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Overarching long-term theme: how general is holography?
More specifically: what is the landscape of gravity theories with Lifshitz anisotropy?

Quote from first sentence of workshop description: “Recent studies of
non-AdS holography involving Lifshitz spacetimes have led to ...”

3rd image googling “landscape of theories” (first two: book covers “The Landscape of Qualitative Research”)
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Anisotropic scaling of Lifshitz type

Asymptotic line-element

ds2 = −dt2

r2z
+

1

r2
(

dr2 + d~x2
)

with real anisotropy parameter z has anisotropic (“Lifshitz”) scaling

t→ λzt ~x→ λ~x r → λr

between time t and space ~x.

Kachru, Liu, Mulligan ’08

Their construction (and many others) use p-form gauge fields; others use
massive gauge fields or massive gravitons

Motivations, applications and relations to Newton–Cartan:

see other talks!
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Motivations, applications and relations to Newton–Cartan:
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Questions addressed in this talk:

I (How) can we realize line-elements above on gravity side without
introducing matter or higher derivative interactions?

I What happens in the special case z → 0?
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Anisotropic scaling of Lifshitz type

Asymptotic line-element

ds2 = −dt2

r2z
+
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dr2 + d~x2
)

with real anisotropy parameter z has anisotropic (“Lifshitz”) scaling

t→ λzt ~x→ λ~x r → λr

between time t and space ~x.

Motivations, applications and relations to Newton–Cartan:

see other talks!

Questions not addressed in this talk:

I (How) does this lead to applications in cond-mat or otherwise?

I What are relations to flat space holography?
work with/by Bagchi et al. ’12-’16
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Anisotropic scaling of Lifshitz type

Asymptotic line-element

ds2 = −dt2

r2z
+

1

r2
(

dr2 + dx2
)

with real anisotropy parameter z has anisotropic (“Lifshitz”) scaling

t→ λzt x→ λx r → λr

between time t and space x.

Motivations, applications and relations to Newton–Cartan:

see other talks! Technical simplification: work in 2+1 dimensions!

Questions addressed in this talk:

I (How) can we realize line-elements above on gravity side without
introducing matter or higher derivative interactions?

I What happens in the special case z → 0?
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Review of general aspects of boundary conditions (bc’s)

I In any physical theory need bc’s imposed on fields

I In many instances ‘natural’ bc’s suitable
I In gravity ‘natural’ bc’s most unnatural: metric cannot be assumed to

vanish asymptotically
I Instead, metric should approach some suitable class of metrics, like

asymptotically flat or asymptotically (A)dS
I No algorithm determining ‘right’ bc’s — always choice!
I Algorithm exists to check consistency of bc’s
I Local diffeos and gauge trafos fall into three classes:

1. Trafos that violate bc’s (forbidden)
2. Trafos that preserve bc’s and remain pure gauge (trivial)
3. Trafos that preserve bc’s but are not pure gauge at the asymptotic

boundary (asymptotic symmetries)
I Canonical boundary charges (á la Regge–Teitelboim) generate

asympotic symmetries
I Consistency means they are finite, integrable, non-trivial and

conserved (in time)
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I Canonical boundary charges (á la Regge–Teitelboim) generate

asympotic symmetries
I Consistency means they are finite, integrable, non-trivial and

conserved (in time)

Daniel Grumiller — Lifshitz anisotropy from boundary conditions Motivation 6/25



Review of general aspects of boundary conditions (bc’s)

I In any physical theory need bc’s imposed on fields
I In many instances ‘natural’ bc’s suitable
I In gravity ‘natural’ bc’s most unnatural: metric cannot be assumed to

vanish asymptotically
I Instead, metric should approach some suitable class of metrics, like

asymptotically flat or asymptotically (A)dS

Example: Brown-Henneaux type of bc’s (aAdS3):

ds2aAdS = dρ2 +
(
e2ρηµν + γµν +O(e−2ρ)

)
dxµ dxν

with δγ = arbitrary

I No algorithm determining ‘right’ bc’s — always choice!
I Algorithm exists to check consistency of bc’s
I Local diffeos and gauge trafos fall into three classes:

1. Trafos that violate bc’s (forbidden)
2. Trafos that preserve bc’s and remain pure gauge (trivial)
3. Trafos that preserve bc’s but are not pure gauge at the asymptotic

boundary (asymptotic symmetries)
I Canonical boundary charges (á la Regge–Teitelboim) generate
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Chern–Simons (CS) theory with gauge group containing
SL(2,R)× SL(2,R)
2-minute crash course on higher spins in three dimensions

Simplest example: spin-3 gravity

S = ICS[A+]− ICS[A−]

in CS formulation

ICS[A±] =
k

4π

∫
〈A± ∧ dA± + 2

3 A
± ∧A± ∧A±〉

with SL(3,R) connections A± and suitable boundary conditions
(more on boundary conditions on next slide!)

Henneaux, Rey ’10; Campoleoni, Fredenhagen, Pfenninger, Theisen ’10

I Zuvielbein: e ∼ A+ −A−; higher-spin connection: ω ∼ A+ +A−

I Metric: g ∼ 〈ee〉; Spin-3 field: φ ∼ 〈eee〉

I e = eAµ dxµ = eaµJa dxµ + eabµ Jab dxµ

I Ja: generators of principally embedded sl(2,R) ↪→ sl(3,R)
I Generalization to spin-N : replace sl(3) by sl(N)
I Further generalization: non-principal embeddings of sl(2) ↪→ sl(N)
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Gravity-like bc’s in CS gauge theories

Standard trick: partially fix gauge

A± = b−1± (ρ, xi)
(

d+a±(xi)
)
b±(ρ, xi)

with some space-time dependent group elements b± ∈ SL(N) with
δb± = 0

Drop ± decorations in most of talk

Manifold topologically a cylinder or torus, with radial coordinate ρ and
boundary coordinates xi
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Gravity-like bc’s in CS gauge theories

Standard trick: partially fix gauge

A = b−1(ρ, xi)
(

d+a(xi)
)
b(ρ, xi)

with some space-time dependent group elements b ∈ SL(N) with δb = 0
I Standard AdS3 approach in highest weight gauge

a ∼ L1 + L(xi)L−1 +W(xi)W−2 b(ρ) = exp (ρL0)

variations allowed by bc’s:

δa ∼ δL(xi)L−1 + δW(xi)W−2 δb = 0

Notation: sl(2): [Ln, Lm] = (n−m)Ln+m
sl(3): [Ln,Wm] = (2n−m)Wn+m and

[Wn,Wm] ∝ (n−m)(2n2 + 2m2 − nm− 8)Ln+m

spin-3 analog of Brown–Henneaux bc’s

I Other bc’s possible in same theory
I Other embeddings possible for same gauge group
I sl(N) allows for Lifshitz exponents z = 1, 2, . . . (N − 1) and all

possible fractions thereof Gary, DG, Rashkov ’12
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Simplest example Gary, DG, Prohazka, Rey ’14

... in fact, too simple!

I Spin-3 gravity in principal embedding with almost same bc’s as before
with additional terms:

a ∼W2 + L1 + L(xi)L−1 +W(xi)W−2 + extra terms

I Extra terms fully determined by asymptotic EOM; generate terms
proportional to generators W2, W1 and L0

I Line-element for “massless” solution L =W = 0 (spin-3 analog of
massless BTZ)

ds2 = −dt2

r4
+

1

r2
(

dr2 + dx2
)

I This is a Lifshitz spacetime with z = 2!
I While consistent from CS-perspective, zuvielbein is degenerate in

construction above Lei, Ross ’15
I Similar construction works for Schrödinger solutions (also in higher

dimensions), where zuvielbein is non-degenerate Lei, Peng ’15
I HS theories (without matter) can yield anisotropic scaling!
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massless BTZ)

ds2 = −dt2

r4
+

1

r2
(

dr2 + dx2
)

I This is a Lifshitz spacetime with z = 2!
Technical origin of possible values of z in spin-N gravity: generators
with sl(2)-weights 2, 3, . . . N in connection a lead by BCH-formula
(commuting b = eρL0 through in b−1ab) to exponents
eρ, e2ρ, . . . , e(N−1)ρ in zuvielbein

I While consistent from CS-perspective, zuvielbein is degenerate in
construction above Lei, Ross ’15

I Similar construction works for Schrödinger solutions (also in higher
dimensions), where zuvielbein is non-degenerate Lei, Peng ’15

I HS theories (without matter) can yield anisotropic scaling!

Daniel Grumiller — Lifshitz anisotropy from boundary conditions Higher spin gravity 10/25



Simplest example Gary, DG, Prohazka, Rey ’14

... in fact, too simple! see also Gutperle et al. ’13, ’14, ’15

I Spin-3 gravity in principal embedding with almost same bc’s as before
with additional terms:

a ∼W2 + L1 + L(xi)L−1 +W(xi)W−2 + extra terms

I Extra terms fully determined by asymptotic EOM; generate terms
proportional to generators W2, W1 and L0

I Line-element for “massless” solution L =W = 0 (spin-3 analog of
massless BTZ)

ds2 = −dt2

r4
+

1

r2
(

dr2 + dx2
)

I This is a Lifshitz spacetime with z = 2!
I While consistent from CS-perspective, zuvielbein is degenerate in

construction above Lei, Ross ’15
On plus side, example above is inequivalent to standard spin-3 black
holes with spin-3 chemical potentials, while example in Gutperle,
Hijano, Samani ’13 is equivalent to them

I Similar construction works for Schrödinger solutions (also in higher
dimensions), where zuvielbein is non-degenerate Lei, Peng ’15

I HS theories (without matter) can yield anisotropic scaling!
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Simplest example Gary, DG, Prohazka, Rey ’14

... in fact, too simple! But similar examples work for Schrödinger! (even in higher D)

I Spin-3 gravity in principal embedding with almost same bc’s as before
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construction above Lei, Ross ’15
I Similar construction works for Schrödinger solutions (also in higher

dimensions), where zuvielbein is non-degenerate Lei, Peng ’15

I HS theories (without matter) can yield anisotropic scaling!
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What is lower spin gravity? name coined by Hofman, Rollier ’14

Working definition of lower spin gravity in 2+1 dimensions:

I CS theory with gauge group not containing SL(2,R)× SL(2,R)

I suitable bc’s on connection allowing gravity-like interpretation

I Simplest example: SL(2,R)× U(1) lower spin gravity/warped CFT
correspondence Hofman, Rollier ’14

I Can in principle take anything, but need non-degenerate bilinear form

I Pertinent examples: take non-relativistic algebras
Bergshoeff, Rosseel ’16; Hartong, Lei, Obers ’16
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I suitable bc’s on connection allowing gravity-like interpretation

I Simplest example: SL(2,R)× U(1) lower spin gravity/warped CFT
correspondence Hofman, Rollier ’14

I Can in principle take anything, but need non-degenerate bilinear form

I Pertinent examples: take non-relativistic algebras
Bergshoeff, Rosseel ’16; Hartong, Lei, Obers ’16

specific extensions of Bargmann, Newton–Hooke, Schrödinger and
supersymmetric Bargmann
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Key aspects:

I Have non-relativistic/anisotropic algebra already as input in
action, not only through bc’s

I Still, bc’s play crucial role for establishing theory with anisotropy
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Carroll gravity as example Bergshoeff, DG, Prohazka, Rosseel ’16

Take CS action with connection (a = 1, 2)

A = τ H + ea Pa + ω J +Ba Ga

in the spin-2 Carroll algebra

[J, Pa] = εab Pb

[J, Ga] = εab Gb

[Pa, Gb] = −εab H

with non-degenerate bi-linear form

〈H, J〉 = −1 〈Pa, Gb〉 = δab

Typical question in holographic correspondences on gravity side:

Are there nice bc’s for this theory?
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Asymptotically Carroll geometries and ∞ extension of the Carroll algebra

I Asymptotic Carroll geometry (2d metric plus 1-form) from CS
connection:

ds2(2) = eaeb δab =
(
ρ2 +O(ρ)

)
dϕ2 +O(1) dρdϕ+ dρ2

τ = dt+?

I Our proposed bc’s are given by connections of the form

A = b−1
(

d+a
)
b b = eρP2

with

aϕ = −J + h(t, ϕ) H + pa(t, ϕ) Pa + ga(t, ϕ) Ga

at = µ(t, ϕ) H

where δb = δµ = 0 and δh, δpa, δga 6= 0 (i.e., µ is source, rest vev’s)

I Leads to line-elements above, i.e., asymptotic Carroll geometries
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Canonical boundary charges

I Background independent result for canonical boundary charges:

δQ[λ] =
k

2π

∮
〈λδa〉

I manifestly finite at large ρ, non-trivial and integrable in field space

Q[λ] =
k

2π

∮ (
− λJh+ λPaga + λGapa

)
dϕ

I (asymptotic) EOM imply “holographic Ward id’s”:

∂tpa = ∂tga = 0 ∂th = ∂ϕµ

I charges conserved in time as consequence of holographic Ward id’s

∂tQ[λ]
∣∣
EOM

= 0

I Fourier modes of charges lead to infinite tower of generators ⇒
infinite enhancement of global Carroll algebra reminiscent of
AdS3/CFT2 ⇒ meaningful (and hopefully useful) set of bc’s!
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Asymptotic symmetry algebra (ASA) of Carroll gravity

I recall: gauge algebra was spin-2 Carroll algebra

I evaluating δλ1Q[λ2] = {Q[λ1], Q[λ2]} yields ASA

[J, Pa] = εab Pb

[J, Ga] = εab Gb

[Pa, Gb] = −εab H

I Notable features:
I only spatial translations Pa and Carroll boosts Ga get infinite lift, but

not time translations H or rotations J
I there is an additional central extension in the last commutator
I global Carroll algebra is subalgebra (n = 0)

I first of many possible examples of Brown–Henneaux type analysis
I numerous generalizations/modifications of bc’s conceivable
I should work for extended Bargmann, Newton–Hooke, Schrödinger, ...

Carroll gravity intriguing theory with numerous possible generalizations
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Can combine higher and lower spin manipulations simultaneously
Spin-N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel ’16

I One example would be a CS theory based on SL(N)× U(1) (higher
spin in one chiral sector and lower spin in another)

I Not sure if random examples physically interesting
I Study instead models that arise through ultra- or non-relativistic

contraction of relativistic higher spin theories
I Look for spin-3 version of various sequential contractions of (A)dS

symmetry algebra (in spin-2 case: Poincaré, Para-Poincaré,
Newton–Hooke, Galilei, Para-Galilei, Carroll, Static; see Bacry,
Lévy-Leblond ’68)

I These kinematical spin-3 algebras may be better motivated physically
I General structure of algebra with İnönü–Wigner contraction parameter
ε→ 0 (h is subalgebra of original Lie algebra and i the remainder)

[ h, h ] ∼ h [ h, i ] ∼ ε h + i→ i [ i, i ] ∼ ε2 h + ε i→ 0

I Obtain zoo of higher lower non-relativstic higher spin theories, e.g.
spin-3 versions of Carroll, Galilei and extended Bargmann algebras
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Lévy-Leblond ’68)

I These kinematical spin-3 algebras may be better motivated physically
I General structure of algebra with İnönü–Wigner contraction parameter
ε→ 0 (h is subalgebra of original Lie algebra and i the remainder)

[ h, h ] ∼ h [ h, i ] ∼ ε h + i→ i [ i, i ] ∼ ε2 h + ε i→ 0

I Obtain zoo of higher lower non-relativstic higher spin theories, e.g.
spin-3 versions of Carroll, Galilei and extended Bargmann algebras
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Example: spin-3 extended Bargmann Bergshoeff, DG, Prohazka, Rosseel ’16

I Medina–Revoy theorem allows to extend Galilei to extended
Bargmann (Galilei + 2 central ext’s; non-degenerate bilinear form)

Special case: if algebra comes from an İnönü–Wigner contraction

[ h, h ] ∼ h [ h, i ] ∼ i [ i, i ] = 0

then MR theorem always applicable:
extends algebra by dual h∗ and yields commutations relations

[ i, i ] ∼ h∗ [ h, h ] ∼ h∗

[ h, i ] ∼ i [ h, h∗ ] ∼ h∗

[ h∗, i ] = 0 [ h∗, h∗ ] = 0

and non-degenerate invariant bilinear form

〈h, h∗〉 = δ 〈i, i〉 = g 〈h, h〉 = arbitray (can be 0)

I Applying same methods to spin-3 Galilei yields spin-3 extended
Bargmann (2 versions exist, one given below with 2 + 4 ext’s)

[ J, Ga ]= εamGm [ J, Gab ]= −εm(aGb)m [ J∗a, Jb ]= εabJ
∗

[ H, Ga ]= εamPm [ J, Pab ]= −εm(aPb)m [ H∗a, •b ]= εabH
∗/J∗

[ J, Pa ]= εamPm [ H, Gab ]= −εm(aPb)m [ Ja, Jb ]= εabJ

[ Ga, Gb ]= εabH
∗ [ Ga, •b ]= ∆ab(G/P) [ Ja, Hb ]= εabH

[ Pa, Gb ]= εabJ
∗ [ Pa, Ja ]= ∆ab(P) [ Gab, •c ]= −δc(aεb)mGm/Pm

[ J, H∗a ]= εamH
∗
m [ Ga, Gbc ]= εa(bH

∗
c) [ Pab, Jc ]= −δc(aεb)mPm

[ J, J∗a ]= εamJ
∗
m [ Ga, Pbc ]= εa(bJ

∗
c) [ Pab, Gcd ]= ε(a(cδd)b)J

∗

[ H, H∗a ]= εamJ
∗
m [ Pa, Gbc ]= εa(bJ

∗
c) [ Gab, Gcd ]= ε(a(cδd)b)H

∗

[ J, •a ]= εam•m [ J∗, Ja ]= εamJ
∗
m ∆ab(P):= εmaPbm + εbaPmm

[ H, Ja ]= εamHm [ H∗, •a ]= εamH
∗
m/J

∗
m •a := Ja/Ha (either/or)
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AdS3 bc’s in Einstein gravity

Even restricting to Einstein gravity in three dimensions (with negative
cosmological constant) different choices exist for bc’s and their associated
asymptotic symmetry algebras:

I Brown–Henneaux ’86: two Virasoros (2d conformal algebra)

I Compere–Song–Strominger ’13: Virasoro plus u(1) current algebra

I Troessaert ’13: 2 Virasoros plus 2 u(1) current algebras

I Avery–Poojary–Suryanarayana ’13: Virasoro plus sl(2) current algebra

I Donnay–Giribet–Gonzalez–Pino ’15: centerless warped conformal

I Afshar–Detournay–DG–Oblak ’15: twisted warped conformal

I DG–Riegler ’16: two sl(2) current algebras (most general case!)

In the following I use neither of these bc’s!
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KdV bc’s Perez, Tempo, Troncoso ’16

Recall AdS3 Brown–Henneaux bc’s in presence of source/chemical
potential µ:

A± = b−1±
(

d+a±
)
b± b± = e±ρL0

with
aϕ = L± + L±L∓
at = µ±

(
L± + L±L∓

)
∓ µ± ′L0 + 1

2 µ
± ′′
L∓

If sources depend on charges, µ± = δH±/δL±, then get new bc’s
I µ± = 1: Brown–Henneaux

I µ± = L±: KdV, ±L̇± = 3L±L′± − 2L′′′±
I µ± = R±(k) (Gelfand–Dikii polynomial): kth representative of KdV

hierarchy, ±L̇± = D±R±(k) with D± = L′± + 2L±∂ϕ − 2∂3ϕ
I key observation for this talk: EOM invariant under anisotropic scaling

z = 2k + 1 t→ λzt ϕ→ λϕ L± → λ−2L±

Anisotropic scaling of Lifshitz type in Einstein gravity
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Near horizon bc’s Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso ’16

Non-extremal horizon (Rindler spacetime for ρ→ 0) achieved by bc’s

A± = b−1±
(

d+a±
)
b± a± =

(
± J ± dϕ+ ζ± dt

)
L0 δζ± = 0

Interesting features of our bc’s:

I Symmetry algebra: infinite copies of Heisenberg algebras

I Explicit construction of all soft hair descendants

I Explicit proposal for all microstates of BTZ Afshar, DG, Sheikh-Jabbari ’16
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Near horizon bc’s Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso ’16

Non-extremal horizon (Rindler spacetime for ρ→ 0) achieved by bc’s

A± = b−1±
(

d+a±
)
b± a± =

(
± J ± dϕ+ ζ± dt

)
L0 δζ± = 0

Interesting features of our bc’s:
I Astonishingly simple and universal∗ result for entropy

S = 2π
(
J+
0 + J−0

)
To give an idea how much simpler the formula above is in higher spin
theories than usual entropy formulas, here is the same result
expressed not in terms of charges J±0 for our bc’s, but for
Henneaux–Rey–Campoleoni–Fredenhagen–Pfenninger–Theisen bc’s
(see Guperle, Kraus ’11; Ammon, Gutperle, Kraus, Perlmutter ’12)

S = 2π
√

2πk

(√
L+ cos

[
1
3 arcsin

(
3
8

√
3k

2πL3+
W+

)]
+
(
+→ −

))
∗Applies to AdS, flat space, higher spins, higher derivatives and higher dimensions

I Line-element ds2 = −ζ2r2 dt2 + dr2 + J 2 dϕ2 + . . . has anisotropic
scaling symmetry like Lifshitz with z → 0

t→ t ϕ→ λϕ J → λ−1J
I Result follows indeed from z → 0 limit of entropy formula for theories

with Lifshitz scaling in 1+1 dimensions (with ∆± = J±0 )

I Interesting math question: why (generalized) Gelfand–Dikii
polynomial R(−1/2) and KdV level k = −1/2 special?
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I Result follows indeed from z → 0 limit of entropy formula for theories

with Lifshitz scaling in 1+1 dimensions (with ∆± = J±0 )

S = 2π(1+z)
∑
±

∆±
1/(1+z) exp

(
z

1+z ln
(
∆±0 [1/z] /z

))
note: ground state energies ∆±0 [z] = k

2
1

1+z (−1)(z−1)/2 also match
with gravity side, but not needed in entropy formula for z → 0!
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1/(1+z)
± exp
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z
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I Interesting math question: why (generalized) Gelfand–Dikii

polynomial R(−1/2) and KdV level k = −1/2 special?
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Summary

Anisotropic spacetimes of Lifshitz or Schrödinger type can be obtained
through imposition of suitable bc’s in

I Higher spin theories in 2+1
work with Gary, Rashkov; Afshar, Riegler; Prohazka, Rey; Breunhölder ’12-15

I Lower spin theories 2+1
work with Bergshoeff, Prohazka, Rosseel ’16

I Higher lower spin Non-relativistic higher spin theories in 2+1
work with Bergshoeff, Prohazka, Rosseel ’16

I Einstein gravity in 2+1
work by Perez, Tempo, Troncoso ’16

Lifshitz scaling in limit z → 0 interpreted from near horizon perspective
work with Afshar, Detournay, Merbis, Perez, Tempo, Troncoso, Sheikh-Jabbari,

Yavarntanoo ’16 [explicit construction of all BTZ microstates!]

S = 2π
(
J+
0 + J−0

)
Thanks for your attention!
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