# This is an experimental talk 

Daniel Grumiller

Institute for Theoretical Physics<br>TU Wien

Iberian Strings, Santiago de Compostela, January 2020

Talk inspired by the movie 'Memento'


Talk inspired by the movie 'Memento'


Thanks for your attention!

## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?


## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model


## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?


## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?


## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped symmetries

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

and the two-dimensional Maxwell symmetries ( $L_{1}, L_{0}, J_{-1}, J_{0}$ )

## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?


## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?
- A4: Complex SYK for large specific heat and zero compressibility


## Main conclusions as Q\&A's

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- A2: The twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

- Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?
- A4: Complex SYK for large specific heat and zero compressibility

Concrete model for flat space holography

## Scaling limit of complex SYK

- Effective action of collective low temperature modes

$$
\Gamma^{\mathrm{cSYK}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{g}+\frac{2 \pi i \mathcal{E}}{\beta} \dot{h}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}
$$

with Schwarzian derivative

$$
\{f ; \tau\}:=\frac{\dddot{f}}{\dot{f}}-\frac{3}{2} \frac{\ddot{f}^{2}}{\dot{f}^{2}}
$$

Definitions:

- $N$ : (large) number of complex fermions
- NK: zero-temperature charge compressibility
- $N \gamma$ : specific heat at fixed charge
- $\mathcal{E}$ : spectral asymmetry parameter
- $\beta$ : inverse temperature
- $h(\tau)$ : time-reparametrization field, quasi-periodic $h(\tau+\beta)=h(\tau)+\beta$
- $g(\tau)$ : phase field

Davison, Fu, Georges, Gu, Jensen, Sachdev '16; Gu, Kitaev, Sachdev, Tarnopolsky '19

## Scaling limit of complex SYK

- Effective action of collective low temperature modes

$$
\Gamma^{\mathrm{cSYK}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{g}+\frac{2 \pi i \mathcal{E}}{\beta} \dot{h}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}
$$

- shifting phase field

$$
g \rightarrow g-\frac{\kappa}{N K}\left(\ln \dot{h}+\frac{2 \pi i}{\beta} h\right)
$$

yields 'twisted warped Schwarzian action' Afshar '19

## Scaling limit of complex SYK

- Effective action of collective low temperature modes

$$
\Gamma^{{ }^{\mathrm{CSYK}}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{g}+\frac{2 \pi i \mathcal{E}}{\beta} \dot{h}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}
$$

- shifting phase field

$$
g \rightarrow g-\frac{\kappa}{N K}\left(\ln \dot{h}+\frac{2 \pi i}{\beta} h\right)
$$

yields 'twisted warped Schwarzian action' Afshar '19

- large specific heat limit $N \gamma \rightarrow \infty$ yields 'twisted warped action'

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

## Scaling limit of complex SYK

- Effective action of collective low temperature modes

$$
\Gamma^{\mathrm{cSYK}}[h, g]=\frac{N K}{2} \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{g}+\frac{2 \pi i \mathcal{E}}{\beta} \dot{h}\right)^{2}-\frac{N \gamma}{4 \pi^{2}} \int_{0}^{\beta} \mathrm{d} \tau\left\{\tan \left(\frac{\pi}{\beta} h\right) ; \tau\right\}
$$

- shifting phase field

$$
g \rightarrow g-\frac{\kappa}{N K}\left(\ln \dot{h}+\frac{2 \pi i}{\beta} h\right)
$$

yields 'twisted warped Schwarzian action' Afshar '19

- large specific heat limit $N \gamma \rightarrow \infty$ yields 'twisted warped action'

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

Coincides with boundary action obtained from CGHS

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

Note: relation to $h$ and $g$ as follows:

$$
q_{3}(\tau)=e^{2 \pi i h(\tau) / \beta}
$$

$$
q_{2}(\tau)=g(\tau)-\frac{\beta}{2 \pi i} h(\tau)
$$

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
- Mixed kinetic term main difference to Schwarzian theory (there: $p_{1}^{2}$ )

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
- Mixed kinetic term main difference to Schwarzian theory (there: $p_{1}^{2}$ )
- Solutions to Hamilton EOM depend on six integration constants

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
- Mixed kinetic term main difference to Schwarzian theory (there: $p_{1}^{2}$ )
- Solutions to Hamilton EOM depend on six integration constants

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

- shifts $h_{0}, g_{0}$

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
- Mixed kinetic term main difference to Schwarzian theory (there: $p_{1}^{2}$ )
- Solutions to Hamilton EOM depend on six integration constants

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

- shifts $h_{0}, g_{0}$
- amplitudes $h_{1}, g_{2}$

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
- Mixed kinetic term main difference to Schwarzian theory (there: $p_{1}^{2}$ )
- Solutions to Hamilton EOM depend on six integration constants

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

- shifts $h_{0}, g_{0}$
- amplitudes $h_{1}, g_{2}$
- periodicity $\tau_{0}$ is inverse temperature $\beta=2 \pi \tau_{0}$

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
- Mixed kinetic term main difference to Schwarzian theory (there: $p_{1}^{2}$ )
- Solutions to Hamilton EOM depend on six integration constants

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

- shifts $h_{0}, g_{0}$
- amplitudes $h_{1}, g_{2}$
- periodicity $\tau_{0}$ is inverse temperature $\beta=2 \pi \tau_{0}$
- remaining constant $g_{1}$ yields entropy from on-shell action

$$
S=-\left.\Gamma\left[q_{i}, p_{i}\right]\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}=\left.2 \pi \kappa X\right|_{\text {horizon }}
$$

Hamiltonian formulation of twisted warped action and thermodynamics

- First order form involves three canonical pairs $(i=1,2,3)$

$$
\Gamma\left[q_{i}, p_{i}\right]=-\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(p_{i} \dot{q}_{i}-p_{1} p_{2}-e^{q_{1}} p_{3}\right)
$$

- Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
- Mixed kinetic term main difference to Schwarzian theory (there: $p_{1}^{2}$ )
- Solutions to Hamilton EOM depend on six integration constants

$$
q_{3}=h_{0}+h_{1} e^{i \tau / \tau_{0}} \quad q_{2}=g_{0}-i g_{1} \tau+g_{2} e^{i \tau / \tau_{0}}
$$

- shifts $h_{0}, g_{0}$
- amplitudes $h_{1}, g_{2}$
- periodicity $\tau_{0}$ is inverse temperature $\beta=2 \pi \tau_{0}$
- remaining constant $g_{1}$ yields entropy from on-shell action

$$
S=-\left.\Gamma\left[q_{i}, p_{i}\right]\right|_{\mathrm{EOM}}=2 \pi \kappa g_{1}=\left.2 \pi \kappa X\right|_{\text {horizon }}
$$

- inverse specific heat at fixed charge vanishes since $\mathrm{d} T / \mathrm{d} S=0$


## Derivation of boundary action

Follow derivation of Schwarzian action for JT in BF-formulation González, DG, Salzer '18

- Well-defined variational principle requires boundary term

$$
\Gamma^{\mathrm{BF}}[B, \mathcal{A}]=I^{\mathrm{BF}}[B, \mathcal{A}]+I^{\mathrm{bdry}}[B, \mathcal{A}]
$$

## Derivation of boundary action

Follow derivation of Schwarzian action for JT in BF-formulation González, DG, Salzer '18

- Well-defined variational principle requires boundary term

$$
\Gamma^{\mathrm{BF}}[B, \mathcal{A}]=I^{\mathrm{BF}}[B, \mathcal{A}]+I^{\mathrm{bdry}}[B, \mathcal{A}]
$$

- Boundary action given by

$$
I^{\text {bdry }}[B, \mathcal{A}]=-\kappa \int \mathrm{d} f C
$$

$f$ is quasi-periodic (with fixed non-periodicity) and $C=\frac{1}{2}\langle B, B\rangle$

## Derivation of boundary action

Follow derivation of Schwarzian action for JT in BF-formulation González, DG, Salzer '18

- Well-defined variational principle requires boundary term

$$
\Gamma^{\mathrm{BF}}[B, \mathcal{A}]=I^{\mathrm{BF}}[B, \mathcal{A}]+I^{\mathrm{bdry}}[B, \mathcal{A}]
$$

- Boundary action given by

$$
I^{\mathrm{bdry}}[B, \mathcal{A}]=-\kappa \int \mathrm{d} f C
$$

$f$ is quasi-periodic (with fixed non-periodicity) and $C=\frac{1}{2}\langle B, B\rangle$

- Function $f$ appears in relation between connection $\mathcal{A}$ and scalar $B$

$$
\mathcal{A}_{t}=\dot{f} B+G^{-1} \partial_{t} G
$$

## Derivation of boundary action

Follow derivation of Schwarzian action for JT in BF-formulation González, DG, Salzer '18

- Well-defined variational principle requires boundary term

$$
\Gamma^{\mathrm{BF}}[B, \mathcal{A}]=I^{\mathrm{BF}}[B, \mathcal{A}]+I^{\mathrm{bdry}}[B, \mathcal{A}]
$$

- Boundary action given by

$$
I^{\mathrm{bdry}}[B, \mathcal{A}]=-\kappa \int \mathrm{d} f C
$$

$f$ is quasi-periodic (with fixed non-periodicity) and $C=\frac{1}{2}\langle B, B\rangle$

- Function $f$ appears in relation between connection $\mathcal{A}$ and scalar $B$

$$
\mathcal{A}_{t}=\dot{f} B+G^{-1} \partial_{t} G
$$

- Bulk action vanishes on-shell


## Derivation of boundary action

Follow derivation of Schwarzian action for JT in BF-formulation González, DG, Salzer '18

- Well-defined variational principle requires boundary term

$$
\Gamma^{\mathrm{BF}}[B, \mathcal{A}]=I^{\mathrm{BF}}[B, \mathcal{A}]+I^{\mathrm{bdry}}[B, \mathcal{A}]
$$

- Boundary action given by

$$
I^{\mathrm{bdry}}[B, \mathcal{A}]=-\kappa \int \mathrm{d} f C
$$

$f$ is quasi-periodic (with fixed non-periodicity) and $C=\frac{1}{2}\langle B, B\rangle$

- Function $f$ appears in relation between connection $\mathcal{A}$ and scalar $B$

$$
\mathcal{A}_{t}=\dot{f} B+G^{-1} \partial_{t} G
$$

- Bulk action vanishes on-shell
- Boundary action (after field redefinitions) is twisted warped action

$$
\Gamma[h, g]=\kappa \int_{0}^{\beta} \mathrm{d} \tau\left(\dot{h}^{2}-\dot{g}\left(\frac{2 \pi i}{\beta} \dot{h}+\frac{\ddot{h}}{\dot{h}}\right)+\ddot{g}\right)
$$

## First order formulation of CGHS

- first order formulation as BF action

$$
I^{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

with Maxwell-algebra valued connection 1-form

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

with non-zero commutators $\left[P_{+}, P_{-}\right]=Z$ and $\left[P_{ \pm}, J\right]= \pm P_{ \pm}$ interpretation of connection components:

First order formulation of CGHS

- first order formulation as BF action

$$
I^{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

with Maxwell-algebra valued connection 1-form

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

with non-zero commutators $\left[P_{+}, P_{-}\right]=Z$ and $\left[P_{ \pm}, J\right]= \pm P_{ \pm}$ interpretation of connection components:

- $\omega$ : (dualized) spin connection


## First order formulation of CGHS

- first order formulation as BF action

$$
I^{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

with Maxwell-algebra valued connection 1-form

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

with non-zero commutators $\left[P_{+}, P_{-}\right]=Z$ and $\left[P_{ \pm}, J\right]= \pm P_{ \pm}$ interpretation of connection components:

- $\omega$ : (dualized) spin connection
- $e^{a}$ : zweibein


## First order formulation of CGHS

- first order formulation as BF action

$$
I^{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

with Maxwell-algebra valued connection 1-form

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

with non-zero commutators $\left[P_{+}, P_{-}\right]=Z$ and $\left[P_{ \pm}, J\right]= \pm P_{ \pm}$ interpretation of connection components:

- $\omega$ : (dualized) spin connection
- $e^{a}$ : zweibein
- A: Maxwell field


## First order formulation of CGHS

- first order formulation as BF action

$$
I^{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

with Maxwell-algebra valued connection 1-form

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

with non-zero commutators $\left[P_{+}, P_{-}\right]=Z$ and $\left[P_{ \pm}, J\right]= \pm P_{ \pm}$

- non-degenerate bilinear form $\langle J, Z\rangle=-1,\left\langle P_{+}, P_{-}\right\rangle=1$


## First order formulation of CGHS

- first order formulation as BF action

$$
I^{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

with Maxwell-algebra valued connection 1-form

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

with non-zero commutators $\left[P_{+}, P_{-}\right]=Z$ and $\left[P_{ \pm}, J\right]= \pm P_{ \pm}$

- non-degenerate bilinear form $\langle J, Z\rangle=-1,\left\langle P_{+}, P_{-}\right\rangle=1$
- bc's for connection and co-adjoint scalar

$$
\mathcal{A}=b^{-1}(\mathrm{~d}+a) b \quad B=b^{-1} x b
$$

with $b=\exp \left(-r P_{+}\right)$and

$$
\begin{aligned}
& a=\left(\mathcal{T}(u) P_{+}+P_{-}+\mathcal{P}(u) J\right) \mathrm{d} u \\
& x=\left(\dot{x}_{0}(u)+\mathcal{T}(u) x_{1}(u)\right) P_{+}+x_{1}(u) P_{-}+Y J+x_{0}(u) Z
\end{aligned}
$$

## First order formulation of CGHS

- first order formulation as BF action

$$
I^{\mathrm{BF}}[B, \mathcal{A}]=\kappa \int\langle B, F\rangle \quad F=\mathrm{d} \mathcal{A}+\mathcal{A} \wedge \mathcal{A}
$$

with Maxwell-algebra valued connection 1-form

$$
\mathcal{A}=\omega J+e^{a} P_{a}+A Z
$$

with non-zero commutators $\left[P_{+}, P_{-}\right]=Z$ and $\left[P_{ \pm}, J\right]= \pm P_{ \pm}$

- non-degenerate bilinear form $\langle J, Z\rangle=-1,\left\langle P_{+}, P_{-}\right\rangle=1$
- bc's for connection and co-adjoint scalar

$$
\mathcal{A}=b^{-1}(\mathrm{~d}+a) b \quad B=b^{-1} x b
$$

with $b=\exp \left(-r P_{+}\right)$and

$$
\begin{aligned}
& a=\left(\mathcal{T}(u) P_{+}+P_{-}+\mathcal{P}(u) J\right) \mathrm{d} u \\
& x=\left(\dot{x}_{0}(u)+\mathcal{T}(u) x_{1}(u)\right) P_{+}+x_{1}(u) P_{-}+Y J+x_{0}(u) Z
\end{aligned}
$$

- reminiscent of Chern-Simons formulation of 3d gravity

Boundary conditions in metric formulation and asymptotic Killing vectors

- in EF gauge most general solution to EOM

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

Boundary conditions in metric formulation and asymptotic Killing vectors

- in EF gauge most general solution to EOM

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

- bc's: allow fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$

Boundary conditions in metric formulation and asymptotic Killing vectors

- in EF gauge most general solution to EOM

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

- bc's: allow fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$
- bc's and gauge fixing preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-(\dot{\epsilon}(u) r+\eta(u)) \partial_{r}
$$

Boundary conditions in metric formulation and asymptotic Killing vectors

- in EF gauge most general solution to EOM

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

- bc's: allow fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$
- bc's and gauge fixing preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-(\dot{\epsilon}(u) r+\eta(u)) \partial_{r}
$$

- 2d Coulomb connection $A=r \mathrm{~d} u$ preserved by

$$
\delta_{\xi, \sigma} A_{\nu}=\xi^{\mu} \partial_{\mu} A_{\nu}+A_{\mu} \partial_{\nu} \xi^{\mu}+\partial_{\nu} \sigma \quad \dot{\sigma}=\eta
$$

Boundary conditions in metric formulation and asymptotic Killing vectors

- in EF gauge most general solution to EOM

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

- bc's: allow fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$
- bc's and gauge fixing preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-(\dot{\epsilon}(u) r+\eta(u)) \partial_{r}
$$

- 2d Coulomb connection $A=r \mathrm{~d} u$ preserved by

$$
\delta_{\xi, \sigma} A_{\nu}=\xi^{\mu} \partial_{\mu} A_{\nu}+A_{\mu} \partial_{\nu} \xi^{\mu}+\partial_{\nu} \sigma \quad \dot{\sigma}=\eta
$$

- define Laurent modes $L_{n}:=\xi\left(\epsilon=-u^{n+1}, 0\right), J_{n}:=\xi\left(0, \sigma=u^{n}\right)$

Boundary conditions in metric formulation and asymptotic Killing vectors

- in EF gauge most general solution to EOM

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

- bc's: allow fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$
- bc's and gauge fixing preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-(\dot{\epsilon}(u) r+\eta(u)) \partial_{r}
$$

- 2 d Coulomb connection $A=r \mathrm{~d} u$ preserved by

$$
\delta_{\xi, \sigma} A_{\nu}=\xi^{\mu} \partial_{\mu} A_{\nu}+A_{\mu} \partial_{\nu} \xi^{\mu}+\partial_{\nu} \sigma \quad \dot{\sigma}=\eta
$$

- define Laurent modes $L_{n}:=\xi\left(\epsilon=-u^{n+1}, 0\right), J_{n}:=\xi\left(0, \sigma=u^{n}\right)$
- asymptotic symmetry algebra is warped Witt, $\left[J_{n}, J_{m}\right]_{\text {Lie }}=0$ and

$$
\left[L_{n}, L_{m}\right]_{\mathrm{Lie}}=(n-m) L_{n+m} \quad\left[L_{n}, J_{m}\right]_{\mathrm{Lie}}=-m J_{n+m}
$$

Boundary conditions in metric formulation and asymptotic Killing vectors

- in EF gauge most general solution to EOM

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

- bc's: allow fluctuations $\delta \mathcal{P} \neq 0 \neq \delta \mathcal{T}$
- bc's and gauge fixing preserved by asymptotic Killing vectors

$$
\xi(\epsilon, \eta)=\epsilon(u) \partial_{u}-(\dot{\epsilon}(u) r+\eta(u)) \partial_{r}
$$

- 2d Coulomb connection $A=r \mathrm{~d} u$ preserved by

$$
\delta_{\xi, \sigma} A_{\nu}=\xi^{\mu} \partial_{\mu} A_{\nu}+A_{\mu} \partial_{\nu} \xi^{\mu}+\partial_{\nu} \sigma \quad \dot{\sigma}=\eta
$$

- define Laurent modes $L_{n}:=\xi\left(\epsilon=-u^{n+1}, 0\right), J_{n}:=\xi\left(0, \sigma=u^{n}\right)$
- asymptotic symmetry algebra is warped Witt, $\left[J_{n}, J_{m}\right]_{\text {Lie }}=0$ and

$$
\left[L_{n}, L_{m}\right]_{\mathrm{Lie}}=(n-m) L_{n+m} \quad\left[L_{n}, J_{m}\right]_{\mathrm{Lie}}=-m J_{n+m}
$$

- dilaton linear in radial coordinate $X=x_{1}(u) r+x_{0}(u)$


## CGHS-inspired action á la Cangemi-Jackiw

- Consider dilaton-Maxwell action in two dimensions

$$
I_{\mathrm{CGHS}}=\frac{\kappa}{2} \int \mathrm{~d}^{2} x \sqrt{-g}\left(X R-2 Y+2 Y \varepsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

## CGHS-inspired action á la Cangemi-Jackiw

- Consider dilaton-Maxwell action in two dimensions

$$
I_{\mathrm{CGHS}}=\frac{\kappa}{2} \int \mathrm{~d}^{2} x \sqrt{-g}\left(X R-2 Y+2 Y \varepsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- field content:
- dilaton $X$


## CGHS-inspired action á la Cangemi-Jackiw

- Consider dilaton-Maxwell action in two dimensions

$$
I_{\mathrm{CGHS}}=\frac{\kappa}{2} \int \mathrm{~d}^{2} x \sqrt{-g}\left(X R-2 Y+2 Y \varepsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- field content:
- dilaton $X$
- metric $g_{\mu \nu}$


## CGHS-inspired action á la Cangemi-Jackiw

- Consider dilaton-Maxwell action in two dimensions

$$
I_{\mathrm{CGHS}}=\frac{\kappa}{2} \int \mathrm{~d}^{2} x \sqrt{-g}\left(X R-2 Y+2 Y \varepsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- field content:
- dilaton $X$
- metric $g_{\mu \nu}$
- auxiliary field $Y$


## CGHS-inspired action á la Cangemi-Jackiw

- Consider dilaton-Maxwell action in two dimensions

$$
I_{\mathrm{CGHS}}=\frac{\kappa}{2} \int \mathrm{~d}^{2} x \sqrt{-g}\left(X R-2 Y+2 Y \varepsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- field content:
- dilaton $X$
- metric $g_{\mu \nu}$
- auxiliary field $Y$
- Maxwell field $A_{\mu}$
historic note:
integrating out auxiliary field $Y$ and Maxwell field $A_{\mu}$ yields geometric part of action by Callan, Giddings, Harvey, Strominger '91, see Cangemi, Jackiw '92


## CGHS-inspired action á la Cangemi-Jackiw

- Consider dilaton-Maxwell action in two dimensions

$$
I_{\mathrm{CGHS}}=\frac{\kappa}{2} \int \mathrm{~d}^{2} x \sqrt{-g}\left(X R-2 Y+2 Y \varepsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- field content:
- dilaton $X$ (on-shell: linear in 'radial' coordinate)
- metric $g_{\mu \nu}$ (on-shell: Ricci-flat)
- auxiliary field $Y$ (on-shell: $U(1)$ charge)
- Maxwell field $A_{\mu}$ (on-shell: constant electric field, $A=r \mathrm{~d} u$ )
- EOM

$$
\begin{aligned}
R & =0 \\
\varepsilon^{\mu \nu} \partial_{\mu} A_{\nu} & =1 \\
\nabla_{\mu} \nabla_{\nu} X-g_{\mu \nu} \nabla^{2} X & =g_{\mu \nu} Y \\
Y & =\Lambda=\mathrm{const} .
\end{aligned}
$$

## CGHS-inspired action á la Cangemi-Jackiw

- Consider dilaton-Maxwell action in two dimensions

$$
I_{\mathrm{CGHS}}=\frac{\kappa}{2} \int \mathrm{~d}^{2} x \sqrt{-g}\left(X R-2 Y+2 Y \varepsilon^{\mu \nu} \partial_{\mu} A_{\nu}\right)
$$

- field content:
- dilaton $X$ (on-shell: linear in 'radial' coordinate)
- metric $g_{\mu \nu}$ (on-shell: Ricci-flat)
- auxiliary field $Y$ (on-shell: $U(1)$ charge)
- Maxwell field $A_{\mu}$ (on-shell: constant electric field, $A=r \mathrm{~d} u$ )
- EOM

$$
\begin{aligned}
R & =0 \\
\varepsilon^{\mu \nu} \partial_{\mu} A_{\nu} & =1 \\
\nabla_{\mu} \nabla_{\nu} X-g_{\mu \nu} \nabla^{2} X & =g_{\mu \nu} Y \\
Y & =\Lambda=\text { const. }
\end{aligned}
$$

Metric locally Ricci flat $\Rightarrow$ candidate for flat space holography!

## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$


## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$


## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\text {SYK }}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$


## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$


## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{1 / 2}(\pi \tau / \beta)
$$

## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{2 \Delta}(\pi \tau / \beta) \quad \text { conformal weight } \Delta=1 / 4
$$

- $S L(2, \mathbb{R})$ covariant $x \rightarrow(a x+b) /(c x+d)$ with $x=\tan (\pi \tau / \beta)$


## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{1 / 2}(\pi \tau / \beta)
$$

- $S L(2, \mathbb{R})$ covariant $x \rightarrow(a x+b) /(c x+d)$ with $x=\tan (\pi \tau / \beta)$
- effective action at large $N$ and large $J$ : Schwarzian action

$$
\Gamma[h] \sim-\frac{N}{J} \int_{0}^{\beta} \mathrm{d} \tau\left[\dot{h}^{2}+\frac{1}{2}\{h ; \tau\}\right] \quad\{h ; \tau\}=\frac{\dddot{h}}{\dot{h}}-\frac{3}{2} \frac{\ddot{h}^{2}}{\dot{h}^{2}}
$$

## Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev-Ye-Kitaev model = strongly interacting quantum system solvable at large $N$ ( $N$ is number of Majorana fermions $\psi^{a}$ )

- Hamiltonian $H_{\mathrm{SYK}}=j_{a b c d} \psi^{a} \psi^{b} \psi^{c} \psi^{d}$ with $a, b, c, d=1 \ldots N$
- Gaussian random interaction $\left\langle j_{a b c d}^{2}\right\rangle=J^{2} / N^{3}$
- 2-point function $G(\tau)=\left\langle\psi^{a}(\tau) \psi^{a}(0)\right\rangle$
- sum melonic diagrams $G(\omega)=1 /(-i \omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^{2} G^{3}(\tau)$
- in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau+\beta)$

$$
G(\tau) \sim \operatorname{sign}(\tau) / \sin ^{1 / 2}(\pi \tau / \beta)
$$

- $S L(2, \mathbb{R})$ covariant $x \rightarrow(a x+b) /(c x+d)$ with $x=\tan (\pi \tau / \beta)$
- effective action at large $N$ and large $J$ : Schwarzian action

$$
\Gamma[h] \sim-\frac{N}{J} \int_{0}^{\beta} \mathrm{d} \tau\left[\dot{h}^{2}+\frac{1}{2}\{h ; \tau\}\right] \quad\{h ; \tau\}=\frac{\dddot{h}}{\dot{h}}-\frac{3}{2} \frac{\ddot{h}^{2}}{\dot{h}^{2}}
$$

- Schwarzian action also follows from JT gravity


## Motivation

Key question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in $D$ dimensions?

## Motivation

Key question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in $D$ dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

## Motivation

Key question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in $D$ dimensions?

Let us be modest and refine this question:

## More modest question

(How) does holography work in flat space?

See e.g. work by Bagchi et al.

## Motivation

Key question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in $D$ dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

See e.g. work by Bagchi et al.
Would like concrete model for flat space holography

## Motivation

Key question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in $D$ dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

See e.g. work by Bagchi et al.
Would like concrete model for flat space holography

- flat space version of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ ? $\Rightarrow$ too ambitious


## Motivation

Key question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in $D$ dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

See e.g. work by Bagchi et al.
Would like concrete model for flat space holography

- flat space version of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ ? $\Rightarrow$ too ambitious
- flat space version of JT/SYK? $\Rightarrow$ let's try this!


## Motivation

Key question(s)
(When) is quantum gravity in $D+1$ dimensions equivalent to (which) quantum field theory in $D$ dimensions?

Let us be modest and refine this question:
More modest question
(How) does holography work in flat space?

See e.g. work by Bagchi et al.
Would like concrete model for flat space holography

- flat space version of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ ? $\Rightarrow$ too ambitious
- flat space version of JT/SYK? $\Rightarrow$ let's try this!
- what is flat space analogue of Schwarzian action?


## Flat space holography and complex SYK

## Based on 1911.05739

Collaborators:

- Hamid Afshar (TU Wien/IPM Tehran)
- Hernán Gonzalez (U. Adolfo Ibáñez, Santiago)
- Dmitri Vassilevich (UFABC, Saõ Paulo/Tomsk State U.) and also Jakob Salzer (U. Barcelona/Harvard U.)


## Flat space holography and complex SYK

## Based on 1911.05739

Collaborators:

- Hamid Afshar (TU Wien/IPM Tehran)
- Hernán Gonzalez (U. Adolfo Ibáñez, Santiago)
- Dmitri Vassilevich (UFABC, Saõ Paulo/Tomsk State U.)
and also Jakob Salzer (U. Barcelona/Harvard U.)



## Bonus slide on Maxwell algebra

Commutators not displayed vanish

- Maxwell algebra $=$ centrally extended Poincaré

$$
\left[\mathcal{P}_{a}, \mathcal{P}_{b}\right]=\epsilon_{a b} \mathcal{Z} \quad\left[\mathcal{P}_{a}, \mathcal{J}\right]=\epsilon_{a}{ }^{b} \mathcal{P}_{b}
$$

## Bonus slide on Maxwell algebra

Commutators not displayed vanish

- Maxwell algebra = centrally extended Poincaré

$$
\left[\mathcal{P}_{a}, \mathcal{P}_{b}\right]=\epsilon_{a b} \mathcal{Z} \quad\left[\mathcal{P}_{a}, \mathcal{J}\right]=\epsilon_{a}{ }^{b} \mathcal{P}_{b}
$$

- Basis change 1: $L_{0}=\mathcal{J}, L_{1}=\mathcal{P}_{1}-\mathcal{P}_{0}, J_{-1}=\mathcal{P}_{1}+\mathcal{P}_{0}, J_{0}=-2 \mathcal{Z}$

$$
\left[L_{0}, L_{1}\right]=-L_{1} \quad\left[L_{0}, J_{-1}\right]=J_{-1} \quad\left[L_{1}, J_{-1}\right]=J_{0}
$$

## Bonus slide on Maxwell algebra

## Commutators not displayed vanish

- Maxwell algebra = centrally extended Poincaré

$$
\left[\mathcal{P}_{a}, \mathcal{P}_{b}\right]=\epsilon_{a b} \mathcal{Z} \quad\left[\mathcal{P}_{a}, \mathcal{J}\right]=\epsilon_{a}{ }^{b} \mathcal{P}_{b}
$$

- Basis change 1: $L_{0}=\mathcal{J}, L_{1}=\mathcal{P}_{1}-\mathcal{P}_{0}, J_{-1}=\mathcal{P}_{1}+\mathcal{P}_{0}, J_{0}=-2 \mathcal{Z}$

$$
\left[L_{0}, L_{1}\right]=-L_{1} \quad\left[L_{0}, J_{-1}\right]=J_{-1} \quad\left[L_{1}, J_{-1}\right]=J_{0}
$$

- Comment 1: maximal subalgebra of warped Witt

Warped Witt $(n, m \in \mathbb{Z})$ :

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m} \quad\left[L_{n}, J_{m}\right]=-m J_{n+m}
$$

Central extension:

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0}} \\
& {\left[L_{n}, J_{m}\right]=-m J_{n+m}-i \kappa\left(n^{2}-n\right) \delta_{n+m, 0}} \\
& {\left[J_{n}, J_{m}\right]=\frac{\hat{K}}{2} n \delta_{n+m, 0}}
\end{aligned}
$$

## Bonus slide on Maxwell algebra

## Commutators not displayed vanish

- Maxwell algebra = centrally extended Poincaré

$$
\left[\mathcal{P}_{a}, \mathcal{P}_{b}\right]=\epsilon_{a b} \mathcal{Z} \quad\left[\mathcal{P}_{a}, \mathcal{J}\right]=\epsilon_{a}{ }^{b} \mathcal{P}_{b}
$$

- Basis change 1: $L_{0}=\mathcal{J}, L_{1}=\mathcal{P}_{1}-\mathcal{P}_{0}, J_{-1}=\mathcal{P}_{1}+\mathcal{P}_{0}, J_{0}=-2 \mathcal{Z}$

$$
\left[L_{0}, L_{1}\right]=-L_{1} \quad\left[L_{0}, J_{-1}\right]=J_{-1} \quad\left[L_{1}, J_{-1}\right]=J_{0}
$$

- Comment 1: maximal subalgebra of warped Witt
- Change of basis 2: $L_{1}=P_{+}, J_{-1}=P_{-}, L_{0}=J, J_{0}=Z$

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

## Bonus slide on Maxwell algebra

## Commutators not displayed vanish

- Maxwell algebra $=$ centrally extended Poincaré

$$
\left[\mathcal{P}_{a}, \mathcal{P}_{b}\right]=\epsilon_{a b} \mathcal{Z} \quad\left[\mathcal{P}_{a}, \mathcal{J}\right]=\epsilon_{a}{ }^{b} \mathcal{P}_{b}
$$

- Basis change 1: $L_{0}=\mathcal{J}, L_{1}=\mathcal{P}_{1}-\mathcal{P}_{0}, J_{-1}=\mathcal{P}_{1}+\mathcal{P}_{0}, J_{0}=-2 \mathcal{Z}$

$$
\left[L_{0}, L_{1}\right]=-L_{1} \quad\left[L_{0}, J_{-1}\right]=J_{-1} \quad\left[L_{1}, J_{-1}\right]=J_{0}
$$

- Comment 1: maximal subalgebra of warped Witt
- Change of basis 2: $L_{1}=P_{+}, J_{-1}=P_{-}, L_{0}=J, J_{0}=Z$

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

Comment 2: contraction of $s l(2) \oplus u(1)$
Explicitly: take limit $\epsilon \rightarrow 0$ of

$$
\hat{L}_{ \pm}=\frac{1}{\epsilon} P_{ \pm} \quad \hat{L}_{0}=J+\frac{1}{2 \epsilon^{2}} Z \quad \hat{J}_{0}=Z
$$

where $\left[\hat{L}_{n}, \hat{L}_{m}\right]=(n-m) \hat{L}_{n+m}$ and $\left[\hat{J}_{0}, \hat{L}_{n}\right]=0$

## Bonus slide on Maxwell algebra

## Commutators not displayed vanish

- Maxwell algebra $=$ centrally extended Poincaré

$$
\left[\mathcal{P}_{a}, \mathcal{P}_{b}\right]=\epsilon_{a b} \mathcal{Z} \quad\left[\mathcal{P}_{a}, \mathcal{J}\right]=\epsilon_{a}{ }^{b} \mathcal{P}_{b}
$$

- Basis change 1: $L_{0}=\mathcal{J}, L_{1}=\mathcal{P}_{1}-\mathcal{P}_{0}, J_{-1}=\mathcal{P}_{1}+\mathcal{P}_{0}, J_{0}=-2 \mathcal{Z}$

$$
\left[L_{0}, L_{1}\right]=-L_{1} \quad\left[L_{0}, J_{-1}\right]=J_{-1} \quad\left[L_{1}, J_{-1}\right]=J_{0}
$$

- Comment 1: maximal subalgebra of warped Witt
- Change of basis 2: $L_{1}=P_{+}, J_{-1}=P_{-}, L_{0}=J, J_{0}=Z$

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

- Comment 2: contraction of $s l(2) \oplus u(1)$
- Change of basis 3: $a=L_{1}, a^{\dagger}=J_{-1}, H=\frac{1}{\hbar} a^{\dagger} a=L_{0}, \hbar \mathbb{1}=J_{0}$

$$
\left[a^{\dagger}, a\right]=\hbar \rrbracket \quad[H, a]=-a \quad\left[H, a^{\dagger}\right]=a^{\dagger}
$$

harmonic oscillator!

