Gravity and holography in lower dimensions

Daniel Grumiller

Institute for Theoretical Physics TU Wien

Seminar talk, U. of Surrey, Octobre 2019

"O day and night, but this is wondrous strange"

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

 JT/SYK correspondence

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

JT/SYK correspondence

- asymptotic symmetries
- soft physics
- near horizon symmetries

- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)

- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates

- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates
- UV/IR (holography)

► IR (classical gravity)

- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates

UV/IR (holography)

- AdS/CFT
- precision holography
- generality of holography

► IR (classical gravity)

- asymptotic symmetries
- soft physics
- near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates

UV/IR (holography)

- AdS/CFT
- precision holography
- generality of holography

all issues above can be addressed in lower dimensions

- Iower dimensions technically simpler
- hope to find "hydrogen atom" of quantum gravity

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)

Caveat: just counting tensor components can be misleading as measure of complexity

Example: large D limit actually simple for some problems (Emparan et al.)

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- ▶ 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- ▶ 1D: 0 (space or time but not both \Rightarrow no lightcones)

Apply as mantra the slogan "as simple as possible, but not simpler"

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- ▶ 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)

2D: lowest dimension exhibiting black holes (BHs)

Simplest gravitational theories with BHs in 2D

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- ▶ 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)

2D: lowest dimension exhibiting black holes (BHs)

Simplest gravitational theories with BHs in 2D

3D: lowest dimension exhibiting BHs and gravitons*

Simplest gravitational theories with BHs and gravitons in 3D

* at least off-shell; in higher derivative theories also on-shell

Daniel Grumiller - Gravity and holography in lower dimensions

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

JT/SYK correspondence

Spectrum of BTZ black holes and related physical states

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2)$

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of \mathcal{M} , e.g. cylinder

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2)$

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of $\ensuremath{\mathcal{M}}$, e.g. cylinder Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS₃
- rotating (BTZ) black hole solutions analogous to Kerr

$$\mathrm{d}s^{2} = -\frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}} \,\mathrm{d}t^{2} + \frac{\ell^{2}r^{2}\,\mathrm{d}r^{2}}{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})} + r^{2}\left(\,\mathrm{d}\varphi - \frac{r_{+}r_{-}}{\ell r^{2}}\,\mathrm{d}t\right)^{2}$$

▶ conserved mass M = (r₊² + r₋²)/ℓ² and angular mom. J = 2r₊r₋/ℓ
▶ Bekenstein-Hawking entropy

$$S_{\rm BH} = \frac{A}{4G} = \frac{\pi r_+}{2G} = 2\pi \sqrt{\frac{c}{6} L_0^+} + 2\pi \sqrt{\frac{c}{6} L_0^-}$$

Cardy formula with $c=3\ell/(2G)$ and $L_0^\pm=(\ell M\pm J)/(8G)$

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda = -1/\ell^2$)

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of \mathcal{M} , e.g. cylinder

• Choice of formulation Pick Cartan formulation $(R^a = d\omega^a + \frac{1}{2} \epsilon^a{}_{bc} \omega^b \wedge \omega^c)$

$$I_{\rm EHP}[e^a,\,\omega^a] = \frac{1}{8\pi G} \,\int_{\mathcal{M}} \left(e_a \wedge R^a + \frac{1}{6\ell^2} \,\epsilon_{abc} \,e^a \wedge e^b \wedge e^c \right)$$

 $e^a {:}$ dreibein, $\omega^a = \frac{1}{2} \, \epsilon^a{}_{bc} \, \omega^{bc} {:}$ dualized spin-connection

Choice of bulk action

Pick Einstein–Hilbert action with negative cc $(\Lambda=-1/\ell^2)$

Choice of formulation

Pick Cartan formulation ($R^a = \mathrm{d}\omega^a + \frac{1}{2}\,\epsilon^a{}_{bc}\,\omega^b\wedge\omega^c$)

$$I_{\rm EHP}[e^a,\,\omega^a] = \frac{1}{8\pi G} \,\int_{\mathcal{M}} \left(e_a \wedge R^a + \frac{1}{6\ell^2} \,\epsilon_{abc} \,e^a \wedge e^b \wedge e^c \right)$$

 e^a : dreibein, $\omega^a = \frac{1}{2} \epsilon^a{}_{bc} \omega^{bc}$: dualized spin-connection Rewrite as gauge theory of Chern–Simons type ($k = \ell/(4G)$)

$$I_{\rm CS}[A] = \frac{k}{4\pi} \int_{\mathcal{M}} \langle A \wedge \mathrm{d}A + \frac{2}{3} A \wedge A \wedge A \rangle$$

A: so(2,2) connection (Achucarro, Townsend '86; Witten '88) $A = e^a P_a + \omega^a J_a$ $[P_a, P_b] = \epsilon_{ab}{}^c J_c = [J_a, J_b]$ $[J_a, P_b] = \epsilon_{ab}{}^c P_c$ bilinear form: $\langle J_a, P_b \rangle = \eta_{ab}$, $\langle J_a, J_b \rangle = \langle P_a, P_b \rangle = 0$ EOM: $F = dA + A \land A = 0 \Rightarrow$ gauge flat connections! 3d gravity = topological gauge theory

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2)$

• Choice of formulation Gauge theory of Chern–Simons type $(k = \ell/(4G))$

$$I_{\rm CS}[A] = \frac{k}{4\pi} \int_{\mathcal{M}} \langle A \wedge \mathrm{d}A + \frac{2}{3} A \wedge A \wedge A \rangle$$

Choice of boundary conditions

Crucial to define theory — yields spectrum of 'edge states' Pick whatever suits best to describe relevant physics

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2)$

Choice of formulation

Gauge theory of Chern–Simons type ($k=\ell/(4G)$)

$$I_{\rm CS}[A] = \frac{k}{4\pi} \int_{\mathcal{M}} \langle A \wedge \mathrm{d}A + \frac{2}{3} A \wedge A \wedge A \rangle$$

Choice of boundary conditions

Crucial to define theory — yields spectrum of 'edge states' Pick whatever suits best to describe relevant physics 'holographic' ansatz that often works in Chern–Simons formulation:

 $A = b^{-1} (d+a)b \qquad b = b(r) \qquad a = a_t(t, \varphi) dt + a_{\varphi}(t, \varphi) d\varphi$

with variations constrained as

$$\delta b = 0 \qquad \qquad \delta a = \mathcal{O}(1)$$

all info about physical state captured by boundary connection a!

group element \boldsymbol{b} describes radial dependence of connection

Daniel Grumiller - Gravity and holography in lower dimensions

Choice of bulk action

Pick Einstein–Hilbert action with negative cc ($\Lambda=-1/\ell^2$)

• Choice of formulation Gauge theory of Chern–Simons type $(k = \ell/(4G))$

$$I_{\rm CS}[A] = \frac{k}{4\pi} \int_{\mathcal{M}} \langle A \wedge \mathrm{d}A + \frac{2}{3} A \wedge A \wedge A \rangle$$

Choice of boundary conditions
Crucial to define theory — yields spectrum of 'edge states'
Pick whatever suits best to describe relevant physics

Goal: apply this to specific set of boundary conditions inspired by near horizon physics
Explain first in general how edge states emerge

Science is a differential equation. Religion is a boundary condition. — Alan Turing

Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Science is a differential equation. Religion is a boundary condition. — Alan Turing

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries
- Choice of boundary conditions determines asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate r_b : value of *r* at boundary (could be ∞)

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, \, \boldsymbol{x}^i) = \bar{g}_{\mu\nu}(r_b, \, \boldsymbol{x}^i) + \delta g_{\mu\nu}(r_b, \, \boldsymbol{x}^i)$$

r: some convenient ("radial") coordinate

- r_b : value of r at boundary (could be ∞)
- x^i : remaining coordinates ("boundary" coordinates)

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

- $r_b:$ value of r at boundary (could be $\infty)$
- x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

- x^i : remaining coordinates
- $g_{\mu\nu}$: metric compatible with bc's
- $\bar{g}_{\mu\nu}$: (asymptotic) background metric

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

 $\delta g_{\mu\nu}$: fluctuations permitted by bc's
Asymptotic symmetries in gravity

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

- $r_b:$ value of r at boundary (could be $\infty)$
- x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

 $\delta g_{\mu\nu}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

 $\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

Asymptotic symmetries in gravity

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

- r_b : value of r at boundary (could be ∞)
- x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

 $\delta g_{\mu\nu}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

 $\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$

typically, Killing vectors can be expanded radially

 $\xi^{\mu}(r_b, x^i) = \xi^{\mu}_{(0)}(r_b, x^i) + \text{subleading terms}$

 $\xi^{\mu}_{(0)}(r_b,\,x^i)$: generates asymptotic symmetries subleading terms: generate trivial diffeos

Asymptotic symmetries in gravity

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

 $g_{\mu\nu}$: metric compatible with bc's $\bar{g}_{\mu\nu}$: (asymptotic) background metric $\delta g_{\mu\nu}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

$$\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

typically, Killing vectors can be expanded radially

$$\xi^{\mu}(r_b, x^i) = \xi^{\mu}_{(0)}(r_b, x^i) + \text{trivial diffeos}$$

Definition of asymptotic symmetry algebra

Lie bracket quotient algebra of asymptotic Killing vectors modulo trivial diffeos

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

 changing boundary conditions can change physical spectrum simple example: quantum mechanics of free particle on half-line x > 0

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line $x \ge 0$ time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line $x \ge 0$ time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- Dirichlet bc's: no bound states
- Neumann bc's: no bound states
- Robin bc's

$$(\psi + \alpha \psi')\big|_{x=0^+} = 0 \qquad \alpha \in \mathbb{R}^+$$

lead to one bound state

$$\psi(x)\big|_{x\geq 0} = \sqrt{\frac{2}{\alpha}} e^{-x/\alpha}$$

with energy $E=-1/\alpha^2,$ localized exponentially near x=0

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: either use Noether's second theorem and covariant phase space analysis or perform Hamiltonian analysis in presence of boundaries

Some references:

- covariant phase space: Lee, Wald '90, Iyer, Wald '94 and Barnich, Brandt '02
- review: see Compère, Fiorucci '18 and refs. therein
- canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim '74 and Brown, Henneaux '86
- review: see Bañados, Reyes '16 and refs. therein

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

- $\Phi :$ shorthand for phase space variables
- $\epsilon:$ smearing function/parameter of gauge trafos
- δ : arbitrary field variation

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \epsilon \, \delta\Phi$$

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \,\epsilon \,\delta\Phi$$

yields (variation of) canonical boundary charges

$$\delta Q[\epsilon] = \int_{\partial \Sigma} (\text{boundary term}) \epsilon \, \delta \Phi$$

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- ▶ in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \epsilon \, \delta\Phi$$

yields (variation of) canonical boundary charges

$$\delta Q[\epsilon] = \int_{\partial \Sigma} (\text{boundary term}) \epsilon \, \delta \Phi$$

Trivial gauge transformations generated by some ϵ with $Q[\epsilon]=0$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

Note: topological QFT with no local physical degrees of freedom

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

• gauge trafos $\delta_{\epsilon} A = d\epsilon$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$\delta Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, \delta A$$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, A$$

choice of bc's

 $\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t \qquad \delta \mathcal{J} = \mathcal{O}(1) \quad \delta \mu = 0$

preserved by $\epsilon = \eta(\varphi) + {\rm subleading}$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$\delta Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, \delta A$$

choice of bc's

$$\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t \qquad \delta \mathcal{J} = \mathcal{O}(1) \quad \delta \mu = 0$$

preserved by $\epsilon = \eta(\varphi) + {\rm subleading}$

asymptotic symmetry algebra has non-trivial central term

$$\{Q[\eta_1],\,Q[\eta_2]\}=\delta_{\eta_1}Q[\eta_2]=rac{k}{2\pi}\,\oint_{\partial_\Sigma}\eta_2\,\eta_1'\,\mathrm{d}arphi$$

abelian Chern–Simons action (on cylinder)

$$I[A] = \frac{k}{4\pi} \int_{\mathbb{R} \times \Sigma} A \wedge \mathrm{d}A$$

- gauge trafos $\delta_{\epsilon} A = d\epsilon$
- canonical analysis yields boundary charges (background independent)

$$\delta Q[\epsilon] = \frac{k}{2\pi} \oint_{\partial \Sigma} \epsilon \, \delta A$$

choice of bc's

$$\lim_{r \to \infty} A = \mathcal{J}(\varphi) \, \mathrm{d}\varphi + \mu \, \mathrm{d}t \qquad \delta \mathcal{J} = \mathcal{O}(1) \quad \delta \mu = 0$$

preserved by $\epsilon=\eta(\varphi)+{\rm subleading}$

asymptotic symmetry algebra has non-trivial central term

$$\{Q[\eta_1],\,Q[\eta_2]\}=\delta_{\eta_1}Q[\eta_2]=rac{k}{2\pi}\,\oint_{\partial_\Sigma}\eta_2\,\eta_1'\,\mathrm{d}arphi$$

Fourier modes $J_n \sim \oint \mathcal{J}e^{in\varphi}$ yield $u(1)_k$ current algebra, $i\{J_n, J_m\} = \frac{k}{2}n \,\delta_{n+m,0}$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

changing boundary charges changes physical state

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:

• asymptotic symmetry algebra (with $i\{,\} \rightarrow [,]$)

 $[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m,0}$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
 - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m, 0}$$

define (highest weight) vacuum

$$J_n |0\rangle = 0 \qquad \forall n \ge 0$$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
 - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m, 0}$$

define vacuum

$$J_n |0\rangle = 0 \qquad \forall n \ge 0$$

descendants of vacuum are examples of edge states

$$|\text{edge}(\{n_i\})\rangle = \prod_{\{n_i>0\}} J_{-n_i}|0\rangle$$

e.g.

$$|\text{edge}(\{1,1,42\})\rangle = J_{-1}^2 J_{-42}|0\rangle$$

see e.g. Halperin '82, Witten '89, or Balachandran, Chandar, Momen '94

- changing boundary charges changes physical state
- boundary charges (if non-trivial) thus generate edge states
- back to abelian Chern–Simons example:
 - asymptotic symmetry algebra

$$[J_n, J_m] = \frac{k}{2} n \,\delta_{n+m, 0}$$

define vacuum

$$J_n |0\rangle = 0 \qquad \forall n \ge 0$$

descendants of vacuum are examples of edge states

$$|\text{edge}(\{n_i\})\rangle = \prod_{\{n_i>0\}} J_{-n_i}|0\rangle$$

e.g.

$$|\text{edge}(\{1, 1, 42\})\rangle = J_{-1}^2 J_{-42} |0\rangle$$

► theories with no local physical degrees of freedom can have edge states! ⇒ perhaps cleanest example of holography

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

JT/SYK correspondence

Motivations:

Motivations:

Want to ask conditional questions "given a black hole, what are the probabilities for some scattering process"

Motivations:

- Want to ask conditional questions "given a black hole, what are the probabilities for some scattering process"
- Want to understand Bekenstein–Hawking entropy

$$S_{\rm BH} = \frac{A}{4G} + \mathcal{O}(\ln(A/G))$$

Motivations:

- Want to ask conditional questions "given a black hole, what are the probabilities for some scattering process"
- Want to understand Bekenstein–Hawking entropy

$$S_{\rm BH} = \frac{A}{4G} + \mathcal{O}(\ln(A/G))$$

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Postulates of near horizon boundary conditions:

Postulates of near horizon boundary conditions:

1. Rindler approximation

 $\mathrm{d}s^2 = -\kappa^2 r^2 \,\mathrm{d}t^2 + \mathrm{d}r^2 + \Omega_{ab}(t, \, x^c) \,\mathrm{d}x^a \,\mathrm{d}x^b + \dots$

 $r \rightarrow 0$: Rindler horizon κ : surface gravity Ω_{ab} : metric transversal to horizon ...: terms of higher order in r or rotation terms

Postulates of near horizon boundary conditions:

1. Rindler approximation

 $\mathrm{d}s^2 = -\kappa^2 r^2 \, \mathrm{d}t^2 + \mathrm{d}r^2 + \Omega_{ab}(t, \, x^c) \, \mathrm{d}x^a \, \mathrm{d}x^b + \dots$

- $r \rightarrow 0:$ Rindler horizon
- κ : surface gravity
- $\Omega_{ab}:$ metric transversal to horizon
- \ldots : terms of higher order in r or rotation terms
- 2. Surface gravity is state-independent

$$\delta\kappa = 0$$

Postulates of near horizon boundary conditions:

1. Rindler approximation

 $\mathrm{d}s^2 = -\kappa^2 r^2 \,\mathrm{d}t^2 + \mathrm{d}r^2 + \Omega_{ab}(t, \, x^c) \,\mathrm{d}x^a \,\mathrm{d}x^b + \dots$

 $r \rightarrow 0$: Rindler horizon κ : surface gravity Ω_{ab} : metric transversal to horizon ...: terms of higher order in r or rotation terms 2. Surface gravity is state-independent

 $\delta \kappa = 0$

3. Metric transversal to horizon is state-dependent

$$\delta\Omega_{ab} = \mathcal{O}(1)$$

Postulates of near horizon boundary conditions:

1. Rindler approximation

 $\mathrm{d}s^2 = -\kappa^2 r^2 \,\mathrm{d}t^2 + \mathrm{d}r^2 + \Omega_{ab}(t, \, x^c) \,\mathrm{d}x^a \,\mathrm{d}x^b + \dots$

- $r \rightarrow 0$: Rindler horizon κ : surface gravity Ω_{ab} : metric transversal to horizon ...: terms of higher order in r or rotation terms Surface gravity is state independent
- 2. Surface gravity is state-independent

 $\delta\kappa=0$

3. Metric transversal to horizon is state-dependent

$$\delta\Omega_{ab} = \mathcal{O}(1)$$

4. Remaining terms fixed by consistency of canonical boundary charges

Black holes can be deformed into black flowers Afshar et al. 16

Horizon can get excited by area preserving shear-deformations

Daniel Grumiller - Gravity and holography in lower dimensions

Near horizon symmetries = "asymptotic symmetries" for near horizon bc's Restrict for the time being to AdS_3 black holes (BTZ)

Simplification in 3d:

$$\mathrm{d}s^{2} = \left[-\kappa^{2}r^{2} \mathrm{d}t^{2} + \mathrm{d}r^{2} + \gamma^{2}(\varphi) \mathrm{d}\varphi^{2} + 2\kappa\omega(\varphi)r^{2} \mathrm{d}t \mathrm{d}\varphi\right] \left(1 + \mathcal{O}(r^{2})\right)$$

▶ Map from round S^1 to Fourier-excited S^1 : diffeo $\gamma(\varphi) d\varphi = d\tilde{\varphi}$
Simplification in 3d:

$$\mathrm{d}s^{2} = \left[-\kappa^{2}r^{2} \mathrm{d}t^{2} + \mathrm{d}r^{2} + \gamma^{2}(\varphi) \mathrm{d}\varphi^{2} + 2\kappa\omega(\varphi)r^{2} \mathrm{d}t \mathrm{d}\varphi\right] \left(1 + \mathcal{O}(r^{2})\right)$$

 Map from round S¹ to Fourier-excited S¹: diffeo γ(φ) dφ = dφ̃
 Trivial or non-trivial? Answer provided by boundary charges!

Simplification in 3d:

$$\mathrm{d}s^{2} = \left[-\kappa^{2}r^{2} \mathrm{d}t^{2} + \mathrm{d}r^{2} + \gamma^{2}(\varphi) \mathrm{d}\varphi^{2} + 2\kappa\omega(\varphi)r^{2} \mathrm{d}t \mathrm{d}\varphi\right] \left(1 + \mathcal{O}(r^{2})\right)$$

▶ Map from round S^1 to Fourier-excited S^1 : diffeo $\gamma(\varphi) d\varphi = d\tilde{\varphi}$ ▶ Non-trivial diffeo!

Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint \mathrm{d}\varphi \, \epsilon^{\pm}(\varphi) \left(\gamma(\varphi) \pm \omega(\varphi)\right)$$

where ϵ^{\pm} are functions appearing in asymptotic Killing vectors charge conservation follows from on-shell relations $\partial_t \gamma = 0 = \partial_t \omega$ explains last word in title: γ and ω are hair of black hole

Simplification in 3d:

$$\mathrm{d}s^{2} = \left[-\kappa^{2}r^{2} \mathrm{d}t^{2} + \mathrm{d}r^{2} + \gamma^{2}(\varphi) \mathrm{d}\varphi^{2} + 2\kappa\omega(\varphi)r^{2} \mathrm{d}t \mathrm{d}\varphi\right] \left(1 + \mathcal{O}(r^{2})\right)$$

- Map from round S¹ to Fourier-excited S¹: diffeo γ(φ) dφ = dφ̃
 Non-trivial diffeo!
- Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint \mathrm{d}\varphi \, \epsilon^{\pm}(\varphi) \left(\gamma(\varphi) \pm \omega(\varphi)\right)$$

► Near horizon symmetry algebra Fourier modes $\mathcal{J}_n^{\pm} = Q^{\pm}[\epsilon^{\pm} = e^{in\varphi}]$ $[\mathcal{J}_n^{\pm}, \mathcal{J}_m^{\pm}] = \frac{1}{2} n \, \delta_{n+m, \, 0}$

Two u(1) current algebras! Afshar et al. 16

Simplification in 3d:

$$\mathrm{d}s^{2} = \left[-\kappa^{2}r^{2} \mathrm{d}t^{2} + \mathrm{d}r^{2} + \gamma^{2}(\varphi) \mathrm{d}\varphi^{2} + 2\kappa\omega(\varphi)r^{2} \mathrm{d}t \mathrm{d}\varphi\right] \left(1 + \mathcal{O}(r^{2})\right)$$

- Map from round S¹ to Fourier-excited S¹: diffeo \(\gamma\) d\(\varphi = d\(\tilde\)\)
 Non-trivial diffeo!
- Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint \mathrm{d}\varphi \, \epsilon^{\pm}(\varphi) \left(\gamma(\varphi) \pm \omega(\varphi)\right)$$

▶ Near horizon symmetry algebra Fourier modes $\mathcal{J}_n^{\pm} = Q^{\pm}[\epsilon^{\pm} = e^{in\varphi}]$ $[\mathcal{J}_n^{\pm}, \mathcal{J}_m^{\pm}] = \frac{1}{2} n \, \delta_{n+m, \, 0}$

Isomorphic to Heisenberg algebras plus center

$$[X_n, P_m] = i \,\delta_{n,m} \qquad [P_0, X_n] = 0 = [X_0, P_n]$$

 $P_0 = \mathcal{J}_0^+ + \mathcal{J}_0^-$, $X_n = \mathcal{J}_n^+ - \mathcal{J}_{-n}^-$, $P_n = 2i/n(\mathcal{J}_{-n}^+ + \mathcal{J}_n^-)$ for $n \neq 0$

1. All states allowed by bc's have same temperature

By contrast: asymptotically AdS or flat space bc's allow for black hole states at different masses and hence different temperatures

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)

By contrast: for given temperature not all states in theories with asymptotically AdS or flat space bc's are free from conical singularities; usually a unique black hole state is picked

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
- 3. There is a non-trivial reducibility parameter (= Killing vector)

By contrast: for any other known (non-trivial) bc's there is no vector field that is Killing for all geometries allowed by bc's

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
- 3. There is a non-trivial reducibility parameter (= Killing vector)
- 4. Technical feature: in Chern–Simons formulation of 3d gravity simple expressions in diagonal gauge

$$A^{\pm} = b^{\pm 1} (d + a^{\pm}) b^{\pm 1}$$
$$a^{\pm} = L_0 \left(\left(\gamma(\varphi) \pm \omega(\varphi) \right) d\varphi + \kappa dt \right)$$
$$b = \exp \left[\left(L_+ - L_- \right) r/2 \right]$$

 L_{\pm} are $sl(2, \mathbb{R})$ raising/lowering generators L_0 is $sl(2, \mathbb{R})$ Cartan subalgebra generator

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
- 3. There is a non-trivial reducibility parameter (= Killing vector)
- 4. Technical feature: in Chern–Simons formulation of 3d gravity simple expressions in diagonal gauge

$$A^{\pm} = b^{\pm 1} (d + a^{\pm}) b^{\pm 1}$$
$$a^{\pm} = L_0 \left(\left(\gamma(\varphi) \pm \omega(\varphi) \right) d\varphi + \kappa dt \right)$$
$$b = \exp \left[\left(L_+ - L_- \right) r/2 \right]$$

 L_{\pm} are $sl(2, \mathbb{R})$ raising/lowering generators L_0 is $sl(2, \mathbb{R})$ Cartan subalgebra generator

5. Leads to soft Heisenberg hair (see next slides!)

 Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

 Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

What is energy of such excitations?

Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations*

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

 * units defined by specifying κ

 Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

H-eigenvalue of black flower = H-eigenvalue of black hole

 Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

- H-eigenvalue of black flower = H-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

 Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

- H-eigenvalue of black flower = H-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of Hawking, Perry and Strominger '16

 Black flower excitations = hair of black holes Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

- H-eigenvalue of black flower = H-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of Hawking, Perry and Strominger '16 Call it "soft Heisenberg hair"

Express entropy in terms of near horizon charges:

Express entropy in terms of near horizon charges:

 $S = 2\pi P_0$

Express entropy in terms of near horizon charges:

 $S = 2\pi P_0$

Entropy = parity inv. combination of near horizon charge zero modes

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

Entropy = parity inv. combination of near horizon charge zero modes
 Obeys simple near horizon first law

$$\delta S = rac{2\pi}{\kappa} \, \delta ig(\kappa P_0ig) \qquad \Rightarrow \qquad T \, \delta S = \delta H$$

with Hawking–Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

 δ refers to any variation of phase space variables allowed by the boundary conditions

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

Entropy = parity inv. combination of near horizon charge zero modes
 Obeys simple near horizon first law

$$\delta S = rac{2\pi}{\kappa} \, \deltaig(\kappa P_0ig) \qquad \Rightarrow \qquad T \, \delta S = \delta H$$

with Hawking–Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

Formula is universal (even when Bekenstein–Hawking does not apply) higher derivative theories, higher spin theories, higher-dimensional theories, (A)dS, flat space, warped AdS, ...

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

Entropy = parity inv. combination of near horizon charge zero modes
 Obeys simple near horizon first law

$$\delta S = rac{2\pi}{\kappa} \, \delta ig(\kappa P_0 ig) \qquad \Rightarrow \qquad T \, \delta S = \delta H$$

with Hawking–Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

- Formula is universal (even when Bekenstein–Hawking does not apply) higher derivative theories, higher spin theories, higher-dimensional theories, (A)dS, flat space, warped AdS, ...
- entropy in Cardy-like form (but linear in charges!)

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

Entropy = parity inv. combination of near horizon charge zero modes
 Obeys simple near horizon first law

$$\delta S = rac{2\pi}{\kappa} \, \deltaig(\kappa P_0ig) \qquad \Rightarrow \qquad T \, \delta S = \delta H$$

with Hawking–Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

- Formula is universal (even when Bekenstein–Hawking does not apply) higher derivative theories, higher spin theories, higher-dimensional theories, (A)dS, flat space, warped AdS, ...
- entropy in Cardy-like form (but linear in charges!)

Can we understand entropy law microscopically?

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Regarding 1. and 3.: may expect decoupling of scales so that description of microstates does not need info about UV completion, but rather only some semi-classical "Bohr-like" input

Evidence for this: universality of BH entropy for large black holes

$$S_{\rm BH} = \frac{A}{4G} + \dots$$

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

Possible obstacles:

TMI: no upper bound on soft hair excitations

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

- ► TMI: no upper bound on soft hair excitations
- possible resolution: cut-off on soft hair spectrum!

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

- TMI: no upper bound on soft hair excitations
- possible resolution: cut-off on soft hair spectrum!
- TLI Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17: for asymptotic observer no information from soft hair states

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

- TMI: no upper bound on soft hair excitations
- possible resolution: cut-off on soft hair spectrum!
- TLI Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17: for asymptotic observer no information from soft hair states
- possible resolution: do not consider asymptotic but near horizon observer (i.e., employ near horizon bc's and symmetry algebra)

Highest weight vacuum |0
angle

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Highest weight vacuum $|0\rangle$

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$\left|\mathcal{B}(\{n_i^{\pm}\})\right\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) \left|0\right\rangle$$

subject to spectral constraint depending on black hole mass M and angular momentum J (measured by asymptotic observer)

Highest weight vacuum $|0\rangle$

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to spectral constraint depending on black hole mass M and angular momentum J (measured by asymptotic observer)

$$\sum_{i} n_i^{\pm} = \frac{c}{2} \left(M \pm J \right)$$

Highest weight vacuum |0
angle

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to spectral constraint depending on black hole mass M and angular momentum J (measured by asymptotic observer)

$$\sum_{i} n_i^{\pm} = \frac{c}{2} \left(M \pm J \right)$$

derived from Bohr-type quantization conditions

- ▶ quantization of central charge c = 3/(2G) in integers
- \blacktriangleright quantization of conical deficit angles in integers over c
- black hole/particle correspondence (black hole = gas of coherent states of particles on AdS₃)

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

JT/SYK correspondence

Selected list of models

Black holes in (A)dS₂, asymptotically flat or arbitrary spaces (Wheeler property)

Model	U(X)	V(X)
1. Schwarzschild (1916)	$-\frac{1}{2X}$	$-\lambda^2$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2b^2X$
4. CGHS (1992)	0	$-2b^{2}$
5. $(A)dS_2$ ground state (1994)	$-\frac{a}{X}$	BX
6. Rindler ground state (1996)	$-\frac{a}{X}$	BX^a
7. Black Hole attractor (2003)	0	BX^{-1}
8. Spherically reduced gravity ($N > 3$)	$-\frac{N-3}{(N-2)X}$	$-\lambda^2 X^{(N-4)/(N-2)}$
9. All above: <i>ab</i> -family (1997)	$-\frac{a}{X}$	BX^{a+b}
10. Liouville gravity	a	$be^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2X}$	$-\lambda^2 + \frac{Q^2}{X}$
12. Schwarzschild- $(A)dS$	$-\frac{21}{2X}$	$-\lambda^2 - \ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^2 - \Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^2}{X} - \frac{J}{4X^3} - \Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2}X(c-X^2)$
16. KK red. conf. flat (2006)	$-\frac{1}{2} \tanh{(X/2)}$	$A \sinh X$
17. 2D type 0A string Black Hole	$-\frac{1}{X}$	$-2b^2X + \frac{b^2q^2}{8\pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Daniel Grumiller — Gravity and holography in lower dimensions

Choice of theory (review: see hep-th/0204253)

Choice of bulk action Einstein–Hilbert action not useful
Choice of bulk action

Einstein-Hilbert action not useful

Dilaton gravity in two dimensions (X = dilaton):

$$I[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left[XR - U(X)(\nabla X)^2 - 2V(X) \right]$$

- kinetic potential U(X) and dilaton potential V(X)
- constant dilaton and linear dilaton solutions
- all solutions known in closed form globally for all choices of potentials
- simple choice (Jackiw–Teitelboim):

$$U(X)=0 \qquad V(X)=\Lambda X$$

• for negative $\Lambda = -1/\ell^2$ leads to AdS_2 solutions

Choice of bulk action JT model:

$$I_{\rm JT}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \, [XR - 2\Lambda X]$$

Choice of formulation
Use again Cartan formulation

$$I_{\text{Cartan}}[e^a, \, \omega, \, X^a, \, X] = \frac{1}{8\pi G_2} \, \int_{\mathcal{M}} \left(X^a T_a + XR - \epsilon_{ab} e^a \wedge e^b \, \Lambda X \right)$$

torsion 2-form $T^a={\rm d} e^a+\epsilon^a{}_b\omega\wedge e^b$ and curvature 2-form $R={\rm d}\omega$

Choice of bulk action JT model:

$$I_{\rm JT}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \, [XR - 2\Lambda X]$$

Choice of formulation

Use again Cartan formulation

$$I_{\text{Cartan}}[e^a, \, \omega, \, X^a, \, X] = \frac{1}{8\pi G_2} \, \int_{\mathcal{M}} \left(X^a T_a + XR - \epsilon_{ab} e^a \wedge e^b \Lambda X \right)$$

torsion 2-form $T^a={\rm d} e^a+\epsilon^a{}_b\omega\wedge e^b$ and curvature 2-form $R={\rm d}\omega$

Rewrite as gauge theory of BF-type ($k = 1/(4G_2)$):

$$I_{\rm BF}[\mathcal{X}, A] = \frac{k}{2\pi} \int_{\mathcal{M}} \langle \mathcal{X} F \rangle$$

 $F = dA + A \wedge A \text{ with } A \in \mathfrak{sl}(2, \mathbb{R}); \text{ co-adjoint scalars } \mathcal{X}$ $A = e^a P_a + \omega J \text{ with } [P_a, J] = \epsilon_a{}^b P_b \text{ and } [P_a, P_b] = \Lambda \epsilon_{ab} J$

Choice of bulk action JT model:

$$I_{\rm JT}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \, [XR - 2\Lambda X]$$

Choice of formulation
Gauge theory of BF-type (k = 1/(4G₂)):

$$I_{\rm BF}[\mathcal{X},\,A] = \frac{k}{2\pi} \, \int_{\mathcal{M}} \langle \mathcal{X}\,F\rangle \quad \Rightarrow \quad I_{\rm BF}[\mathcal{X},\,A]\big|_{\rm EOM} = 0$$

 $F=\mathrm{d} A+A\wedge A$ with $A\in\mathsf{sl}(2,\mathbb{R});$ co-adjoint scalars $\mathcal X$

 Choice of boundary conditions Analogous to AdS₃:

$$A = b^{-1}(\mathbf{d} + a) b \qquad \qquad \mathcal{X} = b^{-1} x b$$

with $b = b(\rho)$, $a = a_{\tau}(\tau) \,\mathrm{d}\tau$, $x = x(\tau)$, $\delta b = 0$ and $\delta a = \mathcal{O}(1) = \delta x$

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

 JT/SYK correspondence

• Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$

▶ Hamiltonian $H_{SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$ ▶ Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$

- ▶ Hamiltonian $H_{SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$ ▶ Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$

- ▶ Hamiltonian $H_{SYK} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$ ▶ Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- ▶ 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$

- ► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- ▶ 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- ▶ sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

 $G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$

- ► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau)\psi^a(0) \rangle$
- ▶ sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

 $G(\tau) \sim \operatorname{sign}(\tau) / \sin^{2\Delta}(\pi \tau / \beta)$ conformal weight $\Delta = 1/4$

► $SL(2, \mathbb{R})$ covariant $x \to (ax + b)/(cx + d)$ with $x = \tan(\pi \tau/\beta)$

- ► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau)\psi^a(0) \rangle$
- ▶ sum melonic diagrams $G(\omega) = 1/(-i\omega \Sigma(\omega))$ with $\Sigma(\tau) = J^2 G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

$$G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$$

- ► $SL(2, \mathbb{R})$ covariant $x \to (ax+b)/(cx+d)$ with $x = \tan(\pi \tau/\beta)$
- effective action at large N and large J: Schwarzian action

$$\Gamma[\tau] \sim -\frac{N}{J} \int_{0}^{\beta} du \left[\dot{\tau}^{2} + \frac{1}{2} \{\tau; u\} \right] \qquad \{\tau; u\} = \frac{\ddot{\tau}}{\dot{\tau}} - \frac{3}{2} \frac{\ddot{\tau}^{2}}{\dot{\tau}^{2}}$$

Analogous to Brown–Henneaux bc's in AdS₃:

$$a_{\tau} = L_1 + \mathcal{L}(\tau) L_{-1} \qquad b = \exp\left(\rho L_0\right)$$

 L_n : usual sl(2) generators

$$[L_n, L_m] = (n-m) L_{n+m}$$

Analogous to Brown–Henneaux bc's in AdS₃:

$$a_{\tau} = L_1 + \mathcal{L}(\tau) L_{-1} \qquad b = \exp\left(\rho L_0\right)$$

• bc-preserving gauge trafos ε act on $\mathcal L$ by infinitesimal Schwarzian

$$\delta_{\varepsilon}\mathcal{L} = \varepsilon\mathcal{L}' + 2\varepsilon'\mathcal{L} + \frac{1}{2}\varepsilon'''$$

Analogous to Brown–Henneaux bc's in AdS₃:

$$a_{\tau} = L_1 + \mathcal{L}(\tau) L_{-1} \qquad b = \exp\left(\rho L_0\right)$$

bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$\delta_{\varepsilon}\mathcal{L} = \varepsilon\mathcal{L}' + 2\varepsilon'\mathcal{L} + \frac{1}{2}\varepsilon'''$$

• integrability condition $(f_{\tau}$ has fixed zero mode $1/\bar{y})$

$$a_{\tau} = f_{\tau} x + g^{-1} \partial_{\tau} g$$

with $g = \exp\left(-\frac{1}{2}y'L_{-1}\right)\exp\left(\ln(y)L_0\right)$ where $f_{\tau} = 1/y$

Analogous to Brown–Henneaux bc's in AdS₃:

$$a_{\tau} = L_1 + \mathcal{L}(\tau) L_{-1} \qquad b = \exp\left(\rho L_0\right)$$

bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$\delta_{\varepsilon}\mathcal{L} = \varepsilon\mathcal{L}' + 2\varepsilon'\mathcal{L} + \frac{1}{2}\varepsilon'''$$

• integrability condition $(f_{\tau}$ has fixed zero mode $1/\bar{y})$

$$a_{\tau} = f_{\tau} x + g^{-1} \partial_{\tau} g$$

▶ rewrite $f_{\tau} = \frac{1}{\bar{y}} \partial_{\tau} f$, with well-defined diffeo, $f(\tau + \beta) = f(\tau) + \beta$

Analogous to Brown–Henneaux bc's in AdS₃:

$$a_{\tau} = L_1 + \mathcal{L}(\tau) L_{-1} \qquad b = \exp\left(\rho L_0\right)$$

• bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$\delta_{\varepsilon}\mathcal{L} = \varepsilon\mathcal{L}' + 2\varepsilon'\mathcal{L} + \frac{1}{2}\varepsilon'''$$

• integrability condition $(f_{\tau}$ has fixed zero mode $1/\bar{y})$

$$a_{\tau} = f_{\tau} x + g^{-1} \partial_{\tau} g$$

► rewrite $f_{\tau} = \frac{1}{\bar{y}} \partial_{\tau} f$, with well-defined diffeo, $f(\tau + \beta) = f(\tau) + \beta$ ► finite on-shell action, $\Gamma|_{F=0} = -k \beta C/(2\pi \bar{y})$

note: boundary action given by

$$I_{\partial \mathcal{M}} \sim \int \mathrm{d}\tau f_{\tau} \operatorname{Tr} \left(x^2 \right) \sim \int \mathrm{d}\tau f_{\tau} C$$

► Analogous to Brown–Henneaux bc's in AdS₃:

$$a_{\tau} = L_1 + \mathcal{L}(\tau) L_{-1} \qquad b = \exp\left(\rho L_0\right)$$

bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$\delta_{\varepsilon}\mathcal{L} = \varepsilon\mathcal{L}' + 2\varepsilon'\mathcal{L} + \frac{1}{2}\varepsilon'''$$

• integrability condition $(f_{\tau} \text{ has fixed zero mode } 1/\bar{y})$

$$a_{\tau} = f_{\tau} x + g^{-1} \partial_{\tau} g$$

- ► rewrite $f_{\tau} = \frac{1}{\bar{y}} \partial_{\tau} f$, with well-defined diffeo, $f(\tau + \beta) = f(\tau) + \beta$ ► finite on-shell action, $\Gamma|_{F=0} = -k \beta C/(2\pi \bar{y})$
- \blacktriangleright defining inverse diffeo, $f^{-1}(u):=\tau(u)$ and inserting into Casimir

$$\Gamma|_{F=0}[\tau] = -\frac{k\,\bar{y}}{2\pi} \,\int_0^\beta \mathrm{d}u \left[\dot{\tau}^2 \mathcal{L} + \frac{1}{2} \left\{\tau; \, u\right\}\right] \qquad \{\tau; \, u\} = \frac{\ddot{\tau}}{\dot{\tau}} - \frac{3}{2} \,\frac{\ddot{\tau}^2}{\dot{\tau}^2}$$

yields Schwarzian action, with $k \sim N$ and $1/\bar{y} \sim J$

Lower dimensional holography

- Gauge theory formulation convenient
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist

Lower dimensional holography

- Gauge theory formulation convenient
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist

Specific recent topics

- Near horizon soft hair
- JT/SYK correspondence

Lower dimensional holography

- Gauge theory formulation convenient
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist

Specific recent topics

- Near horizon soft hair
- JT/SYK correspondence
- Selected challenges for the future
 - Good model for flat space holography?
 - Complete model of evaporating black hole?
 - How general is holography?

Lower dimensional holography

- Gauge theory formulation convenient
- Boundary conditions crucial
- Asymptotic symmetries give clues about dual QFT
- Physical states in form of edge states can exist

Specific recent topics

- Near horizon soft hair
- JT/SYK correspondence
- Selected challenges for the future
 - Good model for flat space holography?
 - Complete model of evaporating black hole?
 - How general is holography?

Numerous open questions in gravity and holography

- Many can be addressed in lower dimensions
- If you are stuck in higher D try D = 3 or D = 2

Thank you for your attention!

