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Motivation

I Quantum gravity
I Address conceptual issues of quantum gravity
I Black hole evaporation, information loss, black hole microstate

counting, virtual black hole production, ...
I Technically much simpler than 4D or higher D gravity
I Integrable models: powerful tools in physics (Coulomb problem,

Hydrogen atom, harmonic oscillator, ...)
I Models should be as simple as possible, but not simpler

I Gauge/gravity duality
I Deeper understanding of black hole holography
I AdS3/CFT2 correspondence best understood
I Quantum gravity via AdS/CFT? (Witten ’07, Li, Song, Strominger ’08)
I Applications to 2D condensed matter systems?
I Gauge gravity duality beyond standard AdS/CFT: warped AdS,

asymptotic Lifshitz, non-relativistic CFTs, logarithmic CFTs, ...

I Physics
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I Gauge gravity duality beyond standard AdS/CFT: warped AdS,

asymptotic Lifshitz, non-relativistic CFTs, logarithmic CFTs, ...
I Physics

I Cosmic strings (Deser, Jackiw, ’t Hooft ’84, ’92)
I Black hole analog systems in condensed matter physics (graphene,

BEC, fluids, ...)
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Gravity in lower dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)

I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D
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Pure gravity in 3D

Let us switch off all matter fields and keep only the metric g.

I3DG =
1

16πG

∫
d3x
√
−gL(g)

I Variation of L should lead to tensor equations
I Require absence of higher derivatives than fourth (for simplicity)
I Require absence of scalar ghosts

The requirements above are fulfilled for

L = LMG(Rµν) + LCS

with the possiblity for a gravitational Chern–Simons term

LCS =
1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)
and the higher derivative Lagrange density

LMG(Rµν) = σR− 2Λ +
1

m2

(
RµνR

µν − 3

8
R2
)

+O(R3
µν)
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Action and equations of motion of topologically massive gravity (TMG)

Consider the action (Deser, Jackiw & Templeton ’82)

ITMG =
1

16πG

∫
d3x
√
−g
[
R+

2

`2
+

1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)]

Equations of motion:

Rµν −
1

2
gµνR−

1

`2
gµν +

1

µ
Cµν = 0

with the Cotton tensor defined as

Cµν =
1

2
εµ
αβ∇αRβν + (µ↔ ν)

I Massive gravitons and black holes

I AdS solutions and asymptotic AdS solutions

I warped AdS solutions and warped AdS black holes

I Schrödinger solutions and Schrödinger pp-waves

Some properties of TMG
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Classical solutions (exact)

Stationarity plus axi-symmetry:

I Two commuting Killing vectors

I Effectively reduce 2+1 dimensions to 1+0 dimensions

I Like particle mechanics, but with up to three time derivatives

I Still surprisingly difficult to get exact solutions!

Reduced action (Clement ’94):

IC[e,Xi] ∼
∫

dρ e
[1

2
e−2ẊiẊjηij −

2

`2
+

1

2µ
e−3 εijkX

iẊjẌk
]

Here e is the Einbein and Xi = (T,X, Y ) a Lorentzian 3-vector
Classification of solutions:

I Einstein solutions: AdS, BTZ

I warped solutions: warped AdS, warped black holes

I Schrödinger solutions: asymptotic Schrödinger spacetimes, pp-waves

I generic solutions (Ertl, Grumiller & Johansson, ’10)
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e−2ẊiẊjηij −

2

`2
+

1

2µ
e−3 εijkX

iẊjẌk
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TMG at the chiral point

Definition: TMG at the chiral point is TMG with the tuning

µ ` = 1

between the cosmological constant and the Chern–Simons coupling.

Why special? (Li, Song & Strominger ’08)
Calculating the central charges of the dual boundary CFT yields

cL =
3`

2G

(
1− 1

µ `

)
cR =

3`

2G

(
1 +

1

µ `

)
Thus, at the chiral point we get

cL = 0 cR =
3`

G

I Abbreviate “Cosmological TMG at the chiral point” as CTMG
I CTMG is also known as “chiral gravity”
I Dual CFT: chiral? (conjecture by Li, Song & Strominger ’08)
I More adequate name for CTMG: “logarithmic gravity”
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Gravitons around AdS3 in CTMG

Linearization around AdS background.

gµν = ḡµν + hµν

Line-element ḡµν of pure AdS:

ds̄2
AdS = ḡµν dxµ dxν = `2

(
− cosh2 ρ dτ2 + sinh2 ρdφ2 + dρ2

)
Isometry group: SL(2,R)L × SL(2,R)R
Useful to introduce light-cone coordinates u = τ + φ, v = τ − φ.
The SL(2,R)L generators

L0 = i∂u

L±1 = ie±iu
[cosh 2ρ

sinh 2ρ
∂u −

1

sinh 2ρ
∂v ∓

i

2
∂ρ

]
obey the algebra [L0, L±1] = ∓L±1, [L1, L−1] = 2L0.
The SL(2,R)R generators L̄0, L̄±1 obey same algebra, but with

u↔ v , L↔ L̄

leads to linearized EOM that are third order PDE

G(1)
µν +

1

µ
C(1)
µν = (DRDLDMh)µν = 0 (1)

with three mutually commuting first order operators

(DL/R)µ
ν = δνµ ± ` εµαν∇̄α (DM )µ

ν = δνµ +
1

µ
εµ
αν∇̄α

Three linearly independent solutions to (1):(
DLhL

)
µν

= 0
(
DRhR

)
µν

= 0
(
DMhM

)
µν

= 0

At chiral point left (L) and massive (M) branches coincide!
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Degeneracy at the chiral point
Will be quite important later!

Li, Song & Strominger found all normalizable solutions of linearized EOM.
I Primaries: L0, L̄0 eigenstates ψL/R/M with

L1ψ
R/L/M = L̄1ψ

R/L/M = 0

I Descendants: act with L−1 and L̄−1 on primaries
I General solution: linear combination of ψR/L/M

I Linearized metric is then the real part of the wavefunction

hµν = Reψµν

I At chiral point: L and M branches degenerate. Get log solution
(Grumiller & Johansson ’08)

ψlog
µν = lim

µ`→1

ψMµν(µ`)− ψLµν
µ`− 1

with property(
DLψlog

)
µν

=
(
DMψlog

)
µν
6= 0 ,

(
(DL)2ψlog

)
µν

= 0
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Sign oder nicht sign?
That is the question. Choosing between Skylla and Charybdis.

I With signs defined as in this
talk: BHs positive energy,
gravitons negative energy

I With signs as defined in Carlip,
Deser, Waldron, Wise ’08: BHs
negative energy, gravitons
positive energy

I Either way need a mechanism to
eliminate unwanted negative
energy objects — either the
gravitons or the BHs

I Even at chiral point the problem
persists because of the
logarithmic mode. See Figure.
(thanks to Niklas Johansson)

Energy for all branches:
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Motivating the conjecture

Log mode exhibits interesting property:

H

(
ψlog

ψL

)
=

(
2 1
0 2

)(
ψlog

ψL

)
J

(
ψlog

ψL

)
=

(
2 0
0 2

)(
ψlog

ψL

)
Here H = L0 +L̄0 ∼ ∂t is the Hamilton operator and J = L0−L̄0 ∼ ∂φ
the angular momentum operator.

Such a Jordan form of H and J is defining property of a logarithmic CFT!

CTMG dual to a logarithmic CFT (Grumiller, Johansson ’08)

Logarithmic CFT conjecture
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Early hints for validity of conjecture

Properties of logarithmic mode:

I Perturbative solution of linearized EOM, but not pure gauge

I Energy of logarithmic mode is finite

Elog = − 47

1152G`3

and negative → instability! (Grumiller & Johansson ’08)
I Logarithmic mode is asymptotically AdS

ds2 = dρ2 +
(
γ

(0)
ij e

2ρ/` + γ
(1)
ij ρ+ γ

(0)
ij + γ

(2)
ij e

−2ρ/` + . . .
)

dxi dxj

but violates Brown–Henneaux boundary conditions! (γ
(1)
ij

∣∣
BH

= 0)
I Consistent log boundary conditions replacing Brown–Henneaux

(Grumiller & Johansson ’08, Martinez, Henneaux & Troncoso ’09)
I Brown–York stress tensor is finite and traceless, but not chiral
I Log mode persists non-perturbatively, as shown by Hamilton analysis

(Grumiller, Jackiw & Johansson ’08, Carlip ’08)
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Correlators in logarithmic CFTs

I Any CFT has a conserved traceless energy momentum tensor.

Tzz̄ = 0 Tzz = OL(z) Tz̄z̄ = OR(z̄)

I The 2- and 3-point correlators are fixed by conformal Ward identities.
Central charges cL/R determine key properties of CFT.

I Suppose there is an additional operator OM with conformal weights
h = 2 + ε, h̄ = ε which degenerates with OL in limit cL ∝ ε→ 0

I Then energy momentum tensor acquires logarithmic partner Olog

I Some 2-point correlators:

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −
bL ln (m2

L|z|2)

z4

“New anomaly” bL determines key properties of logarithmic CFT.

D. Grumiller — Massive gravity in three dimensions Logarithmic CFT conjecture 17/29



Correlators in logarithmic CFTs

I Any CFT has a conserved traceless energy momentum tensor.

Tzz̄ = 0 Tzz = OL(z) Tz̄z̄ = OR(z̄)

I The 2- and 3-point correlators are fixed by conformal Ward identities.

〈OR(z̄)OR(0)〉 =
cR
2z̄4

〈OL(z)OL(0)〉 =
cL
2z4

〈OL(z)OR(0)〉 = 0

〈OR(z̄)OR(z̄′)OR(0)〉 =
cR

z̄2z̄′ 2(z̄ − z̄′)2

〈OL(z)OL(z′)OL(0)〉 =
cL

z2z′ 2(z − z′)2

〈OL(z)OR(z̄′)OR(0)〉 = 0

〈OL(z)OL(z′)OR(0)〉 = 0

Central charges cL/R determine key properties of CFT.

I Suppose there is an additional operator OM with conformal weights
h = 2 + ε, h̄ = ε which degenerates with OL in limit cL ∝ ε→ 0

I Then energy momentum tensor acquires logarithmic partner Olog

I Some 2-point correlators:

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −
bL ln (m2

L|z|2)

z4

“New anomaly” bL determines key properties of logarithmic CFT.

D. Grumiller — Massive gravity in three dimensions Logarithmic CFT conjecture 17/29



Correlators in logarithmic CFTs

I Any CFT has a conserved traceless energy momentum tensor.

Tzz̄ = 0 Tzz = OL(z) Tz̄z̄ = OR(z̄)

I The 2- and 3-point correlators are fixed by conformal Ward identities.
Central charges cL/R determine key properties of CFT.

I Suppose there is an additional operator OM with conformal weights
h = 2 + ε, h̄ = ε

〈OM (z, z̄)OM (0, 0)〉 =
B̂

z4+2εz̄2ε

which degenerates with OL in limit cL ∝ ε→ 0

I Then energy momentum tensor acquires logarithmic partner Olog

I Some 2-point correlators:

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −
bL ln (m2

L|z|2)

z4

“New anomaly” bL determines key properties of logarithmic CFT.

D. Grumiller — Massive gravity in three dimensions Logarithmic CFT conjecture 17/29



Correlators in logarithmic CFTs

I Any CFT has a conserved traceless energy momentum tensor.

Tzz̄ = 0 Tzz = OL(z) Tz̄z̄ = OR(z̄)

I The 2- and 3-point correlators are fixed by conformal Ward identities.
Central charges cL/R determine key properties of CFT.

I Suppose there is an additional operator OM with conformal weights
h = 2 + ε, h̄ = ε

〈OM (z, z̄)OM (0, 0)〉 =
B̂

z4+2εz̄2ε

which degenerates with OL in limit cL ∝ ε→ 0
I Then energy momentum tensor acquires logarithmic partner Olog

Olog = bL
OL

cL
+
bL
2
OM

where
bL := lim

cL→0
−cL
ε
6= 0

I Some 2-point correlators:

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −
bL ln (m2

L|z|2)

z4

“New anomaly” bL determines key properties of logarithmic CFT.

D. Grumiller — Massive gravity in three dimensions Logarithmic CFT conjecture 17/29



Correlators in logarithmic CFTs

I Any CFT has a conserved traceless energy momentum tensor.

Tzz̄ = 0 Tzz = OL(z) Tz̄z̄ = OR(z̄)

I The 2- and 3-point correlators are fixed by conformal Ward identities.
Central charges cL/R determine key properties of CFT.

I Suppose there is an additional operator OM with conformal weights
h = 2 + ε, h̄ = ε which degenerates with OL in limit cL ∝ ε→ 0

I Then energy momentum tensor acquires logarithmic partner Olog

I Some 2-point correlators:

〈OL(z)OL(0, 0)〉 = 0

〈OL(z)Olog(0, 0)〉 =
bL
2z4

〈Olog(z, z̄)Olog(0, 0)〉 = −
bL ln (m2

L|z|2)

z4

“New anomaly” bL determines key properties of logarithmic CFT.

D. Grumiller — Massive gravity in three dimensions Logarithmic CFT conjecture 17/29



Check of logarithmic CFT conjecture for 2- and 3-point correlators

If LCFT conjecture is correct then following procedure must work:

I Calculate non-normalizable modes for left, right and logarithmic
branches by solving linearized EOM on gravity side

I According to AdS3/LCFT2 dictionary these non-normalizable modes
are sources for corresponding operators in the dual CFT

I Calculate 2- and 3-point correlators on the gravity side, e.g. by
plugging non-normalizable modes into second and third variation of
the on-shell action

I These correlators must coinicde with the ones of a logarithmic CFT

Except for value of new anomaly bL no freedom in this procedure.
Either it works or it does not work.

I Works at level of 2-point correlators (Skenderis, Taylor & van Rees
’09, Grumiller & Sachs ’09)

I Works at level of 3-point correlators (Grumiller & Sachs ’09)
I Value of new anomaly: bL = −cR = −3`/G
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Alternative calculation of new anomaly bL

As another consistency check perform the following short-cut.

I Consider small but non-vanising central charge cL
I Then weights h = 2 + ε and h̄ = ε of massive modes differ

infinitesimally from weights 2 and 0 of left mode

I The new anomaly is given by the ratio of these two small quantities

bL = lim
ε→0
−cL
ε

I Result obtained in this way must coincide with result for bL from the
2- and 3-point correlators

Recover the result (Grumiller & Hohm ’09, Grumiller, Johansson & Zojer, ’10)

bL = −3`

G
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1-loop partition function
...yet another non-trivial check (Gaberdiel, Grumiller & Vassilevich ’10)

If LCFT conjecture is true, then the following procedure must work
I Calculate 1-loop partition function on gravity side

I Check that it is not chiral
I Calculate “minimal part” of partition function (Virasoro descendants

of vacuum, descendants of log operator) on CFT side
I Calculate the difference between these partition functions

(corresponds to multiple log excitations)
I Check that all multi-log coefficients in this difference are non-negative
1 0 1 0 1 0 1 0 1 0 1 0 1 0 . . .
0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .
2 0 2 1 2 1 3 1 3 2 3 2 4 2 . . .
0 2 1 2 2 3 2 4 3 4 4 5 4 6 . . .
3 1 4 3 6 4 8 6 10 8 12 10 15 12 . . .
1 3 3 6 5 9 9 12 12 17 16 21 21 26 . . .
4 3 8 7 14 13 20 20 29 28 39 38 50 50 . . .
2 6 7 13 15 22 26 35 39 51 56 70 77 93 . . .
7 5 15 17 29 32 50 53 76 83 109 119 153 163 . . .
3 11 15 26 35 52 64 89 106 138 163 203 234 287 . . .
10 11 27 35 60 73 111 132 183 216 283 328 417 476 . . .
7 17 29 52 73 111 148 203 259 341 418 529 638 783 . . .
14 20 48 67 118 154 234 298 416 513 681 824 1052 1252 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusion: all consistency tests show validity of LCFT conjecture!
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Summary and comments

TMG at the chiral/logarithmic point µ` = 1:

I 3D gravity theory with black holes and massive graviton excitations

I Conjectured to be dual to logarithmic CFT

I Conjecture passed several independent consistency tests

I Non-trivial Jordan cell structure on gravity side, like in LCFT

I Operator degenerates with energy-momentum tensor at the point
where central charge vanishes → good indication for a LCFT

I Correlators on gravity side match precisely those of LCFT

I Central charges: cL = 0, cR = 3`/G, new anomaly: bL = −3`/G

I LCFTs non-unitary ↔ bulk gravitons negative energy

I LCFTs cannot be chiral ↔ Brown–York stress tensor not chiral

I Partition functions on gravity and LCFT sides appear to match

If conjecture true: first example of AdS3/LCFT2 correspondence!
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Consequences for chiral gravity

Chiral gravity conjectured to exist as consistent quantum theory of gravity
by Li, Song & Strominger ’08

I Dual CFT would be a chiral CFT with cL = 0 and cR = 3`/G

I Partition function trivially factorizes holomorphically

Z = ZLZR = ZR

Thus avoids problems with original approach by Witten ’07

I Chiral gravity defined by truncation of the dual LCFT

I Truncation either by requiring periodicity in time or by imposing
stricter fall-off conditions than ansymptotic AdS (Brown–Henneaux)

I Not clear whether truncation consistent in full quantum theory

Not clear yet if chiral gravity exists!
If it exists: excellent toy model for quantum gravity!
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Generalizations to new massive gravity and generalized massive gravity

Q: Is TMG the only gravity theory dual to a LCFT?

A: No!

New massive gravity (Bergshoeff, Hohm & Townsend ’09):

INMG =
1

16πG

∫
d3x
√
−g
[
σR+

1

m2

(
RµνRµν −

3

8
R2

)
− 2λm2

]
Similar story (Grumiller & Hohm ’09, Alishahiha & Naseh ’10):

I Linearized EOM around AdS3 (g = ḡ + h)(
DRDLDMDM̄h

)
µν

= 0

I Logarithmic point for λ = 3: cL = cR = 0
I Massive modes degenerate with left and right boundary gravitons
I 2-point correlators on gravity side match precisely those of a LCFT
I New anomalies: bL = bR = −σ12`/G
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Extended generalized massive gravity (Paulos ’10)
Reconsider higher curvature theories introduced in the beginning

All actions of type
L = LMG(Rµν) + LCS

with gravitational Chern–Simons term

LCS =
1

2µ
ελµν Γρλσ

(
∂µΓσνρ +

2

3
ΓσµτΓτ νρ

)]
and the specific higher derivative Lagrange density

LMG(Rµν) = σR− 2Λ +
1

m2

(
RµνR

µν − 3

8
R2
)

+O(R3
µν)

have an AdS solution (if Λeff < 0) and linearized equations of motion(
DRDLDMDM̄h

)
µν

= 0

Various degenerations of modes possible → log excitations

Thus, we have infinitely many gravity duals for LCFTs!
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Potential applications in condensed matter physics

LCFTs arise in systems with quenched disorder.

I Quenched disorder: systems with random variable that does not
evolve in time

I Examples: spin glasses, quenched random magnets, dilute
self-avoiding polymers, percolation

I For sufficient amount of disorder perturbation theory breaks down —
random critical point

I Infamous denominator in correlators:

〈O(z)O(0)〉 =

∫
DV P [V ]

∫
Dφ exp

(
− I[φ]−

∫
d2z′V (z′)O(z′)

)
O(z)O(0)∫

Dφ exp
(
− I[φ]−

∫
d2z′V (z′)O(z′)

)
I Different ways to deal with denominator (replica trick, SUSY)
I Result: operators degenerate and correlators acquire logarithmic

behavior, exactly as in LCFT (Cardy ’99)
I Exploit LCFTs to compute correlators of quenched random systems
I Apply AdS3/LCFT2 to describe strongly coupled LCFTs!
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Next steps

I Quantum gravity
I Consistency of truncation to chiral gravity?
I Existence of (log) extremal CFTs for arbitrary level k?
I Unitary completion of dual logarithmic CFT?

I Gauge/gravity duality
I Matching of 1-loop partition function in generalized massive gravity?

(Bertin, Grumiller & Vassilevich, Zojer, in preparation)
I Higher dimensional generalization? (Lü & Pope, ’11, Alishahiha &

Fareghbal, ’11, Bergshoeff, Hohm, Rosseel & Townsend, ’11)
I Interesting fixed points in theory space?

I Physics
I Condensed matter physics applications?
I Identify relevant observables in strong coupling limit, like η/s in

strongly coupled N = 4 SYM plasma!
I Compute relevant dual processes on gravity side and make predictions!

Thanks for your attention!
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