ∧ eb and curvature 2-form R = dω

Rewrite as gauge theory of BF-type (k = 1/(4G2)):

IBF[X , A] =
k

2π

∫
M
〈X F 〉

F = dA+A ∧A with A ∈ sl(2,R); co-adjoint scalars X
A = eaPa + ωJ with [Pa, J ] = εa

bPb and [Pa, Pb] = Λεab J

I Choice of boundary conditions
Analogous to AdS3:

A = b−1(d+a) b X = b−1 x b

with b = b(ρ), a = aτ (τ) dτ , x = x(τ), δb = 0 and δa = O(1) = δx
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16πG2

∫
M

d2x
√
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I Choice of formulation
Gauge theory of BF-type (k = 1/(4G2)):

IBF[X , A] =
k

2π

∫
M
〈X F 〉 ⇒ IBF[X , A]

∣∣
EOM

= 0

F = dA+A ∧A with A ∈ sl(2,R); co-adjoint scalars X
I Choice of boundary conditions

Analogous to AdS3:

A = b−1(d+a) b X = b−1 x b

with b = b(ρ), a = aτ (τ) dτ , x = x(τ), δb = 0 and δa = O(1) = δx
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Interlude: SYK in one slide (Kitaev ’15; Maldacena, Stanford ’16)

Sachdev–Ye–Kitaev model = strongly interacting quantum system
solvable at large N (N is number of Majorana fermions ψa)

I Hamiltonian HSYK = jabcdψ
aψbψcψd with a, b, c, d = 1 . . . N

I Gaussian random interaction 〈j2
abcd〉 = J2/N3

I 2-point function G(τ) = 〈ψa(τ)ψa(0)〉
I sum melonic diagrams G(ω) = 1/(−iω−Σ(ω)) with Σ(τ) = J2G3(τ)
I in IR limit τJ � 1 exactly soluble, e.g. on circle (τ ∼ τ + β)

G(τ) ∼ sign(τ)/ sin(πτ/β)

I SL(2, R) covariant x→ (ax+ b)/(cx+ d) with x = tan(πτ/β)
I effective action at large N and large J : Schwarzian action

Γ[τ ] ∼ −N
J

β∫
0

du
[
τ̇2 + 1

2 {τ ; u}
]

{τ ; u} =

...
τ

τ̇
− 3

2

τ̈2

τ̇2
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Boundary and integrability conditions for JT
See DG, McNees, Salzer, Valcárcel, Vassilevich ’17 and González, DG, Salzer ’18

I Analogous to Brown–Henneaux bc’s in AdS3:

aτ = L1 + L(τ)L−1 b = exp (ρL0)

Ln: usual sl(2) generators

[Ln, Lm] = (n−m)Ln+m

I bc-preserving gauge trafos ε act on L by infinitesimal Schwarzian

δεL = εL′ + 2ε′L+ 1
2 ε
′′′

I integrability condition (fτ has fixed zero mode 1/ȳ)

aτ = fτ x+ g−1∂τg

I rewrite fτ = 1
ȳ∂τf , with well-defined diffeo, f(τ + β) = f(τ) + β

I finite on-shell action, Γ|F=0 = −k β C/(2π ȳ)
I defining inverse diffeo, f−1(u) := τ(u) and inserting into Casimir

Γ|F=0[τ ] = −k ȳ
2π

∫ β

0
du
[
τ̇2L+ 1

2 {τ ; u}
]

{τ ; u} =

...
τ

τ̇
− 3

2

τ̈2

τ̇2

yields Schwarzian action, with k ∼ N and 1/ȳ ∼ J
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I defining inverse diffeo, f−1(u) := τ(u) and inserting into Casimir

Γ|F=0[τ ] = −k ȳ
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τ̇2

yields Schwarzian action, with k ∼ N and 1/ȳ ∼ J
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Boundary and integrability conditions for JT
See DG, McNees, Salzer, Valcárcel, Vassilevich ’17 and González, DG, Salzer ’18

I Analogous to Brown–Henneaux bc’s in AdS3:

aτ = L1 + L(τ)L−1 b = exp (ρL0)

I bc-preserving gauge trafos ε act on L by infinitesimal Schwarzian

δεL = εL′ + 2ε′L+ 1
2 ε
′′′

I integrability condition (fτ has fixed zero mode 1/ȳ)

aτ = fτ x+ g−1∂τg

I rewrite fτ = 1
ȳ∂τf , with well-defined diffeo, f(τ + β) = f(τ) + β

I finite on-shell action, Γ|F=0 = −k β C/(2π ȳ)
I defining inverse diffeo, f−1(u) := τ(u) and inserting into Casimir

Γ|F=0[τ ] = −k ȳ
2π

∫ β

0
du
[
τ̇2L+ 1

2 {τ ; u}
]

{τ ; u} =
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τ

τ̇
− 3

2

τ̈2

τ̇2
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Summary

I Lower dimensional holography
I Gauge theory formulation convenient
I Boundary conditions crucial
I Asymptotic symmetries give clues about dual QFT
I Physical states in form of edge states can exist

I Specific recent topics
I Near horizon soft hair
I JT/SYK correspondence

I Selected challenges for the future
I Good model for flat space holography?
I Complete model of evaporating black hole?
I How general is holography?

I Numerous open questions in gravity and holography

I Many can be addressed in lower dimensions

I If you are stuck in higher D try D = 3 or D = 2
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Thank you for your attention!
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