Rindler Holography

Daniel Grumiller

Institute for Theoretical Physics TU Wien

Solvay workshop 'Holography for black holes and cosmology' Bruxelles, May 2016

Simple punchline

Heisenberg algebra

$$[X_n, P_m] = i \, \delta_{n, m}$$

fundamental not only in quantum mechanics but also in near horizon physics

Outline

Motivation

Near horizon boundary conditions

Soft Heisenberg hair

Soft hairy black hole entropy

Concluding comments

Outline

Motivation

Near horizon boundary conditions

Soft Heisenberg hair

Soft hairy black hole entropy

Concluding comments

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

▶ Motivation: microscopic understanding of generic black hole entropy

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- ▶ Motivation: microscopic understanding of generic black hole entropy
- ► Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- Motivation: microscopic understanding of generic black hole entropy
- ▶ Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula
- ► Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT, warped CFT, ...)

warped CFT: Detournay, Hartman, Hofman '12

Galilean CFT: Bagchi, Detournay, Fareghbal, Simon '13; Barnich '13

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- Motivation: microscopic understanding of generic black hole entropy
- ► Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula
- ► Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
- Main idea: consider near horizon symmetries for non-extremal horizons

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- Motivation: microscopic understanding of generic black hole entropy
- ▶ Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula
- ► Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
- Main idea: consider near horizon symmetries for non-extremal horizons
- ▶ Near horizon line-element with Rindler acceleration *a*:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Meaning of coordinates:

- ρ : radial direction ($\rho = 0$ is horizon)
- $\varphi \sim \varphi + 2\pi$: angular direction
- v: (advanced) time

▶ Rindler acceleration: state-dependent or chemical potential?

- ► Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale

Recall scale invariance

$$a \rightarrow \lambda a \qquad \rho \rightarrow \lambda \rho \qquad v \rightarrow v/\lambda$$

of Rindler metric

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2$$

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

Recall scale invariance

$$a \rightarrow \lambda a \qquad \rho \rightarrow \lambda \rho \qquad v \rightarrow v/\lambda$$

of Rindler metric

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2$$

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

 If chemical potential: all states in theory have same (Unruh-)temperature

$$T_U = \frac{a}{2\pi}$$

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

► If chemical potential: all states in theory have same (Unruh-)temperature

$$T_U = \frac{a}{2\pi}$$

suggestion in 1511.08687

We make this choice in this talk!

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

 If chemical potential: all states in theory have same (Unruh-)temperature

$$T_U = \frac{a}{2\pi}$$

Work in 3d Einstein gravity in Chern–Simons formulation

$$I_{\text{CS}} = \pm \sum_{+} \frac{k}{4\pi} \int \langle A^{\pm} \wedge dA^{\pm} + \frac{2}{3} A^{\pm} \wedge A^{\pm} \wedge A^{\pm} \rangle$$

with sl(2) connections A^{\pm} and $k=\ell/(4G_N)$ with AdS radius $\ell=1$

Outline

Motivation

Near horizon boundary conditions

Soft Heisenberg hair

Soft hairy black hole entropy

Concluding comments

Standard trick: partially fix gauge

$$A^{\pm} = b_{\pm}^{-1}(\rho) \left(d + \mathfrak{a}_{\pm}(x^0, x^1) \right) b_{\pm}(\rho)$$

with some group element $b \in SL(2)$ depending on radius ρ with $\delta b = 0$

 $\mathsf{Drop} \pm \mathsf{decorations} \; \mathsf{in} \; \mathsf{most} \; \mathsf{of} \; \mathsf{talk}$

Manifold topologically a cylinder or torus, with radial coordinate ρ and boundary coordinates $(x^0,x^1)\sim (v,\varphi)$

Standard trick: partially fix gauge

$$A = b^{-1}(\rho) \left(d + \mathfrak{a}(x^0, x^1) \right) b(\rho)$$

with some group element $b \in SL(2)$ depending on radius ρ with $\delta b = 0$

Standard AdS₃ approach: highest weight gauge

$$\mathfrak{a} \sim L_{+} + \mathcal{L}(x^{0}, x^{1})L_{-}$$
 $b(\rho) = \exp(\rho L_{0})$

$$sl(2)$$
: $[L_n, L_m] = (n-m)L_{n+m}, \quad n, m = -1, 0, 1$

Standard trick: partially fix gauge

$$A = b^{-1}(\rho) \left(d + \mathfrak{a}(x^0, x^1) \right) b(\rho)$$

with some group element $b \in SL(2)$ depending on radius ρ with $\delta b = 0$

Standard AdS₃ approach: highest weight gauge

$$a \sim L_{+} + \mathcal{L}(x^{0}, x^{1})L_{-}$$
 $b(\rho) = \exp(\rho L_{0})$

$$sl(2)$$
: $[L_n, L_m] = (n-m)L_{n+m}, \quad n, m = -1, 0, 1$

For near horizon purposes diagonal gauge useful:

$$\mathfrak{a} \sim \mathcal{J}(x^0, x^1) L_0$$

Standard trick: partially fix gauge

$$A = b^{-1}(\rho) \left(d + \mathfrak{a}(x^0, x^1) \right) b(\rho)$$

with some group element $b \in SL(2)$ depending on radius ρ with $\delta b = 0$

Standard AdS₃ approach: highest weight gauge

$$\mathfrak{a} \sim L_{+} + \mathcal{L}(x^{0}, x^{1})L_{-}$$
 $b(\rho) = \exp(\rho L_{0})$

$$sl(2)$$
: $[L_n, L_m] = (n-m)L_{n+m}$, $n, m = -1, 0, 1$

For near horizon purposes diagonal gauge useful:

$$\mathfrak{a} \sim \mathcal{J}(x^0, x^1) L_0$$

▶ Precise boundary conditions (ζ : chemical potential):

$$\mathfrak{a} = (\mathcal{J} d\varphi + \mathcal{C} dv) L_0 \qquad \delta \mathfrak{a} = \delta \mathcal{J} d\varphi L_0$$

and $b = \exp\left(\frac{1}{\zeta}L_{+}\right) \cdot \exp\left(\frac{\rho}{2}L_{-}\right)$. (assume constant ζ for simplicity)

Using

$$g_{\mu\nu} = \frac{1}{2} \left\langle \left(A_{\mu}^{+} - A_{\mu}^{-} \right) \left(A_{\nu}^{+} - A_{\nu}^{-} \right) \right\rangle$$

Using

$$g_{\mu\nu} = \frac{1}{2} \left\langle \left(A_{\mu}^{+} - A_{\mu}^{-} \right) \left(A_{\nu}^{+} - A_{\nu}^{-} \right) \right\rangle$$

yields $(f:=1+\rho/(2a))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a} f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^\pm=\gamma\pm\omega$, chemical potentials $\zeta^\pm=-a\pm\Omega$

For simplicity set $\Omega=0$ and ${\color{red}a}=const.$ in metric above

EOM imply $\partial_v \mathcal{J}^{\pm} = \pm \partial_{\varphi} \zeta^{\pm}$; in this case $\partial_v \mathcal{J}^{\pm} = 0$

Using

$$g_{\mu\nu}=\frac{1}{2}\left\langle \left(A_{\mu}^{+}-A_{\mu}^{-}\right)\left(A_{\nu}^{+}-A_{\nu}^{-}\right)\right\rangle$$
 yields $(f:=1+
ho/(2a))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a} f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms $(\omega=0)$ yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

► Recover desired near horizon metric

Using

$$g_{\mu
u}=rac{1}{2}\left\langle \left(A_{\mu}^{+}-A_{\mu}^{-}
ight)\left(A_{
u}^{+}-A_{
u}^{-}
ight)
ight
angle$$
 yields $(f:=1+
ho/(2a))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a}f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms $(\omega=0)$ yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

- Recover desired near horizon metric
- ▶ Rindler acceleration a indeed state-independent

Using

$$g_{\mu
u}=rac{1}{2}\left\langle \left(A_{\mu}^{+}-A_{\mu}^{-}
ight)\left(A_{
u}^{+}-A_{
u}^{-}
ight)
ight
angle$$
 yields $(f:=1+
ho/(2a))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a} f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms $(\omega=0)$ yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

- Recover desired near horizon metric
- Rindler acceleration a indeed state-independent
- ▶ Two state-dependent functions (γ, ω) as usual in 3d gravity

Using

$$g_{\mu\nu}=\tfrac{1}{2}\left\langle \left(A_{\mu}^+-A_{\mu}^-\right)\left(A_{\nu}^+-A_{\nu}^-\right)\right\rangle$$
 yields ($f:=1+
ho/(2a)$)

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a} f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms $(\omega=0)$ yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

- ▶ Recover desired near horizon metric
- Rindler acceleration a indeed state-independent
- ▶ Two state-dependent functions (γ, ω) as usual in 3d gravity
- $ightharpoonup \gamma = \gamma(\varphi)$: "black flower"

Canonical boundary charges

- Canonical boundary charges non-zero for large trafos that preserve boundary conditions
- Zero mode charges: mass and angular momentum

Canonical boundary charges

- Canonical boundary charges non-zero for large trafos that preserve boundary conditions
- Zero mode charges: mass and angular momentum

Background independent result for Chern-Simons yields

$$Q[\eta] = \frac{k}{4\pi} \oint d\varphi \, \eta(\varphi) \, \mathcal{J}(\varphi)$$

- Finite
- Integrable
- Conserved
- Non-trivial

Canonical boundary charges

- Canonical boundary charges non-zero for large trafos that preserve boundary conditions
- Zero mode charges: mass and angular momentum

Background independent result for Chern-Simons yields

$$Q[\eta] = \frac{k}{4\pi} \oint d\varphi \, \eta(\varphi) \, \mathcal{J}(\varphi)$$

- Finite
- Integrable
- Conserved
- Non-trivial

Meaningful near horizon boundary conditions and non-trivial theory!

Outline

Motivation

Near horizon boundary conditions

Soft Heisenberg hair

Soft hairy black hole entropy

Concluding comments

Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos

Most general trafo

$$\delta_{\epsilon}\mathfrak{a} = d\epsilon + [\mathfrak{a}, \, \epsilon] = \mathcal{O}(\delta\mathfrak{a})$$

that preserves our boundary conditions for constant ζ given by

$$\epsilon = \epsilon^+ L_+ + \eta L_0 + \epsilon^- L_-$$

with

$$\partial_v \eta = 0$$

implying

$$\delta_{\epsilon} \mathcal{J} = \partial_{\varphi} \eta$$

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} \left(\varphi\right)$$

What should we expect?

- Virasoro? (spacetime is locally AdS₃)
- ▶ BMS₃? (Rindler boundary similar to scri)
- warped conformal algebra? (this is what we found for Rindleresque holography and what Donnay, Giribet, Gonzalez, Pino found in their near horizon analysis)

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} (\varphi)$$

Near horizon symmetry algebra

$$[J_n^{\pm}, J_m^{\pm}] = \pm \frac{1}{2} kn \delta_{n+m,0} \qquad [J_n^{+}, J_m^{-}] = 0$$

Two $\hat{u}(1)$ current algebras with non-zero levels

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} (\varphi)$$

Near horizon symmetry algebra

$$[J_n^{\pm}, J_m^{\pm}] = \pm \frac{1}{2} kn \delta_{n+m,0} \qquad [J_n^{+}, J_m^{-}] = 0$$

Two $\hat{u}(1)$ current algebras with non-zero levels

▶ Much simpler than CFT₂, warped CFT₂, Galilean CFT₂, etc.

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} (\varphi)$$

Near horizon symmetry algebra

$$[J_n^{\pm}, J_m^{\pm}] = \pm \frac{1}{2} kn \delta_{n+m,0} \qquad [J_n^{+}, J_m^{-}] = 0$$

Two $\hat{u}(1)$ current algebras with non-zero levels

- ▶ Much simpler than CFT₂, warped CFT₂, Galilean CFT₂, etc.
- Map

$$P_0 = J_0^+ + J_0^ P_n = \frac{i}{kn} (J_{-n}^+ + J_{-n}^-) \text{ if } n \neq 0$$
 $X_n = J_n^+ - J_n^-$

yields Heisenberg algebra (with Casimirs X_0 , P_0)

$$[X_n, X_m] = [P_n, P_m] = [X_0, P_n] = [P_0, X_n] = 0$$

 $[X_n, P_m] = i\delta_{n,m} \quad \text{if } n \neq 0$

Soft hair

• Vacuum descendants $|\psi(q)\rangle$

$$|\psi(q)\rangle \sim \prod (J_{-n_i^+}^+)^{m_i^+} \prod (J_{-n_i^-}^-)^{m_i^-} |0\rangle$$

lacktriangle Vacuum descendants $|\psi(q)\rangle$

$$|\psi(q)\rangle \sim \prod (J_{-n_i^+}^+)^{m_i^+} \prod (J_{-n_i^-}^-)^{m_i^-} |0\rangle$$

► Hamiltonian

$$H := Q[\epsilon^{\pm}|_{\partial_v}] = {}^{\mathbf{a}}P_0$$

commutes with all generators of algebra

lacktriangle Vacuum descendants $|\psi(q)
angle$

$$|\psi(q)\rangle \sim \prod (J_{-n_i^+}^+)^{m_i^+} \prod (J_{-n_i^-}^-)^{m_i^-} |0\rangle$$

► Hamiltonian

$$H := Q[\epsilon^{\pm}|_{\partial_v}] = {}^{\mathbf{a}}P_0$$

commutes with all generators of algebra

Energy of vacuum descendants

$$E_{\psi} = \langle \psi(q) | H | \psi(q) \rangle = E_{\text{vac}} \langle \psi(q) | \psi(q) \rangle = E_{\text{vac}}$$

same as energy of vacuum

lacktriangle Vacuum descendants $|\psi(q)
angle$

$$|\psi(q)\rangle \sim \prod (J_{-n_i^+}^+)^{m_i^+} \prod (J_{-n_i^-}^-)^{m_i^-} |0\rangle$$

► Hamiltonian

$$H := Q[\epsilon^{\pm}|_{\partial_v}] = {}^{\mathbf{a}}P_0$$

commutes with all generators of algebra

Energy of vacuum descendants

$$E_{\psi} = \langle \psi(q) | H | \psi(q) \rangle = E_{\text{vac}} \langle \psi(q) | \psi(q) \rangle = E_{\text{vac}}$$

same as energy of vacuum

► Same conclusion true for descendants of any state!

lacktriangle Vacuum descendants $|\psi(q)
angle$

$$|\psi(q)\rangle \sim \prod (J_{-n_i^+}^+)^{m_i^+} \prod (J_{-n_i^-}^-)^{m_i^-} |0\rangle$$

► Hamiltonian

$$H := Q[\epsilon^{\pm}|_{\partial_v}] = {}^{\mathbf{a}}P_0$$

commutes with all generators of algebra

Energy of vacuum descendants

$$E_{\psi} = \langle \psi(q) | H | \psi(q) \rangle = E_{\text{vac}} \langle \psi(q) | \psi(q) \rangle = E_{\text{vac}}$$

same as energy of vacuum

Same conclusion true for descendants of any state!

Soft hair = zero energy excitations on horizon

Outline

Motivation

Near horizon boundary conditions

Soft Heisenberg hair

Soft hairy black hole entropy

Concluding comments

Zero-mode solutions with constant chemical potentials: BTZ

$$J_0^{\pm} = \frac{k}{2}(r_+ \pm r_-)$$

Zero-mode solutions with constant chemical potentials: BTZ

$$J_0^{\pm} = \frac{k}{2}(r_+ \pm r_-)$$

 Generic soft hairy black holes (or "black flowers") from softly boosting BTZ

Zero-mode solutions with constant chemical potentials: BTZ

$$J_0^{\pm} = \frac{k}{2}(r_+ \pm r_-)$$

- Generic soft hairy black holes (or "black flowers") from softly boosting BTZ
- ► Soft hairy black holes remain regular and have same energy as BTZ (for other boundary conditions generically not true)

Zero-mode solutions with constant chemical potentials: BTZ

$$J_0^{\pm} = \frac{k}{2}(r_+ \pm r_-)$$

- Generic soft hairy black holes (or "black flowers") from softly boosting BTZ
- ► Soft hairy black holes remain regular and have same energy as BTZ (for other boundary conditions generically not true)
- Macroscopic entropy

$$S = 2\pi (J_0^+ + J_0^-) = \frac{A}{4G_N}$$

calculated directly in Chern-Simons formulation

Zero-mode solutions with constant chemical potentials: BTZ

$$J_0^{\pm} = \frac{k}{2}(r_+ \pm r_-)$$

- Generic soft hairy black holes (or "black flowers") from softly boosting BTZ
- ► Soft hairy black holes remain regular and have same energy as BTZ (for other boundary conditions generically not true)
- Macroscopic entropy

$$S = 2\pi (J_0^+ + J_0^-) = \frac{A}{4G_N}$$

No contribution from soft hair charges

Zero-mode solutions with constant chemical potentials: BTZ

$$J_0^{\pm} = \frac{k}{2}(r_+ \pm r_-)$$

- ► Generic soft hairy black holes (or "black flowers") from softly boosting BTZ
- ► Soft hairy black holes remain regular and have same energy as BTZ (for other boundary conditions generically not true)
- Macroscopic entropy

$$S = 2\pi (J_0^+ + J_0^-) = \frac{A}{4G_N}$$

- No contribution from soft hair charges
- Suggestive that microstate counting should work

Zero-mode solutions with constant chemical potentials: BTZ

$$J_0^{\pm} = \frac{k}{2}(r_+ \pm r_-)$$

- Generic soft hairy black holes (or "black flowers") from softly boosting BTZ
- Soft hairy black holes remain regular and have same energy as BTZ (for other boundary conditions generically not true)
- Macroscopic entropy

$$S = 2\pi (J_0^+ + J_0^-) = \frac{A}{4G_N}$$

- No contribution from soft hair charges
- Suggestive that microstate counting should work

Before addressing microstates consider map to aymptotic variables

▶ Usual asymptotic AdS $_3$ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J}x = 1$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J} x = 1$

Near horizon chemical potential transforms into combination of asymptotic charge and chemical potential!

$$\mu' - \mathcal{J}\mu = -\zeta$$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J}x = 1$

Near horizon chemical potential transforms into combination of asymptotic charge and chemical potential!

$$\mu' - \mathcal{J}\mu = -\zeta$$

 Asymptotic charges: twisted Sugawara construction with near horizon charges

$$\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J}x = 1$

Near horizon chemical potential transforms into combination of asymptotic charge and chemical potential!

$$\mu' - \mathcal{J}\mu = -\zeta$$

► Asymptotic charges: twisted Sugawara construction with near horizon charges

$$\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$$

• Get Virasoro with non-zero central charge $\delta \mathcal{L} = 2\mathcal{L}\varepsilon' + \mathcal{L}'\varepsilon - \varepsilon'''$

 Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

 Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

 Our boundary conditions singled out: whole spectrum compatible with regularity

 Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

- Our boundary conditions singled out: whole spectrum compatible with regularity
- For constant chemical potential ζ : regularity = holonomy condition

$$\mu\mu'' - \frac{1}{2}\mu'^2 - \mu^2 \mathcal{L} = -2\pi^2/\beta^2$$

Solved automatically from map to asymptotic observables; reminder:

$$\mu' - \mathcal{J}\mu = -\zeta$$
 $\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$

 Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

- Our boundary conditions singled out: whole spectrum compatible with regularity
- \blacktriangleright For constant chemical potential ζ : regularity = holonomy condition

$$\mu \mu'' - \frac{1}{2}\mu'^2 - \mu^2 \mathcal{L} = -2\pi^2/\beta^2$$

Solved automatically from map to asymptotic observables; reminder:

$$\mu' - \mathcal{J}\mu = -\zeta$$
 $\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$

Near horizon boundary conditions natural for near horizon observer

- Idea: use map to asymptotic observables to do standard Cardy counting
- ► Twisted Sugawara construction expanded in Fourier modes

$$kL_n = \sum_{p \in \mathbb{Z}} J_{n-p} J_p + ikn J_n$$

- Idea: use map to asymptotic observables to do standard Cardy counting
- Twisted Sugawara construction expanded in Fourier modes

$$kL_n = \sum_{p \in \mathbb{Z}} J_{n-p} J_p + ikn J_n$$

 Starting from Heisenberg algebra obtain semi-classically Virasoro algebra

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{1}{2} k n^3 \delta_{n+m, 0}$$

- Idea: use map to asymptotic observables to do standard Cardy counting
- ► Twisted Sugawara construction expanded in Fourier modes

$$kL_n = \sum_{p \in \mathbb{Z}} J_{n-p} J_p + ikn J_n$$

 Starting from Heisenberg algebra obtain semi-classically Virasoro algebra

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{1}{2} k n^3 \delta_{n+m,0}$$

Usual Cardy formula yields Bekenstein–Hawking result

$$S_{\text{Cardy}} = 2\pi \sqrt{kL_0^+} + 2\pi \sqrt{kL_0^-} = 2\pi (J_0^+ + J_0^-) = \frac{A}{4G_N} = S_{\text{BH}}$$

- Idea: use map to asymptotic observables to do standard Cardy counting
- Twisted Sugawara construction expanded in Fourier modes

$$kL_n = \sum_{p \in \mathbb{Z}} J_{n-p} J_p + ikn J_n$$

 Starting from Heisenberg algebra obtain semi-classically Virasoro algebra

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{1}{2}k n^3 \delta_{n+m,0}$$

Usual Cardy formula yields Bekenstein–Hawking result

$$S_{\text{Cardy}} = 2\pi \sqrt{kL_0^+} + 2\pi \sqrt{kL_0^-} = 2\pi (J_0^+ + J_0^-) = \frac{A}{4G_N} = S_{\text{BH}}$$

Need $J_0^{
m vac}=ik/2$ to get correct vacuum value $L_0^{
m vac}=-k/4$; with a=i get modular transformed line-element ${\rm d}s^2=\rho^2\,{\rm d}t+{\rm d}\rho^2-{\rm d}\varphi^2$

- Idea: use map to asymptotic observables to do standard Cardy counting
- ► Twisted Sugawara construction expanded in Fourier modes

$$kL_n = \sum_{p \in \mathbb{Z}} J_{n-p} J_p + iknJ_n$$

 Starting from Heisenberg algebra obtain semi-classically Virasoro algebra

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{1}{2} k n^3 \delta_{n+m,0}$$

Usual Cardy formula yields Bekenstein–Hawking result

$$S_{\text{Cardy}} = 2\pi \sqrt{kL_0^+} + 2\pi \sqrt{kL_0^-} = 2\pi (J_0^+ + J_0^-) = \frac{A}{4G_N} = S_{\text{BH}}$$

Need $J_0^{\mathrm{vac}}=ik/2$ to get correct vacuum value $L_0^{\mathrm{vac}}=-k/4$; with a=i get modular transformed line-element $\mathrm{d}s^2=\rho^2\,\mathrm{d}t+\mathrm{d}\rho^2-\mathrm{d}\varphi^2$

Precise numerical factor in twist term crucial for correct results

Warped CFT counting

▶ Map near horizon algebra $J_n^{\pm} = \frac{1}{2}(J_n \pm K_n)$

$$Y_n \sim \sum J_{n-p} K_p \qquad T_n \sim J_n$$

to centerless warped conformal algebra

$$[Y_n, Y_m] = (n - m)Y_{n+m}$$

 $[Y_n, T_m] = -mT_{n+m}$
 $[T_n, T_m] = 0$

Warped CFT counting

▶ Map near horizon algebra $J_n^{\pm} = \frac{1}{2}(J_n \pm K_n)$

$$Y_n \sim \sum J_{n-p} K_p \qquad T_n \sim J_n$$

to centerless warped conformal algebra

$$[Y_n, Y_m] = (n - m)Y_{n+m}$$

 $[Y_n, T_m] = -mT_{n+m}$
 $[T_n, T_m] = 0$

▶ Modular property $Z(\beta,\theta)=\operatorname{Tr}\left(e^{-\beta H+i\theta J}\right)=Z(2\pi\beta/\theta,-4\pi^2/\theta)$ $(H=Q[\partial_v],\ J=Q[\partial_\varphi])$ projects partition function to ground state for small imaginary θ (we need $\theta\to 0$)

Warped CFT counting

▶ Map near horizon algebra $J_n^{\pm} = \frac{1}{2}(J_n \pm K_n)$

$$Y_n \sim \sum J_{n-p} K_p \qquad T_n \sim J_n$$

to centerless warped conformal algebra

$$[Y_n, Y_m] = (n - m)Y_{n+m}$$

 $[Y_n, T_m] = -mT_{n+m}$
 $[T_n, T_m] = 0$

- Modular property $Z(\beta, \theta) = \operatorname{Tr}\left(e^{-\beta H + i\theta J}\right) = Z(2\pi\beta/\theta, -4\pi^2/\theta)$ $(H = Q[\partial_v], J = Q[\partial_\varphi])$ projects partition function to ground state for small imaginary θ (we need $\theta \to 0$)
- Assuming $J^{\text{vac}} = 0$ yields

$$S = \beta H = S_{\rm BH}$$

Hamiltonian H is product of BH entropy and Unruh temperature

Outline

Motivation

Near horizon boundary conditions

Soft Heisenberg hair

Soft hairy black hole entropy

Concluding comments

Brown, Henneaux '86

Our boundary conditions differ from Brown–Henneaux — their chemical potentials depend on our charges and chemical potentials!

Virasoro composite in terms of Heisenberg algebra

- ▶ Brown, Henneaux '86
- Donnay, Giribet, González, Pino 1511.08687
 - ▶ Observed already $H = TS_{BH}$
 - Changing our bc's to

$$\begin{split} \mathrm{d}s^2 &= -2 a \rho \, \mathrm{d}v^2 + 2 \, \mathrm{d}v \, \mathrm{d}\rho - 2 \omega a^{-1} \, \, \mathrm{d}\varphi \, \mathrm{d}\rho + 4 \omega \rho \, \mathrm{d}v \, \mathrm{d}\varphi + \left[\gamma^2 + \frac{2\rho}{a}(\gamma^2 - \omega^2)\right] \, \mathrm{d}\varphi^2 + \mathcal{O}(\rho^2) \\ & \text{yields AKVs} \\ & \xi = T(\varphi) \partial_v + Y(\varphi) \partial_\varphi + \mathcal{O}(\rho^3) \end{split}$$

Up to subleading terms same AKVs as DGGP

But: T and Y state-dependent for our boundary conditions!

Comment: map to Brown–Henneaux variables requires second chemical potential, not just Rindler acceleration!

Warped CFT algebra composite in terms of Heisenberg algebra

- Brown, Henneaux '86
- Donnay, Giribet, González, Pino 1511.08687
- Afshar, Detournay, DG, Oblak 1512.08233

Rindler acceleration state-dependent in that approach

Twisted warped CFT algebra composite in terms of Heisenberg algebra

- Brown, Henneaux '86
- Donnay, Giribet, González, Pino 1511.08687
- ► Afshar, Detournay, DG, Oblak 1512.08233
- Hawking, Perry, Strominger 1601.00921
 - We constructed explicitly gravitational soft hair
 - We find no soft hair contribution to black hole entropy
 - ▶ BMS₃ follows from Sugawara-like construction from Heisenberg algebra

BMS algebra (supertranslations + superrotation) composite in terms of near horizon Heisenberg algebra

- Brown, Henneaux '86
- Donnay, Giribet, González, Pino 1511.08687
- Afshar, Detournay, DG, Oblak 1512.08233
- ▶ Hawking, Perry, Strominger 1601.00921
- Comment on complementarity:

- Asymptotic Virasoro algebra composite from near horizon perspective
- Same physics described naturally in different variables for asymptotic and near horizon observers
- In particular, asymptotic chemical potentials depend on near horizon charges and chemical potentials

- More on dual field theory to be done
- Flat space
 - Similar story works!
 - ▶ Get centerless BMS₃ as composite algebra from Heisenberg algebra!
 - Soft hairy flat space cosmologies
 - ► Asymptotic chemical potentials again depend on near horizon charges and chemical potentials
 - Obtain again Bekenstein–Hawking entropy with no soft hair contribution

- More on dual field theory to be done
- ▶ Flat space
- ► (Topologically) massive gravity (Deser, Jackiw, Templeton '82) To be done! Doable!

- More on dual field theory to be done
- ▶ Flat space
- ► (Topologically) massive gravity (Deser, Jackiw, Templeton '82) To be done! Doable!
- ▶ Higher spins with Stefan Prohazka: similar story works!

- ▶ More on dual field theory to be done
- ▶ Flat space
- ► (Topologically) massive gravity (Deser, Jackiw, Templeton '82) To be done! Doable!
- ► Higher spins with Stefan Prohazka: similar story works!
- ▶ Lower spins lowest spin gravity! (see Hofman, Rollier 1411.0672)

- More on dual field theory to be done
- ► Flat space
- ► (Topologically) massive gravity (Deser, Jackiw, Templeton '82) To be done! Doable!
- ▶ Higher spins with Stefan Prohazka: similar story works!
- ▶ Lower spins lowest spin gravity! (see Hofman, Rollier 1411.0672)
- ▶ 4d Does it work? Is there soft Heisenberg hair? Is BMS₄ composite? What are near horizon symmetries?

Near horizon symmetries shed new light on soft hair, microstate counting and complementarity

Thanks for your attention!

H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez, D. Tempo and R. Troncoso "Soft Heisenberg hair on black holes in three dimensions," Phys.Rev.**D** [R] (2016), in print; 1603.04824.

H. Afshar, S. Detournay, D. Grumiller and B. Oblak "Near-Horizon Geometry and Warped Conformal Symmetry," JHEP **1603** (2016) 187; 1512.08233.

Thanks to Bob McNees for providing the LATEX beamerclass!

Bonus level: exact metric with generic chemical potentials

Our bc's for the connection
$$A^{\pm} = b_{\pm}^{-1}(\rho) \left(d + \mathfrak{a}_{\pm}(x^0, x^1) \right) b_{\pm}(\rho)$$
 with
$$\mathfrak{a}_{\pm} = \left(\mathcal{J}_{\pm} \ d\varphi + \zeta^{\pm} \ dv \right) L_0$$

and $b_{\pm} = \exp\left(\frac{1}{\ell^{\pm}}L_{+}\right) \cdot \exp\left(\frac{\rho}{2}L_{-}\right)$ lead to the metric

$$ds^{2} = \frac{1}{2} \left\langle \left(A_{\mu}^{+} - A_{\mu}^{-} \right) \left(A_{\nu}^{+} - A_{\nu}^{-} \right) \right\rangle dx^{\mu} dx^{\nu}$$

$$\begin{split} &= \left(-\frac{(\zeta^{+2} + \partial_v \zeta^+)(\zeta^{-2} + \partial_v \zeta^-)}{\zeta^{+2}\zeta^{-2}}\rho^2 + \frac{\zeta^{+3}\zeta^{-2} + \zeta^{+2}\zeta^{-3} + \partial_v \zeta^+ \zeta^{-3} + \zeta^{+3}\partial_v \zeta^-}{\zeta^{+2}\zeta^{-2}}\rho + \frac{1}{4}(\zeta^- - \zeta^+)^2\right) \mathrm{d}v^2 \\ &+ \left(\frac{(-\zeta^{+2} - \partial_v \zeta^+)\partial_\varphi \zeta^- + (-\zeta^{-2} - \partial_v \zeta^-)\partial_\varphi \zeta^+ - \mathcal{J}_+ \zeta^+ \partial_v \zeta^- + \zeta^- (\mathcal{J}_- \zeta^{+2} - \mathcal{J}_+ \zeta^+ \zeta^- + \mathcal{J}_- \partial_v \zeta^+)}{2\zeta^{+2}\zeta^{-2}}\rho^2 \right. \\ &+ \frac{\partial_\varphi \zeta^- \zeta^{+3} + \partial_\varphi \zeta^+ \zeta^{-3} + \mathcal{J}_+ \zeta^{+2}\partial_v \zeta^- - \zeta^- \left(\mathcal{J}_- \partial_v \zeta^+ \zeta^- + \zeta^+ (\zeta^- + \zeta^+)(\zeta^+ \mathcal{J}_- - \zeta^- \mathcal{J}_+)\right)}{2\zeta^{+2}\zeta^{-2}}\rho \\ &- \frac{1}{4}(\zeta^- - \zeta^+)(\mathcal{J}_- + \mathcal{J}_+)\right) \mathrm{d}v \, \mathrm{d}\varphi + \left(1 + \frac{\partial_v \zeta^- \zeta^{+2} + \partial_v \zeta^+ \zeta^{-2}}{2\zeta^{+2}\zeta^{-2}}\right) \mathrm{d}v \, \mathrm{d}\rho \\ &+ \left(\frac{(\mathcal{J}_+ \zeta^+ + \partial_\varphi \zeta_+)(\mathcal{J}_- \zeta^- - \partial_\varphi \zeta^-)}{\zeta^{+2}\zeta^{-2}}\rho^2 + \frac{\mathcal{J}_+ \partial_\varphi \zeta^- \zeta^{+2} - \zeta^- \mathcal{J}_- (\zeta^- \partial_\varphi \zeta^+ + \mathcal{J}_+ \zeta^+ (\zeta^- + \zeta^+))}{\zeta^{+2}\zeta^{-2}}\rho \\ &+ \frac{1}{4}(\zeta^- + \zeta^+)^2\right) \mathrm{d}\varphi^2 + \left(\frac{\mathcal{J}_+ \zeta^+ \zeta^{-2} - \mathcal{J}_- \zeta^{+2}\zeta^- + \partial_\varphi \zeta^+ \zeta^{-2} + \partial_\varphi \zeta^- \zeta^{+2}}{2\zeta^{+2}\zeta^{-2}}\right) \mathrm{d}\varphi \, \mathrm{d}r \end{split}$$