Lifshitz anisotropy from boundary conditions

Daniel Grumiller
Institute for Theoretical Physics
TU Wien
Applied Newton-Cartan geometry
Simons Center, March 2017

Outline

Motivation

Higher spin gravity

Lower spin gravity

Higher lower spin gravity

Einstein gravity
$z \rightarrow 0$ and near horizon physics

Outline

Motivation

Higher spin gravity

Lower spin gravity

Higher lower spin gravity

Einstein gravity

Overarching long-term theme: how general is holography?
More specifically: what is the landscape of gravity theories with Lifshitz anisotropy?
Quote from first sentence of workshop description: "Recent studies of non-AdS holography involving Lifshitz spacetimes have led to ..."

$3^{\text {rd }}$ image googling "landscape of theories" (first two: book covers "The Landscape of Qualitative Research")

Anisotropic scaling of Lifshitz type

Asymptotic line-element

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} \vec{x}^{2}\right)
$$

with real anisotropy parameter z has anisotropic ("Lifshitz") scaling

$$
t \rightarrow \lambda^{z} t \quad \vec{x} \rightarrow \lambda \vec{x} \quad r \rightarrow \lambda r
$$

between time t and space \vec{x}.

Kachru, Liu, Mulligan '08

Their construction (and many others) use p-form gauge fields; others use massive gauge fields or massive gravitons

Anisotropic scaling of Lifshitz type

Asymptotic line-element

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} \vec{x}^{2}\right)
$$

with real anisotropy parameter z has anisotropic ("Lifshitz") scaling

$$
t \rightarrow \lambda^{z} t \quad \vec{x} \rightarrow \lambda \vec{x} \quad r \rightarrow \lambda r
$$

between time t and space \vec{x}.
Motivations, applications and relations to Newton-Cartan: see other talks!

Anisotropic scaling of Lifshitz type

Asymptotic line-element

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} \vec{x}^{2}\right)
$$

with real anisotropy parameter z has anisotropic ("Lifshitz") scaling

$$
t \rightarrow \lambda^{z} t \quad \vec{x} \rightarrow \lambda \vec{x} \quad r \rightarrow \lambda r
$$

between time t and space \vec{x}.
Motivations, applications and relations to Newton-Cartan:
see other talks!
Questions addressed in this talk:

- (How) can we realize line-elements above on gravity side without introducing matter or higher derivative interactions?

Anisotropic scaling of Lifshitz type

Asymptotic line-element

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} \vec{x}^{2}\right)
$$

with real anisotropy parameter z has anisotropic ("Lifshitz") scaling

$$
t \rightarrow \lambda^{z} t \quad \vec{x} \rightarrow \lambda \vec{x} \quad r \rightarrow \lambda r
$$

between time t and space \vec{x}.
Motivations, applications and relations to Newton-Cartan:
see other talks!
Questions addressed in this talk:

- (How) can we realize line-elements above on gravity side without introducing matter or higher derivative interactions?
- What happens in the special case $z \rightarrow 0$?

Anisotropic scaling of Lifshitz type

Asymptotic line-element

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} \vec{x}^{2}\right)
$$

with real anisotropy parameter z has anisotropic ("Lifshitz") scaling

$$
t \rightarrow \lambda^{z} t \quad \vec{x} \rightarrow \lambda \vec{x} \quad r \rightarrow \lambda r
$$

between time t and space \vec{x}.
Motivations, applications and relations to Newton-Cartan:
see other talks!
Questions not addressed in this talk:

- (How) does this lead to applications in cond-mat or otherwise?
- What are relations to flat space holography?
work with/by Bagchi et al. '12-'16

Anisotropic scaling of Lifshitz type

Asymptotic line-element

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{2 z}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} x^{2}\right)
$$

with real anisotropy parameter z has anisotropic ("Lifshitz") scaling

$$
t \rightarrow \lambda^{z} t \quad x \rightarrow \lambda x \quad r \rightarrow \lambda r
$$

between time t and space x.
Motivations, applications and relations to Newton-Cartan: see other talks! Technical simplification: work in $2+1$ dimensions!

Questions addressed in this talk:

- (How) can we realize line-elements above on gravity side without introducing matter or higher derivative interactions?
- What happens in the special case $z \rightarrow 0$?

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable

Example:

$$
\Phi(x \rightarrow \infty)=0
$$

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS

Example: Brown-Henneaux type of bc's $\left(\mathrm{aAdS}_{3}\right)$:

$$
\mathrm{d} s_{\mathrm{aAdS}}^{2}=\mathrm{d} \rho^{2}+\left(e^{2 \rho} \eta_{\mu \nu}+\gamma_{\mu \nu}+\mathcal{O}\left(e^{-2 \rho}\right)\right) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
$$

with $\delta \gamma=$ arbitrary

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- No algorithm determining 'right' bc's - always choice!

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- No algorithm determining 'right' bc's - always choice!
- Algorithm exists to check consistency of bc's

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- No algorithm determining 'right' bc's - always choice!
- Algorithm exists to check consistency of bc's
- Local diffeos and gauge trafos fall into three classes:

1. Trafos that violate bc's (forbidden)
2. Trafos that preserve bc's and remain pure gauge (trivial)
3. Trafos that preserve bc's but are not pure gauge at the asymptotic boundary (asymptotic symmetries)

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- No algorithm determining 'right' bc's - always choice!
- Algorithm exists to check consistency of bc's
- Local diffeos and gauge trafos fall into three classes:

1. Trafos that violate bc's (forbidden)
2. Trafos that preserve bc's and remain pure gauge (trivial)
3. Trafos that preserve bc's but are not pure gauge at the asymptotic boundary (asymptotic symmetries)

- Canonical boundary charges (á la Regge-Teitelboim) generate asympotic symmetries

Review of general aspects of boundary conditions (bc's)

- In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- No algorithm determining 'right' bc's - always choice!
- Algorithm exists to check consistency of bc's
- Local diffeos and gauge trafos fall into three classes:

1. Trafos that violate bc's (forbidden)
2. Trafos that preserve bc's and remain pure gauge (trivial)
3. Trafos that preserve bc's but are not pure gauge at the asymptotic boundary (asymptotic symmetries)

- Canonical boundary charges (á la Regge-Teitelboim) generate asympotic symmetries
- Consistency means they are finite, integrable, non-trivial and conserved (in time)

Outline

Motivation

Higher spin gravity

Lower spin gravity

Higher lower spin gravity

Einstein gravity

Chern-Simons (CS) theory with gauge group containing
$S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
2-minute crash course on higher spins in three dimensions
Simplest example: spin-3 gravity

$$
S=I_{\mathrm{CS}}\left[A^{+}\right]-I_{\mathrm{CS}}\left[A^{-}\right]
$$

in CS formulation

$$
I_{\mathrm{CS}}\left[A^{ \pm}\right]=\frac{k}{4 \pi} \int\left\langle A^{ \pm} \wedge \mathrm{d} A^{ \pm}+\frac{2}{3} A^{ \pm} \wedge A^{ \pm} \wedge A^{ \pm}\right\rangle
$$

with $S L(3, \mathbb{R})$ connections $A^{ \pm}$and suitable boundary conditions (more on boundary conditions on next slide!)

Henneaux, Rey '10; Campoleoni, Fredenhagen, Pfenninger, Theisen '10

Chern-Simons (CS) theory with gauge group containing
$S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
2-minute crash course on higher spins in three dimensions
Simplest example: spin-3 gravity

$$
S=I_{\mathrm{CS}}\left[A^{+}\right]-I_{\mathrm{CS}}\left[A^{-}\right]
$$

in CS formulation

$$
I_{\mathrm{CS}}\left[A^{ \pm}\right]=\frac{k}{4 \pi} \int\left\langle A^{ \pm} \wedge \mathrm{d} A^{ \pm}+\frac{2}{3} A^{ \pm} \wedge A^{ \pm} \wedge A^{ \pm}\right\rangle
$$

with $S L(3, \mathbb{R})$ connections $A^{ \pm}$and suitable boundary conditions

- Zuvielbein: $e \sim A^{+}-A^{-}$; higher-spin connection: $\omega \sim A^{+}+A^{-}$
- Metric: $g \sim\langle e e\rangle$; Spin-3 field: $\phi \sim\langle e e e\rangle$

Chern-Simons (CS) theory with gauge group containing
$S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
2-minute crash course on higher spins in three dimensions
Simplest example: spin-3 gravity

$$
S=I_{\mathrm{CS}}\left[A^{+}\right]-I_{\mathrm{CS}}\left[A^{-}\right]
$$

in CS formulation

$$
I_{\mathrm{CS}}\left[A^{ \pm}\right]=\frac{k}{4 \pi} \int\left\langle A^{ \pm} \wedge \mathrm{d} A^{ \pm}+\frac{2}{3} A^{ \pm} \wedge A^{ \pm} \wedge A^{ \pm}\right\rangle
$$

with $S L(3, \mathbb{R})$ connections $A^{ \pm}$and suitable boundary conditions

- Zuvielbein: $e \sim A^{+}-A^{-}$; higher-spin connection: $\omega \sim A^{+}+A^{-}$
- Metric: $g \sim\langle e e\rangle$; Spin-3 field: $\phi \sim\langle e e e\rangle$
- $e=e_{\mu}^{A} \mathrm{~d} x^{\mu}=e_{\mu}^{a} J_{a} \mathrm{~d} x^{\mu}+e_{\mu}^{a b} J_{a b} \mathrm{~d} x^{\mu}$
- J_{a} : generators of principally embedded $s l(2, \mathbb{R}) \hookrightarrow s l(3, \mathbb{R})$

Chern-Simons (CS) theory with gauge group containing
$S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
2-minute crash course on higher spins in three dimensions
Simplest example: spin-3 gravity

$$
S=I_{\mathrm{CS}}\left[A^{+}\right]-I_{\mathrm{CS}}\left[A^{-}\right]
$$

in CS formulation

$$
I_{\mathrm{CS}}\left[A^{ \pm}\right]=\frac{k}{4 \pi} \int\left\langle A^{ \pm} \wedge \mathrm{d} A^{ \pm}+\frac{2}{3} A^{ \pm} \wedge A^{ \pm} \wedge A^{ \pm}\right\rangle
$$

with $S L(3, \mathbb{R})$ connections $A^{ \pm}$and suitable boundary conditions

- Zuvielbein: $e \sim A^{+}-A^{-}$; higher-spin connection: $\omega \sim A^{+}+A^{-}$
- Metric: $g \sim\langle e e\rangle$; Spin-3 field: $\phi \sim\langle e e e\rangle$
- $e=e_{\mu}^{A} \mathrm{~d} x^{\mu}=e_{\mu}^{a} J_{a} \mathrm{~d} x^{\mu}+e_{\mu}^{a b} J_{a b} \mathrm{~d} x^{\mu}$
- J_{a} : generators of principally embedded $\operatorname{sl}(2, \mathbb{R}) \hookrightarrow s l(3, \mathbb{R})$
- Generalization to spin- N : replace $s l(3)$ by $s l(N)$

Chern-Simons (CS) theory with gauge group containing
$S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
2-minute crash course on higher spins in three dimensions
Simplest example: spin-3 gravity

$$
S=I_{\mathrm{CS}}\left[A^{+}\right]-I_{\mathrm{CS}}\left[A^{-}\right]
$$

in CS formulation

$$
I_{\mathrm{CS}}\left[A^{ \pm}\right]=\frac{k}{4 \pi} \int\left\langle A^{ \pm} \wedge \mathrm{d} A^{ \pm}+\frac{2}{3} A^{ \pm} \wedge A^{ \pm} \wedge A^{ \pm}\right\rangle
$$

with $S L(3, \mathbb{R})$ connections $A^{ \pm}$and suitable boundary conditions

- Zuvielbein: $e \sim A^{+}-A^{-}$; higher-spin connection: $\omega \sim A^{+}+A^{-}$
- Metric: $g \sim\langle e e\rangle$; Spin-3 field: $\phi \sim\langle e e e\rangle$
- $e=e_{\mu}^{A} \mathrm{~d} x^{\mu}=e_{\mu}^{a} J_{a} \mathrm{~d} x^{\mu}+e_{\mu}^{a b} J_{a b} \mathrm{~d} x^{\mu}$
- J_{a} : generators of principally embedded $\operatorname{sl}(2, \mathbb{R}) \hookrightarrow s l(3, \mathbb{R})$
- Generalization to spin- N : replace $s l(3)$ by $s l(N)$
- Further generalization: non-principal embeddings of $s l(2) \hookrightarrow s l(N)$

Gravity-like bc's in CS gauge theories

Standard trick: partially fix gauge

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\rho, x^{i}\right)\left(\mathrm{d}+\mathfrak{a}_{ \pm}\left(x^{i}\right)\right) b_{ \pm}\left(\rho, x^{i}\right)
$$

with some space-time dependent group elements $b_{ \pm} \in S L(N)$ with $\delta b_{ \pm}=0$

Drop \pm decorations in most of talk

Manifold topologically a cylinder or torus, with radial coordinate ρ and boundary coordinates x^{i}

Gravity-like bc's in CS gauge theories

Standard trick: partially fix gauge

$$
A=b^{-1}\left(\rho, x^{i}\right)\left(\mathrm{d}+\mathfrak{a}\left(x^{i}\right)\right) b\left(\rho, x^{i}\right)
$$

with some space-time dependent group elements $b \in S L(N)$ with $\delta b=0$

- Standard AdS_{3} approach in highest weight gauge

$$
\mathfrak{a} \sim L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2} \quad b(\rho)=\exp \left(\rho L_{0}\right)
$$

variations allowed by bc's:

$$
\delta \mathfrak{a} \sim \delta \mathcal{L}\left(x^{i}\right) L_{-1}+\delta \mathcal{W}\left(x^{i}\right) W_{-2} \quad \delta b=0
$$

Notation: $s l(2):\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}$
$\operatorname{sl}(3):\left[L_{n}, W_{m}\right]=(2 n-m) W_{n+m}$ and
$\left[W_{n}, W_{m}\right] \propto(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}$
spin-3 analog of Brown-Henneaux bc's

Gravity-like bc's in CS gauge theories

Standard trick: partially fix gauge

$$
A=b^{-1}\left(\rho, x^{i}\right)\left(\mathrm{d}+\mathfrak{a}\left(x^{i}\right)\right) b\left(\rho, x^{i}\right)
$$

with some space-time dependent group elements $b \in S L(N)$ with $\delta b=0$

- Standard AdS_{3} approach in highest weight gauge

$$
\mathfrak{a} \sim L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2} \quad b(\rho)=\exp \left(\rho L_{0}\right)
$$

variations allowed by bc's:

$$
\delta \mathfrak{a} \sim \delta \mathcal{L}\left(x^{i}\right) L_{-1}+\delta \mathcal{W}\left(x^{i}\right) W_{-2} \quad \delta b=0
$$

- Other bc's possible in same theory
- Other embeddings possible for same gauge group

Gravity-like bc's in CS gauge theories
Standard trick: partially fix gauge

$$
A=b^{-1}\left(\rho, x^{i}\right)\left(\mathrm{d}+\mathfrak{a}\left(x^{i}\right)\right) b\left(\rho, x^{i}\right)
$$

with some space-time dependent group elements $b \in S L(N)$ with $\delta b=0$

- Standard AdS_{3} approach in highest weight gauge

$$
\mathfrak{a} \sim L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2} \quad b(\rho)=\exp \left(\rho L_{0}\right)
$$

variations allowed by bc's:

$$
\delta \mathfrak{a} \sim \delta \mathcal{L}\left(x^{i}\right) L_{-1}+\delta \mathcal{W}\left(x^{i}\right) W_{-2} \quad \delta b=0
$$

- Other bc's possible in same theory
- Other embeddings possible for same gauge group
- $\operatorname{sl}(N)$ allows for Lifshitz exponents $z=1,2, \ldots(N-1)$ and all possible fractions thereof Gary, DG, Rashkov '12
... in fact, too simple!
- Spin-3 gravity in principal embedding with almost same bc's as before with additional terms:

$$
\mathfrak{a} \sim W_{2}+L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2}+\text { extra terms }
$$

... in fact, too simple!

- Spin-3 gravity in principal embedding with almost same bc's as before with additional terms:

$$
\mathfrak{a} \sim W_{2}+L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2}+\text { extra terms }
$$

- Extra terms fully determined by asymptotic EOM; generate terms proportional to generators W_{2}, W_{1} and L_{0}

Simplest example
... in fact, too simple!

Gary, DG, Prohazka, Rey '14
see also Gutperle et al. '13, '14, '15

- Spin-3 gravity in principal embedding with almost same bc's as before with additional terms:

$$
\mathfrak{a} \sim W_{2}+L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2}+\text { extra terms }
$$

- Extra terms fully determined by asymptotic EOM; generate terms proportional to generators W_{2}, W_{1} and L_{0}
- Line-element for "massless" solution $\mathcal{L}=\mathcal{W}=0$ (spin-3 analog of massless BTZ)

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{4}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} x^{2}\right)
$$

Simplest example
... in fact, too simple!

Gary, DG, Prohazka, Rey '14
see also Gutperle et al. '13, '14, '15

- Spin-3 gravity in principal embedding with almost same bc's as before with additional terms:

$$
\mathfrak{a} \sim W_{2}+L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2}+\text { extra terms }
$$

- Extra terms fully determined by asymptotic EOM; generate terms proportional to generators W_{2}, W_{1} and L_{0}
- Line-element for "massless" solution $\mathcal{L}=\mathcal{W}=0$ (spin-3 analog of massless BTZ)

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{4}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} x^{2}\right)
$$

- This is a Lifshitz spacetime with $z=2$!

Technical origin of possible values of z in spin- N gravity: generators with $s l(2)$-weights $2,3, \ldots N$ in connection \mathfrak{a} lead by BCH-formula (commuting $b=e^{\rho L_{0}}$ through in $b^{-1} \mathfrak{a} b$) to exponents $e^{\rho}, e^{2 \rho}, \ldots, e^{(N-1) \rho}$ in zuvielbein

Simplest example
... in fact, too simple!

Gary, DG, Prohazka, Rey '14
see also Gutperle et al. '13, '14, '15

- Spin-3 gravity in principal embedding with almost same bc's as before with additional terms:

$$
\mathfrak{a} \sim W_{2}+L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2}+\text { extra terms }
$$

- Extra terms fully determined by asymptotic EOM; generate terms proportional to generators W_{2}, W_{1} and L_{0}
- Line-element for "massless" solution $\mathcal{L}=\mathcal{W}=0$ (spin-3 analog of massless BTZ)

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{4}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} x^{2}\right)
$$

- This is a Lifshitz spacetime with $z=2$!
- While consistent from CS-perspective, zuvielbein is degenerate in construction above Lei, Ross '15
On plus side, example above is inequivalent to standard spin-3 black holes with spin- 3 chemical potentials, while example in Gutperle, Hijano, Samani '13 is equivalent to them

Simplest example
Gary, DG, Prohazka, Rey '14
... in fact, too simple!

- Spin-3 gravity in principal embedding with almost same bc's as before with additional terms:

$$
\mathfrak{a} \sim W_{2}+L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2}+\text { extra terms }
$$

- Extra terms fully determined by asymptotic EOM; generate terms proportional to generators W_{2}, W_{1} and L_{0}
- Line-element for "massless" solution $\mathcal{L}=\mathcal{W}=0$ (spin-3 analog of massless BTZ)

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{4}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} x^{2}\right)
$$

- This is a Lifshitz spacetime with $z=2$!
- While consistent from CS-perspective, zuvielbein is degenerate in construction above Lei, Ross '15
- Similar construction works for Schrödinger solutions (also in higher dimensions), where zuvielbein is non-degenerate Lei, Peng '15

Simplest example Gary, DG, Prohazka, Rey '14
... in fact, too simple! But similar examples work for Schrödinger! (even in higher D)

- Spin-3 gravity in principal embedding with almost same bc's as before with additional terms:

$$
\mathfrak{a} \sim W_{2}+L_{1}+\mathcal{L}\left(x^{i}\right) L_{-1}+\mathcal{W}\left(x^{i}\right) W_{-2}+\text { extra terms }
$$

- Extra terms fully determined by asymptotic EOM; generate terms proportional to generators W_{2}, W_{1} and L_{0}
- Line-element for "massless" solution $\mathcal{L}=\mathcal{W}=0$ (spin-3 analog of massless BTZ)

$$
\mathrm{d} s^{2}=-\frac{\mathrm{d} t^{2}}{r^{4}}+\frac{1}{r^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} x^{2}\right)
$$

- This is a Lifshitz spacetime with $z=2$!
- While consistent from CS-perspective, zuvielbein is degenerate in construction above Lei, Ross '15
- Similar construction works for Schrödinger solutions (also in higher dimensions), where zuvielbein is non-degenerate Lei, Peng '15
- HS theories (without matter) can yield anisotropic scaling!

Outline

Motivation

Higher spin gravity

Lower spin gravity

Higher lower spin gravity

Einstein gravity

Working definition of lower spin gravity in $2+1$ dimensions:

- CS theory with gauge group not containing $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
- suitable bc's on connection allowing gravity-like interpretation

What is lower spin gravity?
Working definition of lower spin gravity in $2+1$ dimensions:

- CS theory with gauge group not containing $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
- suitable bc's on connection allowing gravity-like interpretation
- Simplest example: $S L(2, \mathbb{R}) \times U(1)$ lower spin gravity/warped CFT correspondence Hofman, Rollier '14

What is lower spin gravity?
Working definition of lower spin gravity in $2+1$ dimensions:

- CS theory with gauge group not containing $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
- suitable bc's on connection allowing gravity-like interpretation
- Simplest example: $S L(2, \mathbb{R}) \times U(1)$ lower spin gravity/warped CFT correspondence Hofman, Rollier '14
- Can in principle take anything, but need non-degenerate bilinear form

Working definition of lower spin gravity in $2+1$ dimensions:

- CS theory with gauge group not containing $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
- suitable bc's on connection allowing gravity-like interpretation
- Simplest example: $S L(2, \mathbb{R}) \times U(1)$ lower spin gravity/warped CFT correspondence Hofman, Rollier '14
- Can in principle take anything, but need non-degenerate bilinear form
- Pertinent examples: take non-relativistic algebras Bergshoeff, Rosseel '16; Hartong, Lei, Obers '16
specific extensions of Bargmann, Newton-Hooke, Schrödinger and supersymmetric Bargmann

What is lower spin gravity?
Working definition of lower spin gravity in $2+1$ dimensions:

- CS theory with gauge group not containing $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
- suitable bc's on connection allowing gravity-like interpretation
- Simplest example: $S L(2, \mathbb{R}) \times U(1)$ lower spin gravity/warped CFT correspondence Hofman, Rollier '14
- Can in principle take anything, but need non-degenerate bilinear form
- Pertinent examples: take non-relativistic algebras Bergshoeff, Rosseel '16; Hartong, Lei, Obers '16

Key aspects:

- Have non-relativistic/anisotropic algebra already as input in action, not only through bc's

What is lower spin gravity?
Working definition of lower spin gravity in $2+1$ dimensions:

- CS theory with gauge group not containing $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$
- suitable bc's on connection allowing gravity-like interpretation
- Simplest example: $S L(2, \mathbb{R}) \times U(1)$ lower spin gravity/warped CFT correspondence Hofman, Rollier '14
- Can in principle take anything, but need non-degenerate bilinear form
- Pertinent examples: take non-relativistic algebras Bergshoeff, Rosseel '16; Hartong, Lei, Obers '16

Key aspects:

- Have non-relativistic/anisotropic algebra already as input in action, not only through bc's
- Still, bc's play crucial role for establishing theory with anisotropy

Carroll gravity as example

Take CS action with connection ($a=1,2$)

$$
A=\tau \mathrm{H}+e^{a} \mathrm{P}_{a}+\omega \mathrm{J}+B^{a} \mathrm{G}_{a}
$$

in the spin-2 Carroll algebra

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{a}\right] } & =\epsilon_{a b} \mathrm{P}_{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{a}\right] } & =\epsilon_{a b} \mathrm{G}_{b} \\
{\left[\mathrm{P}_{a}, \mathrm{G}_{b}\right] } & =-\epsilon_{a b} \mathrm{H}
\end{aligned}
$$

with non-degenerate bi-linear form

$$
\langle\mathrm{H}, \mathrm{~J}\rangle=-1 \quad\left\langle\mathrm{P}_{a}, \mathrm{G}_{b}\right\rangle=\delta_{a b}
$$

Carroll gravity as example

Take CS action with connection ($a=1,2$)

$$
A=\tau \mathrm{H}+e^{a} \mathrm{P}_{a}+\omega \mathrm{J}+B^{a} \mathrm{G}_{a}
$$

in the spin-2 Carroll algebra

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{a}\right] } & =\epsilon_{a b} \mathrm{P}_{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{a}\right] } & =\epsilon_{a b} \mathrm{G}_{b} \\
{\left[\mathrm{P}_{a}, \mathrm{G}_{b}\right] } & =-\epsilon_{a b} \mathrm{H}
\end{aligned}
$$

with non-degenerate bi-linear form

$$
\langle\mathrm{H}, \mathrm{~J}\rangle=-1 \quad\left\langle\mathrm{P}_{a}, \mathrm{G}_{b}\right\rangle=\delta_{a b}
$$

Typical question in holographic correspondences on gravity side:
Are there nice bc's for this theory?

Asymptotically Carroll geometries and ∞ extension of the Carroll algebra

- Asymptotic Carroll geometry (2d metric plus 1-form) from CS connection:

$$
\begin{aligned}
\mathrm{d} s_{(2)}^{2} & =e^{a} e^{b} \delta_{a b}=\left(\rho^{2}+\mathcal{O}(\rho)\right) \mathrm{d} \varphi^{2}+\mathcal{O}(1) \mathrm{d} \rho \mathrm{~d} \varphi+\mathrm{d} \rho^{2} \\
\tau & =\mathrm{d} t+?
\end{aligned}
$$

Asymptotically Carroll geometries and ∞ extension of the Carroll algebra

- Asymptotic Carroll geometry (2d metric plus 1-form) from CS connection:

$$
\begin{aligned}
\mathrm{d} s_{(2)}^{2} & =e^{a} e^{b} \delta_{a b}=\left(\rho^{2}+\mathcal{O}(\rho)\right) \mathrm{d} \varphi^{2}+\mathcal{O}(1) \mathrm{d} \rho \mathrm{~d} \varphi+\mathrm{d} \rho^{2} \\
\tau & =\mathrm{d} t+?
\end{aligned}
$$

- Our proposed bc's are given by connections of the form

$$
A=b^{-1}(\mathrm{~d}+\mathfrak{a}) b \quad b=e^{\rho \mathrm{P}_{2}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =-\mathrm{J}+h(t, \varphi) \mathrm{H}+p_{a}(t, \varphi) \mathrm{P}_{a}+g_{a}(t, \varphi) \mathrm{G}_{a} \\
\mathfrak{a}_{t} & =\mu(t, \varphi) \mathrm{H}
\end{aligned}
$$

where $\delta b=\delta \mu=0$ and $\delta h, \delta p_{a}, \delta g_{a} \neq 0$ (i.e., μ is source, rest vev's)

Asymptotically Carroll geometries and ∞ extension of the Carroll algebra

- Asymptotic Carroll geometry (2d metric plus 1-form) from CS connection:

$$
\begin{aligned}
\mathrm{d} s_{(2)}^{2} & =\left[\left(\rho+p_{1}(t, \varphi)\right)^{2}+p_{2}(t, \varphi)^{2}\right] \mathrm{d} \varphi^{2}+2 p_{2}(t, \varphi) \mathrm{d} \varphi \mathrm{~d} \rho+\mathrm{d} \rho^{2} \\
\tau & =\mu(t, \varphi) \mathrm{d} t+\left(h(t, \varphi)-\rho g_{1}(t, \varphi)\right) \mathrm{d} \varphi
\end{aligned}
$$

- Our proposed bc's are given by connections of the form

$$
A=b^{-1}(\mathrm{~d}+\mathfrak{a}) b \quad b=e^{\rho \mathrm{P}_{2}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =-\mathrm{J}+h(t, \varphi) \mathrm{H}+p_{a}(t, \varphi) \mathrm{P}_{a}+g_{a}(t, \varphi) \mathrm{G}_{a} \\
\mathfrak{a}_{t} & =\mu(t, \varphi) \mathrm{H}
\end{aligned}
$$

where $\delta b=\delta \mu=0$ and $\delta h, \delta p_{a}, \delta g_{a} \neq 0$ (i.e., μ is source, rest vev's)

- Leads to line-elements above, i.e., asymptotic Carroll geometries

Canonical boundary charges

- Background independent result for canonical boundary charges:

$$
\delta Q[\lambda]=\frac{k}{2 \pi} \oint\langle\lambda \delta \mathfrak{a}\rangle
$$

Canonical boundary charges

- Background independent result for canonical boundary charges:

$$
\delta Q[\lambda]=\frac{k}{2 \pi} \oint\langle\lambda \delta \mathfrak{a}\rangle
$$

- manifestly finite at large ρ, non-trivial and integrable in field space

$$
Q[\lambda]=\frac{k}{2 \pi} \oint\left(-\lambda^{\mathrm{J}} h+\lambda^{\mathrm{P}_{a}} g_{a}+\lambda^{\mathrm{G}_{a}} p_{a}\right) \mathrm{d} \varphi
$$

Canonical boundary charges

- Background independent result for canonical boundary charges:

$$
\delta Q[\lambda]=\frac{k}{2 \pi} \oint\langle\lambda \delta \mathfrak{a}\rangle
$$

- manifestly finite at large ρ, non-trivial and integrable in field space

$$
Q[\lambda]=\frac{k}{2 \pi} \oint\left(-\lambda^{\mathrm{J}} h+\lambda^{\mathrm{P}_{a}} g_{a}+\lambda^{\mathrm{G}_{a}} p_{a}\right) \mathrm{d} \varphi
$$

- (asymptotic) EOM imply "holographic Ward id's":

$$
\partial_{t} p_{a}=\partial_{t} g_{a}=0 \quad \partial_{t} h=\partial_{\varphi} \mu
$$

Canonical boundary charges

- Background independent result for canonical boundary charges:

$$
\delta Q[\lambda]=\frac{k}{2 \pi} \oint\langle\lambda \delta \mathfrak{a}\rangle
$$

- manifestly finite at large ρ, non-trivial and integrable in field space

$$
Q[\lambda]=\frac{k}{2 \pi} \oint\left(-\lambda^{\mathrm{J}} h+\lambda^{\mathrm{P}_{a}} g_{a}+\lambda^{\mathrm{G}_{a}} p_{a}\right) \mathrm{d} \varphi
$$

- (asymptotic) EOM imply "holographic Ward id's":

$$
\partial_{t} p_{a}=\partial_{t} g_{a}=0 \quad \partial_{t} h=\partial_{\varphi} \mu
$$

- charges conserved in time as consequence of holographic Ward id's

$$
\left.\partial_{t} Q[\lambda]\right|_{\mathrm{EOM}}=0
$$

Canonical boundary charges

- Background independent result for canonical boundary charges:

$$
\delta Q[\lambda]=\frac{k}{2 \pi} \oint\langle\lambda \delta \mathfrak{a}\rangle
$$

- manifestly finite at large ρ, non-trivial and integrable in field space

$$
Q[\lambda]=\frac{k}{2 \pi} \oint\left(-\lambda^{\mathrm{J}} h+\lambda^{\mathrm{P}_{a}} g_{a}+\lambda^{\mathrm{G}_{a}} p_{a}\right) \mathrm{d} \varphi
$$

- (asymptotic) EOM imply "holographic Ward id's":

$$
\partial_{t} p_{a}=\partial_{t} g_{a}=0 \quad \partial_{t} h=\partial_{\varphi} \mu
$$

- charges conserved in time as consequence of holographic Ward id's

$$
\left.\partial_{t} Q[\lambda]\right|_{\mathrm{EOM}}=0
$$

- Fourier modes of charges lead to infinite tower of generators \Rightarrow infinite enhancement of global Carroll algebra reminiscent of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2} \Rightarrow$ meaningful (and hopefully useful) set of bc's!

Asymptotic symmetry algebra (ASA) of Carroll gravity

- recall: gauge algebra was spin-2 Carroll algebra

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}^{a}\right] } & =\epsilon^{a b} \mathrm{P}^{b} \\
{\left[\mathrm{~J}, \mathrm{G}^{a}\right] } & =\epsilon^{a b} \mathrm{G}^{b} \\
{\left[\mathrm{P}^{a}, \mathrm{G}^{b}\right] } & =-\epsilon^{a b} \mathrm{H}
\end{aligned}
$$

Asymptotic symmetry algebra (ASA) of Carroll gravity

- recall: gauge algebra was spin-2 Carroll algebra
- evaluating $\delta_{\lambda_{1}} Q\left[\lambda_{2}\right]=\left\{Q\left[\lambda_{1}\right], Q\left[\lambda_{2}\right]\right\}$ yields ASA

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{P}_{n}^{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{G}_{n}^{b} \\
{\left[\mathrm{P}_{n}^{a}, \mathrm{G}_{m}^{b}\right] } & =-\left(\epsilon^{a b}+i n \delta^{a b}\right) \mathrm{H} \delta_{n+m, 0}
\end{aligned}
$$

Asymptotic symmetry algebra (ASA) of Carroll gravity

- recall: gauge algebra was spin-2 Carroll algebra
- evaluating $\delta_{\lambda_{1}} Q\left[\lambda_{2}\right]=\left\{Q\left[\lambda_{1}\right], Q\left[\lambda_{2}\right]\right\}$ yields ASA

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{P}_{n}^{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{G}_{n}^{b} \\
{\left[\mathrm{P}_{n}^{a}, \mathrm{G}_{m}^{b}\right] } & =-\left(\epsilon^{a b}+i n \delta^{a b}\right) \mathrm{H} \delta_{n+m, 0}
\end{aligned}
$$

- Notable features:
- only spatial translations P^{a} and Carroll boosts G^{a} get infinite lift, but not time translations H or rotations J
- there is an additional central extension in the last commutator
- global Carroll algebra is subalgebra $(n=0)$

Asymptotic symmetry algebra (ASA) of Carroll gravity

- recall: gauge algebra was spin-2 Carroll algebra
- evaluating $\delta_{\lambda_{1}} Q\left[\lambda_{2}\right]=\left\{Q\left[\lambda_{1}\right], Q\left[\lambda_{2}\right]\right\}$ yields ASA

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{P}_{n}^{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{G}_{n}^{b} \\
{\left[\mathrm{P}_{n}^{a}, \mathrm{G}_{m}^{b}\right] } & =-\left(\epsilon^{a b}+i n \delta^{a b}\right) \mathrm{H} \delta_{n+m, 0}
\end{aligned}
$$

- Notable features:
- only spatial translations P^{a} and Carroll boosts G^{a} get infinite lift, but not time translations H or rotations J
- there is an additional central extension in the last commutator
- global Carroll algebra is subalgebra $(n=0)$
- first of many possible examples of Brown-Henneaux type analysis

Asymptotic symmetry algebra (ASA) of Carroll gravity

- recall: gauge algebra was spin-2 Carroll algebra
- evaluating $\delta_{\lambda_{1}} Q\left[\lambda_{2}\right]=\left\{Q\left[\lambda_{1}\right], Q\left[\lambda_{2}\right]\right\}$ yields ASA

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{P}_{n}^{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{G}_{n}^{b} \\
{\left[\mathrm{P}_{n}^{a}, \mathrm{G}_{m}^{b}\right] } & =-\left(\epsilon^{a b}+i n \delta^{a b}\right) \mathrm{H} \delta_{n+m, 0}
\end{aligned}
$$

- Notable features:
- only spatial translations P^{a} and Carroll boosts G^{a} get infinite lift, but not time translations H or rotations J
- there is an additional central extension in the last commutator
- global Carroll algebra is subalgebra $(n=0)$
- first of many possible examples of Brown-Henneaux type analysis
- numerous generalizations/modifications of bc's conceivable

Asymptotic symmetry algebra (ASA) of Carroll gravity

- recall: gauge algebra was spin-2 Carroll algebra
- evaluating $\delta_{\lambda_{1}} Q\left[\lambda_{2}\right]=\left\{Q\left[\lambda_{1}\right], Q\left[\lambda_{2}\right]\right\}$ yields ASA

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{P}_{n}^{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{G}_{n}^{b} \\
{\left[\mathrm{P}_{n}^{a}, \mathrm{G}_{m}^{b}\right] } & =-\left(\epsilon^{a b}+i n \delta^{a b}\right) \mathrm{H} \delta_{n+m, 0}
\end{aligned}
$$

- Notable features:
- only spatial translations P^{a} and Carroll boosts G^{a} get infinite lift, but not time translations H or rotations J
- there is an additional central extension in the last commutator
- global Carroll algebra is subalgebra $(n=0)$
- first of many possible examples of Brown-Henneaux type analysis
- numerous generalizations/modifications of bc's conceivable
- should work for extended Bargmann, Newton-Hooke, Schrödinger, ...

Asymptotic symmetry algebra (ASA) of Carroll gravity

- recall: gauge algebra was spin-2 Carroll algebra
- evaluating $\delta_{\lambda_{1}} Q\left[\lambda_{2}\right]=\left\{Q\left[\lambda_{1}\right], Q\left[\lambda_{2}\right]\right\}$ yields ASA

$$
\begin{aligned}
{\left[\mathrm{J}, \mathrm{P}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{P}_{n}^{b} \\
{\left[\mathrm{~J}, \mathrm{G}_{n}^{a}\right] } & =\epsilon^{a b} \mathrm{G}_{n}^{b} \\
{\left[\mathrm{P}_{n}^{a}, \mathrm{G}_{m}^{b}\right] } & =-\left(\epsilon^{a b}+i n \delta^{a b}\right) \mathrm{H} \delta_{n+m, 0}
\end{aligned}
$$

- Notable features:
- only spatial translations P^{a} and Carroll boosts G^{a} get infinite lift, but not time translations H or rotations J
- there is an additional central extension in the last commutator
- global Carroll algebra is subalgebra $(n=0)$
- first of many possible examples of Brown-Henneaux type analysis
- numerous generalizations/modifications of bc's conceivable
- should work for extended Bargmann, Newton-Hooke, Schrödinger, ...

Carroll gravity intriguing theory with numerous possible generalizations

Outline

Motivation

Higher spin gravity

Lower spin gravity

Higher lower spin gravity

Einstein gravity

Can combine higher and lower spin manipulations simultaneously Spin- N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel '16

- One example would be a CS theory based on $S L(N) \times U(1)$ (higher spin in one chiral sector and lower spin in another)

Can combine higher and lower spin manipulations simultaneously Spin- N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel '16

- One example would be a CS theory based on $S L(N) \times U(1)$ (higher spin in one chiral sector and lower spin in another)
- Not sure if random examples physically interesting

Can combine higher and lower spin manipulations simultaneously Spin- N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel '16

- One example would be a CS theory based on $S L(N) \times U(1)$ (higher spin in one chiral sector and lower spin in another)
- Not sure if random examples physically interesting
- Study instead models that arise through ultra- or non-relativistic contraction of relativistic higher spin theories

Can combine higher and lower spin manipulations simultaneously Spin- N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel '16

- One example would be a CS theory based on $S L(N) \times U(1)$ (higher spin in one chiral sector and lower spin in another)
- Not sure if random examples physically interesting
- Study instead models that arise through ultra- or non-relativistic contraction of relativistic higher spin theories
- Look for spin-3 version of various sequential contractions of (A)dS symmetry algebra (in spin-2 case: Poincaré, Para-Poincaré, Newton-Hooke, Galilei, Para-Galilei, Carroll, Static; see Bacry, Lévy-Leblond '68)

Can combine higher and lower spin manipulations simultaneously Spin- N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel '16

- One example would be a CS theory based on $S L(N) \times U(1)$ (higher spin in one chiral sector and lower spin in another)
- Not sure if random examples physically interesting
- Study instead models that arise through ultra- or non-relativistic contraction of relativistic higher spin theories
- Look for spin-3 version of various sequential contractions of (A)dS symmetry algebra (in spin-2 case: Poincaré, Para-Poincaré, Newton-Hooke, Galilei, Para-Galilei, Carroll, Static; see Bacry, Lévy-Leblond '68)
- These kinematical spin-3 algebras may be better motivated physically

Can combine higher and lower spin manipulations simultaneously Spin- N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel '16

- One example would be a CS theory based on $S L(N) \times U(1)$ (higher spin in one chiral sector and lower spin in another)
- Not sure if random examples physically interesting
- Study instead models that arise through ultra- or non-relativistic contraction of relativistic higher spin theories
- Look for spin-3 version of various sequential contractions of (A)dS symmetry algebra (in spin-2 case: Poincaré, Para-Poincaré, Newton-Hooke, Galilei, Para-Galilei, Carroll, Static; see Bacry, Lévy-Leblond '68)
- These kinematical spin-3 algebras may be better motivated physically
- General structure of algebra with İnönü-Wigner contraction parameter $\epsilon \rightarrow 0(\mathfrak{h}$ is subalgebra of original Lie algebra and \mathfrak{i} the remainder)

$$
[\mathfrak{h}, \mathfrak{h}] \sim \mathfrak{h} \quad[\mathfrak{h}, \mathfrak{i}] \sim \epsilon \mathfrak{h}+\mathfrak{i} \rightarrow \mathfrak{i} \quad[\mathfrak{i}, \mathfrak{i}] \sim \epsilon^{2} \mathfrak{h}+\epsilon \mathfrak{i} \rightarrow 0
$$

Can combine higher and lower spin manipulations simultaneously Spin- N theories with general kinematical algebras Bergshoeff, DG, Prohazka, Rosseel '16

- One example would be a CS theory based on $S L(N) \times U(1)$ (higher spin in one chiral sector and lower spin in another)
- Not sure if random examples physically interesting
- Study instead models that arise through ultra- or non-relativistic contraction of relativistic higher spin theories
- Look for spin-3 version of various sequential contractions of (A)dS symmetry algebra (in spin-2 case: Poincaré, Para-Poincaré, Newton-Hooke, Galilei, Para-Galilei, Carroll, Static; see Bacry, Lévy-Leblond '68)
- These kinematical spin-3 algebras may be better motivated physically
- General structure of algebra with İnönü-Wigner contraction parameter $\epsilon \rightarrow 0(\mathfrak{h}$ is subalgebra of original Lie algebra and \mathfrak{i} the remainder)

$$
[\mathfrak{h}, \mathfrak{h}] \sim \mathfrak{h} \quad[\mathfrak{h}, \mathfrak{i}] \sim \epsilon \mathfrak{h}+\mathfrak{i} \rightarrow \mathfrak{i} \quad[\mathfrak{i}, \mathfrak{i}] \sim \epsilon^{2} \mathfrak{h}+\epsilon \mathfrak{i} \rightarrow 0
$$

- Obtain zoo of higher non-relativstic higher spin theories, e.g. spin-3 versions of Carroll, Galilei and extended Bargmann algebras

Example: spin-3 extended Bargmann

- Medina-Revoy theorem allows to extend Galilei to extended Bargmann (Galilei +2 central ext's; non-degenerate bilinear form)

Special case: if algebra comes from an İnönü-Wigner contraction

$$
[\mathfrak{h}, \mathfrak{h}] \sim \mathfrak{h} \quad[\mathfrak{h}, \mathfrak{i}] \sim \mathfrak{i} \quad[\mathfrak{i}, \mathfrak{i}]=0
$$

then MR theorem always applicable: extends algebra by dual \mathfrak{h}^{*} and yields commutations relations

$$
\begin{aligned}
{[\mathfrak{i}, \mathfrak{i}] } & \sim \mathfrak{h}^{*} & {[\mathfrak{h}, \mathfrak{h}] } & \sim \mathfrak{h}^{*} \\
{[\mathfrak{h}, \mathfrak{i}] } & \sim \mathfrak{i} & {\left[\mathfrak{h}, \mathfrak{h}^{*}\right] } & \sim \mathfrak{h}^{*} \\
{\left[\mathfrak{h}^{*}, \mathfrak{i}\right] } & =0 & {\left[\mathfrak{h}^{*}, \mathfrak{h}^{*}\right] } & =0
\end{aligned}
$$

and non-degenerate invariant bilinear form

$$
\left\langle\mathfrak{h}, \mathfrak{h}^{*}\right\rangle=\delta \quad\langle\mathfrak{i}, \mathfrak{i}\rangle=g \quad\langle\mathfrak{h}, \mathfrak{h}\rangle=\text { arbitray }(\text { can be } 0)
$$

Example: spin-3 extended Bargmann

- Medina-Revoy theorem allows to extend Galilei to extended Bargmann (Galilei +2 central ext's; non-degenerate bilinear form)
- Applying same methods to spin-3 Galilei yields spin-3 extended Bargmann (2 versions exist, one given below with $2+4$ ext's)

$$
\begin{array}{rll}
{\left[\mathrm{J}, \mathrm{G}_{a}\right]=\epsilon_{a m} \mathrm{G}_{m}} & {\left[\mathrm{~J}, \mathrm{G}_{a b}\right]=-\epsilon_{m(a} \mathrm{G}_{b) m}} & {\left[\mathrm{~J}_{a}^{*}, \mathrm{~J}_{b}\right]=\epsilon_{a b} \mathrm{~J}^{*}} \\
{\left[\mathrm{H}, \mathrm{G}_{a}\right]=\epsilon_{a m} \mathrm{P}_{m}} & {\left[\mathrm{~J}, \mathrm{P}_{a b}\right]=-\epsilon_{m(a} \mathrm{P}_{b) m}} & {\left[\mathrm{H}_{a}^{*}, \bullet_{b}\right]=\epsilon_{a b} \mathrm{H}^{*} / \mathrm{J}^{*}} \\
{\left[\mathrm{~J}, \mathrm{P}_{a}\right]=\epsilon_{a m} \mathrm{P}_{m}} & {\left[\mathrm{H}, \mathrm{G}_{a b}\right]=-\epsilon_{m(a} \mathrm{P}_{b) m}} & {\left[\mathrm{~J}_{a}, \mathrm{~J}_{b}\right]=\epsilon_{a b} \mathrm{~J}} \\
{\left[\mathrm{G}_{a}, \mathrm{G}_{b}\right]=\epsilon_{a b} \mathrm{H}^{*}} & {\left[\mathrm{G}_{a}, \bullet_{b}\right]=\Delta_{a b}(\mathrm{G} / \mathrm{P})} & {\left[\mathrm{J}_{a}, \mathrm{H}_{b}\right]=\epsilon_{a b} \mathrm{H}} \\
{\left[\mathrm{P}_{a}, \mathrm{G}_{b}\right]=\epsilon_{a b} \mathrm{~J}^{*}} & \left.\left[\mathrm{P}_{a}, \mathrm{~J}_{a}\right]=\Delta_{a b} \mathrm{P}\right) & {\left[\mathrm{G}_{a b}, \bullet_{c}\right]=-\delta_{c(a} \epsilon_{b) m} \mathrm{G}_{m} / \mathrm{P}_{m}} \\
{\left[\mathrm{~J}, \mathrm{H}_{a}^{*}\right]=\epsilon_{a m} \mathrm{H}_{m}^{*}} & {\left[\mathrm{G}_{a}, \mathrm{G}_{b c}\right]=\epsilon_{a(b} \mathrm{H}_{c)}^{*}} & {\left[\mathrm{P}_{a b}, \mathrm{~J}_{c}\right]=-\delta_{c(a} \epsilon_{b) m} \mathrm{P}_{m}} \\
{\left[\mathrm{~J}, \mathrm{~J}_{a}^{*}\right]=\epsilon_{a m} \mathrm{~J}_{m}^{*}} & {\left[\mathrm{G}_{a}, \mathrm{P}_{b c}\right]=\epsilon_{a(b} \mathrm{J}_{c)}^{*}} & {\left[\mathrm{P}_{a b}, \mathrm{G}_{c d}\right]=\epsilon_{(a(c} \delta_{d) b)} \mathrm{J}^{*}} \\
{\left[\mathrm{H}, \mathrm{H}_{a}^{*}\right]=\epsilon_{a m} \mathrm{~J}_{m}^{*}} & {\left[\mathrm{P}_{a}, \mathrm{G}_{b c}\right]=\epsilon_{a(b} \mathrm{J}_{c)}^{*}} & {\left[\mathrm{G}_{a b}, \mathrm{G}_{c d}\right]=\epsilon_{(a(c(c} \delta_{d) b)} \mathrm{H}^{*}} \\
{\left[\mathrm{~J}, \bullet_{a}\right]=\epsilon_{a m} \bullet_{m}} & {\left[\mathrm{~J}^{*}, \mathrm{~J}_{a}\right]=\epsilon_{a m} \mathrm{~J}_{m}^{*}} & \Delta_{a b}(\mathrm{P}):=\epsilon_{m a} \mathrm{P}_{b m}+\epsilon_{b a} \mathrm{P}_{m m} \\
{\left[\mathrm{H}, \mathrm{~J}_{a}\right]=\epsilon_{a m} \mathrm{H}_{m}} & {\left[\mathrm{H}^{*}, \bullet_{a}\right]=\epsilon_{a m} \mathrm{H}_{m}^{*} / \mathrm{J}_{m}^{*}} & \bullet \bullet_{a}:=\mathrm{J}_{a} / \mathrm{H}_{a} \text { (either/or)}
\end{array}
$$

Outline

Motivation

Higher spin gravity

Lower spin gravity

Higher lower spin gravity

Einstein gravity

$z \rightarrow 0$ and near horizon physics

AdS_{3} bc's in Einstein gravity

Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:

- Brown-Henneaux '86: two Virasoros (2d conformal algebra)
AdS_{3} bc's in Einstein gravity
Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:
- Brown-Henneaux '86: two Virasoros (2d conformal algebra)
- Compere-Song-Strominger '13: Virasoro plus $u(1)$ current algebra
- Troessaert '13: 2 Virasoros plus $2 u(1)$ current algebras
- Avery-Poojary-Suryanarayana '13: Virasoro plus $s l(2)$ current algebra
- Donnay-Giribet-Gonzalez-Pino '15: centerless warped conformal
- Afshar-Detournay-DG-Oblak '15: twisted warped conformal
AdS_{3} bc's in Einstein gravity
Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:
- Brown-Henneaux '86: two Virasoros (2d conformal algebra)
- Compere-Song-Strominger '13: Virasoro plus $u(1)$ current algebra
- Troessaert '13: 2 Virasoros plus $2 u(1)$ current algebras
- Avery-Poojary-Suryanarayana '13: Virasoro plus $s l(2)$ current algebra
- Donnay-Giribet-Gonzalez-Pino '15: centerless warped conformal
- Afshar-Detournay-DG-Oblak '15: twisted warped conformal
- DG-Riegler '16: two $s l(2)$ current algebras (most general case!)
AdS_{3} bc's in Einstein gravity
Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:
- Brown-Henneaux '86: two Virasoros (2d conformal algebra)
- Compere-Song-Strominger '13: Virasoro plus $u(1)$ current algebra
- Troessaert '13: 2 Virasoros plus $2 u(1)$ current algebras
- Avery-Poojary-Suryanarayana '13: Virasoro plus $s l(2)$ current algebra
- Donnay-Giribet-Gonzalez-Pino '15: centerless warped conformal
- Afshar-Detournay-DG-Oblak '15: twisted warped conformal
- DG-Riegler '16: two $s l(2)$ current algebras (most general case!)

> In the following I use neither of these bc's!

Recall AdS_{3} Brown-Henneaux bc's in presence of source/chemical potential μ :

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm} \quad b_{ \pm}=e^{ \pm \rho L_{0}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp} \\
\mathfrak{a}_{t} & =\mu^{ \pm}\left(L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm \prime} L_{\mp}
\end{aligned}
$$

Recall AdS $_{3}$ Brown-Henneaux bc's in presence of source/chemical potential μ :

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm} \quad b_{ \pm}=e^{ \pm \rho L_{0}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp} \\
\mathfrak{a}_{t} & =\mu^{ \pm}\left(L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm \prime \prime} L_{\mp}
\end{aligned}
$$

If sources depend on charges, $\mu^{ \pm}=\delta H^{ \pm} / \delta \mathcal{L}_{ \pm}$, then get new bc's

- $\mu^{ \pm}=1$: Brown-Henneaux

Recall AdS $_{3}$ Brown-Henneaux bc's in presence of source/chemical potential μ :

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm} \quad b_{ \pm}=e^{ \pm \rho L_{0}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp} \\
\mathfrak{a}_{t} & =\mu^{ \pm}\left(L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm \prime \prime} L_{\mp}
\end{aligned}
$$

If sources depend on charges, $\mu^{ \pm}=\delta H^{ \pm} / \delta \mathcal{L}_{ \pm}$, then get new bc's

- $\mu^{ \pm}=1$: Brown-Henneaux
- $\mu^{ \pm}=\mathcal{L}_{ \pm}: \mathrm{KdV}, \pm \dot{\mathcal{L}}_{ \pm}=3 \mathcal{L}_{ \pm} \mathcal{L}_{ \pm}^{\prime}-2 \mathcal{L}_{ \pm}^{\prime \prime \prime}$

Recall AdS $_{3}$ Brown-Henneaux bc's in presence of source/chemical potential μ :

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm} \quad b_{ \pm}=e^{ \pm \rho L_{0}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp} \\
\mathfrak{a}_{t} & =\mu^{ \pm}\left(L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm^{\prime \prime}} L_{\mp}
\end{aligned}
$$

If sources depend on charges, $\mu^{ \pm}=\delta H^{ \pm} / \delta \mathcal{L}_{ \pm}$, then get new bc's

- $\mu^{ \pm}=1$: Brown-Henneaux
- $\mu^{ \pm}=\mathcal{L}_{ \pm}: \mathrm{KdV}, \pm \dot{\mathcal{L}}_{ \pm}=3 \mathcal{L}_{ \pm} \mathcal{L}_{ \pm}^{\prime}-2 \mathcal{L}_{ \pm}^{\prime \prime \prime}$
- $\mu^{ \pm}=R_{(k)}^{ \pm}$(Gelfand-Dikii polynomial): $k^{\text {th }}$ representative of KdV hierarchy, $\pm \dot{\mathcal{L}}_{ \pm}=D^{ \pm} R_{(k)}^{ \pm}$with $D^{ \pm}=\mathcal{L}_{ \pm}^{\prime}+2 \mathcal{L}_{ \pm} \partial_{\varphi}-2 \partial_{\varphi}^{3}$
Reminder: Gelfand-Dikii polynomials defined by recursion relation

$$
R_{(k+1)}^{ \pm \prime}=\frac{k+1}{2 k+1} D^{ \pm} R_{(k)}^{ \pm} \quad \text { with } R_{(0)}^{ \pm}=1
$$

Recall AdS $_{3}$ Brown-Henneaux bc's in presence of source/chemical potential μ :

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm} \quad b_{ \pm}=e^{ \pm \rho L_{0}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp} \\
\mathfrak{a}_{t} & =\mu^{ \pm}\left(L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm \prime \prime} L_{\mp}
\end{aligned}
$$

If sources depend on charges, $\mu^{ \pm}=\delta H^{ \pm} / \delta \mathcal{L}_{ \pm}$, then get new bc's

- $\mu^{ \pm}=1$: Brown-Henneaux
- $\mu^{ \pm}=\mathcal{L}_{ \pm}: \mathrm{KdV}, \pm \dot{\mathcal{L}}_{ \pm}=3 \mathcal{L}_{ \pm} \mathcal{L}_{ \pm}^{\prime}-2 \mathcal{L}_{ \pm}^{\prime \prime \prime}$
- $\mu^{ \pm}=R_{(k)}^{ \pm}$(Gelfand-Dikii polynomial): $k^{\text {th }}$ representative of KdV hierarchy, $\pm \dot{\mathcal{L}}_{ \pm}=D^{ \pm} R_{(k)}^{ \pm}$with $D^{ \pm}=\mathcal{L}_{ \pm}^{\prime}+2 \mathcal{L}_{ \pm} \partial_{\varphi}-2 \partial_{\varphi}^{3}$
- key observation for this talk: EOM invariant under anisotropic scaling

$$
z=2 k+1 \quad t \rightarrow \lambda^{z} t \quad \varphi \rightarrow \lambda \varphi \quad \mathcal{L}_{ \pm} \rightarrow \lambda^{-2} \mathcal{L}_{ \pm}
$$

Recall AdS $_{3}$ Brown-Henneaux bc's in presence of source/chemical potential μ :

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm} \quad b_{ \pm}=e^{ \pm \rho L_{0}}
$$

with

$$
\begin{aligned}
\mathfrak{a}_{\varphi} & =L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp} \\
\mathfrak{a}_{t} & =\mu^{ \pm}\left(L_{ \pm}+\mathcal{L}_{ \pm} L_{\mp}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm \prime \prime} L_{\mp}
\end{aligned}
$$

If sources depend on charges, $\mu^{ \pm}=\delta H^{ \pm} / \delta \mathcal{L}_{ \pm}$, then get new bc's

- $\mu^{ \pm}=1$: Brown-Henneaux
- $\mu^{ \pm}=\mathcal{L}_{ \pm}: \mathrm{KdV}, \pm \dot{\mathcal{L}}_{ \pm}=3 \mathcal{L}_{ \pm} \mathcal{L}_{ \pm}^{\prime}-2 \mathcal{L}_{ \pm}^{\prime \prime \prime}$
- $\mu^{ \pm}=R_{(k)}^{ \pm}$(Gelfand-Dikii polynomial): $k^{\text {th }}$ representative of KdV hierarchy, $\pm \dot{\mathcal{L}}_{ \pm}=D^{ \pm} R_{(k)}^{ \pm}$with $D^{ \pm}=\mathcal{L}_{ \pm}^{\prime}+2 \mathcal{L}_{ \pm} \partial_{\varphi}-2 \partial_{\varphi}^{3}$
- key observation for this talk: EOM invariant under anisotropic scaling

$$
z=2 k+1 \quad t \rightarrow \lambda^{z} t \quad \varphi \rightarrow \lambda \varphi \quad \mathcal{L}_{ \pm} \rightarrow \lambda^{-2} \mathcal{L}_{ \pm}
$$

Anisotropic scaling of Lifshitz type in Einstein gravity

Outline

Motivation

Higher spin gravity

Lower spin gravity

Higher lower spin gravity

Einstein gravity
$z \rightarrow 0$ and near horizon physics

Near horizon bc's Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16
Non-extremal horizon (Rindler spacetime for $\rho \rightarrow 0$) achieved by bc's

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}_{ \pm}\right) b_{ \pm} \quad \mathfrak{a}^{ \pm}=\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} t\right) L_{0} \quad \delta \zeta^{ \pm}=0
$$

Interesting features of our bc's:

- Symmetry algebra: infinite copies of Heisenberg algebras

Non-extremal horizon (Rindler spacetime for $\rho \rightarrow 0$) achieved by bc's

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}_{ \pm}\right) b_{ \pm} \quad \mathfrak{a}^{ \pm}=\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} t\right) L_{0} \quad \delta \zeta^{ \pm}=0
$$

Interesting features of our bc's:

- Symmetry algebra: infinite copies of Heisenberg algebras
- Explicit construction of all soft hair descendants

Non-extremal horizon (Rindler spacetime for $\rho \rightarrow 0$) achieved by bc's

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}_{ \pm}\right) b_{ \pm} \quad \mathfrak{a}^{ \pm}=\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} t\right) L_{0} \quad \delta \zeta^{ \pm}=0
$$

Interesting features of our bc's:

- Symmetry algebra: infinite copies of Heisenberg algebras
- Explicit construction of all soft hair descendants
- Explicit proposal for all microstates of BTZ Afshar, DG, Sheikh-Jabbari '16

Non-extremal horizon (Rindler spacetime for $\rho \rightarrow 0$) achieved by bc's

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}_{ \pm}\right) b_{ \pm} \quad \mathfrak{a}^{ \pm}=\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} t\right) L_{0} \quad \delta \zeta^{ \pm}=0
$$

Interesting features of our bc's:

- Astonishingly simple and universal* result for entropy

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

To give an idea how much simpler the formula above is in higher spin theories than usual entropy formulas, here is the same result expressed not in terms of charges $J_{0}^{ \pm}$for our bc's, but for Henneaux-Rey-Campoleoni-Fredenhagen-Pfenninger-Theisen bc's (see Guperle, Kraus '11; Ammon, Gutperle, Kraus, Perlmutter '12)

$$
S=2 \pi \sqrt{2 \pi k}\left(\sqrt{\mathcal{L}_{+}} \cos \left[\frac{1}{3} \arcsin \left(\frac{3}{8} \sqrt{\frac{3 k}{2 \pi \mathcal{L}_{+}^{3}}} \mathcal{W}_{+}\right)\right]+(+\rightarrow-)\right)
$$

*Applies to AdS, flat space, higher spins, higher derivatives and higher dimensions

Non-extremal horizon (Rindler spacetime for $\rho \rightarrow 0$) achieved by bc's

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}_{ \pm}\right) b_{ \pm} \quad \mathfrak{a}^{ \pm}=\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} t\right) L_{0} \quad \delta \zeta^{ \pm}=0
$$

Interesting features of our bc's:

- Astonishingly simple and universal result for entropy

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- Line-element $\mathrm{d} s^{2}=-\zeta^{2} r^{2} \mathrm{~d} t^{2}+\mathrm{d} r^{2}+\mathcal{J}^{2} \mathrm{~d} \varphi^{2}+\ldots$ has anisotropic scaling symmetry like Lifshitz with $z \rightarrow 0$

$$
t \rightarrow t \quad \varphi \rightarrow \lambda \varphi \quad \mathcal{J} \rightarrow \lambda^{-1} \mathcal{J}
$$

Technical notes: scaling of \mathcal{J} induced by Sugawara construction $\mathcal{L} \sim \mathcal{J}^{2}+\mathcal{J}^{\prime}$ from KdV-type scaling $\mathcal{L} \rightarrow \lambda^{-2} \mathcal{L}$
Miura map shows that Rindler acceleration ζ does not scale
Suggests KdV level $k=-1 / 2$! (recall: $k=2 z+1$)
If true, Lifshitz entropy formula must reproduce simple result above!

Non-extremal horizon (Rindler spacetime for $\rho \rightarrow 0$) achieved by bc's

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}_{ \pm}\right) b_{ \pm} \quad \mathfrak{a}^{ \pm}=\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} t\right) L_{0} \quad \delta \zeta^{ \pm}=0
$$

Interesting features of our bc's:

- Astonishingly simple and universal result for entropy

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- Line-element $\mathrm{d} s^{2}=-\zeta^{2} r^{2} \mathrm{~d} t^{2}+\mathrm{d} r^{2}+\mathcal{J}^{2} \mathrm{~d} \varphi^{2}+\ldots$ has anisotropic scaling symmetry like Lifshitz with $z \rightarrow 0$

$$
t \rightarrow t \quad \varphi \rightarrow \lambda \varphi \quad \mathcal{J} \rightarrow \lambda^{-1} \mathcal{J}
$$

- Result follows indeed from $z \rightarrow 0$ limit of entropy formula for theories with Lifshitz scaling in $1+1$ dimensions (with $\Delta_{ \pm}=J_{0}^{ \pm}$)

$$
S=2 \pi(1+z) \sum_{ \pm} \Delta_{ \pm}{ }^{1 /(1+z)} \exp \left(\frac{z}{1+z} \ln \left(\Delta_{0}^{ \pm}[1 / z] / z\right)\right)
$$

note: ground state energies $\Delta_{0}^{ \pm}[z]=\frac{k}{2} \frac{1}{1+z}(-1)^{(z-1) / 2}$ also match with gravity side, but not needed in entropy formula for $z \rightarrow 0$!

Non-extremal horizon (Rindler spacetime for $\rho \rightarrow 0$) achieved by bc's

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}_{ \pm}\right) b_{ \pm} \quad \mathfrak{a}^{ \pm}=\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} t\right) L_{0} \quad \delta \zeta^{ \pm}=0
$$

Interesting features of our bc's:

- Astonishingly simple and universal result for entropy

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- Line-element $\mathrm{d} s^{2}=-\zeta^{2} r^{2} \mathrm{~d} t^{2}+\mathrm{d} r^{2}+\mathcal{J}^{2} \mathrm{~d} \varphi^{2}+\ldots$ has anisotropic scaling symmetry like Lifshitz with $z \rightarrow 0$

$$
t \rightarrow t \quad \varphi \rightarrow \lambda \varphi \quad \mathcal{J} \rightarrow \lambda^{-1} \mathcal{J}
$$

- Result follows indeed from $z \rightarrow 0$ limit of entropy formula for theories with Lifshitz scaling in $1+1$ dimensions (with $\Delta_{ \pm}=J_{0}^{ \pm}$)

$$
S=2 \pi(1+z) \sum_{ \pm} \Delta_{ \pm}^{1 /(1+z)} \exp \left(\frac{z}{1+z} \ln \left(\Delta_{0}^{ \pm}[1 / z] / z\right)\right)
$$

- Interesting math question: why (generalized) Gelfand-Dikii polynomial $R_{(-1 / 2)}$ and KdV level $k=-1 / 2$ special?

Summary

Anisotropic spacetimes of Lifshitz or Schrödinger type can be obtained through imposition of suitable bc's in

- Higher spin theories in $2+1$
work with Gary, Rashkov; Afshar, Riegler; Prohazka, Rey; Breunhölder '12-15
- Lower spin theories $2+1$
work with Bergshoeff, Prohazka, Rosseel '16
- Higher low spin Non-relativistic higher spin theories in $2+1$ work with Bergshoeff, Prohazka, Rosseel '16
- Einstein gravity in $2+1$
work by Perez, Tempo, Troncoso '16

Summary

Anisotropic spacetimes of Lifshitz or Schrödinger type can be obtained through imposition of suitable bc's in

- Higher spin theories in $2+1$
work with Gary, Rashkov; Afshar, Riegler; Prohazka, Rey; Breunhölder '12-15
- Lower spin theories $2+1$
work with Bergshoeff, Prohazka, Rosseel '16
- Higher lor spin Non-relativistic higher spin theories in $2+1$ work with Bergshoeff, Prohazka, Rosseel '16
- Einstein gravity in $2+1$
work by Perez, Tempo, Troncoso '16
Lifshitz scaling in limit $z \rightarrow 0$ interpreted from near horizon perspective work with Afshar, Detournay, Merbis, Perez, Tempo, Troncoso, Sheikh-Jabbari,
Yavarntanoo '16 [explicit construction of all BTZ microstates!]

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

Summary

Anisotropic spacetimes of Lifshitz or Schrödinger type can be obtained through imposition of suitable bc's in

- Higher spin theories in $2+1$
work with Gary, Rashkov; Afshar, Riegler; Prohazka, Rey; Breunhölder '12-15
- Lower spin theories $2+1$
work with Bergshoeff, Prohazka, Rosseel '16
- Higher lor spin Non-relativistic higher spin theories in $2+1$ work with Bergshoeff, Prohazka, Rosseel '16
- Einstein gravity in $2+1$
work by Perez, Tempo, Troncoso '16
Lifshitz scaling in limit $z \rightarrow 0$ interpreted from near horizon perspective work with Afshar, Detournay, Merbis, Perez, Tempo, Troncoso, Sheikh-Jabbari,
Yavarntanoo '16 [explicit construction of all BTZ microstates!]

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

Thanks for your attention!

