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Main conclusions as Q&A'’s
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Main conclusions as Q&A'’s

» Q1: What is the flat space analogue of JT7?

> Al: Essentially the CGHS model

> Q2: What is the flat space analogue of the Schwarzian action?
> A2: The twisted warped action

3
271 h

Lh, g =& d7<h2 <h+ >+g>
O/ B h

» Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?
> A3: The twisted warped symmetries

[Ln7 Lm] = (TL - m) Ln+m
[Lns Jm] = =m0 Jpjm — ik (n? —n) On+m,0
[Jna Jm] =0

and the two-dimensional Maxwell symmetries (L1, Lo, J_1, Jo)
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Main conclusions as Q&A'’s

> QI1: What is the flat space analogue of JT7?

> Al: Essentially the CGHS model

> Q2: What is the flat space analogue of the Schwarzian action?
» A2: The twisted warped action

;
ori . h
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» Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?

> A3: The twisted warped and two-dimensional Maxwell symmetries

> Q4: What is the flat space analogue of SYK?
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Q1: What is the flat space analogue of JT?

Al: Essentially the CGHS model

Q2: What is the flat space analogue of the Schwarzian action?
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Q1: What is the flat space analogue of JT?

Al: Essentially the CGHS model

Q2: What is the flat space analogue of the Schwarzian action?
A2: The twisted warped action

;
ori . h

Lh, g =& dT(h2 ( h+ - )+g>
0/ B h

Q3: What is the twisted warped analogue of the Virasoro and sl(2)
symmetries governing the Schwarzian?

A3: The twisted warped and two-dimensional Maxwell symmetries
Q4: What is the flat space analogue of SYK?

A4: Complex SYK for large specific heat and zero compressibility

[ Concrete model for flat space holography ]
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Scaling limit of complex SYK

» Effective action of collective low temperature modes

FCSYK[ — /dT g+ 27”5 h - — /dT {tan( % T}
with Schwarzian derlvatlve
f 3 f
{f7 T} -y a o
fo2p

Definitions:
> N: (large) number of complex fermions
» NK: zero-temperature charge compressibility
» N+: specific heat at fixed charge
» &: spectral asymmetry parameter
> 3. inverse temperature
> h(7): time-reparametrization field, quasi-periodic h(T + 8) = h(7) + 8
> ¢g(7): phase field
Davison, Fu, Georges, Gu, Jensen, Sachdev '16; Gu, Kitaev, Sachdev, Tarnopolsky '19
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Scaling limit of complex SYK

> Effective action of collective low temperature modes

B
N N
[eSYKp, / (9+ 27”5 h) 2 7 /dT {tan(% ); T}
0
> shifting phase field
g—g— (lnh+2mh)

yields ‘twisted warped Schwar2|an action’ Afshar '19
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> Effective action of collective low temperature modes

B
N N
[eSYKp, / (9+ 27”5 h) 2 7 /dT {tan(% ); T}
0
> shifting phase field
g—g— (Inh+2mh)

yields ‘twisted warped Schwar2|an action’ Afshar '19
> large specific heat limit N’y — oo yields ‘twisted warped action’
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Scaling limit of complex SYK

> Effective action of collective low temperature modes

B
N N
TeSYK[p / (9+ 20 - 5 / dr {tan(Zh); 7}
0

> shifting phase field
g—g— (lnh+2mh)

yields ‘twisted warped Schwar2|an action’ Afshar '19
> large specific heat limit N’y — oo yields ‘twisted warped action’

2711 h .
s for (1) )

[ Coincides with boundary action obtained from CGHS ]
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Hamiltonian formulation of twisted warped action and thermodynamics

» First order form involves three canonical pairs (i = 1,2, 3)

B
Llgi, pi) = =~ /dT (pidi — p1p2 — €™ p3)
0

Note: relation to h and g as follows:

ga(r) = "7 ¢2(7) = g(r) — 5% h(7)
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B
Ulgs, pi) = —k /dT (pigi — p1p2 — €' p3)
0
» Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17

» Mixed kinetic term main difference to Schwarzian theory (there: p?)
» Solutions to Hamilton EOM depend on six integration constants

g3 = ho + hye’™/™ G2 = go — ig1T + goe’™/™
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0
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Hamiltonian formulation of twisted warped action and thermodynamics

» First order form involves three canonical pairs (i = 1,2, 3)
B
Ulgs, pi) = —k /dT (pigi — p1p2 — €' p3)
0
» Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17

Mixed kinetic term main difference to Schwarzian theory (there: p?)
» Solutions to Hamilton EOM depend on six integration constants

\4

iT /70

g3 = ho + h1 €7/ g2 = go — 11T + goe

v

shifts hg,go
» amplitudes hy, g2
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Hamiltonian formulation of twisted warped action and thermodynamics

» First order form involves three canonical pairs (i = 1,2, 3)
B
Llgi, pi] = —rK /dT (pigi — p1p2 — €' p3)
0

» Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17
Mixed kinetic term main difference to Schwarzian theory (there: p?)
» Solutions to Hamilton EOM depend on six integration constants

\4

iT/T()

g3 = ho + hye'™/™ g2 = go — 11T + ga€

» shifts hg, go
amplitudes hi, go
» periodicity 7 is inverse temperature 8 = 217y

v

Daniel Grumiller — This is an experimental talk 5/12



Hamiltonian formulation of twisted warped action and thermodynamics

» First order form involves three canonical pairs (i = 1,2, 3)
B
Ulgs, pi) = —k /dT (pigi — p1p2 — €' p3)
0
» Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17

Mixed kinetic term main difference to Schwarzian theory (there: p?)
Solutions to Hamilton EOM depend on six integration constants

vy

g3 = ho + h1e™/™ G2 = go — i1 T + go€'™/™

shifts hg, go

amplitudes hi, go

periodicity 7 is inverse temperature 8 = 27y

remaining constant ¢; yields entropy from on-shell action

vvyyvyy

S = _F[Qi7 pi”EOM = 2Tkg1 = 27”%)(’h01rizon
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Hamiltonian formulation of twisted warped action and thermodynamics

» First order form involves three canonical pairs (i = 1,2, 3)
B
Ulgs, pi) = —k /dT (pigi — p1p2 — €' p3)
0
» Exp-interaction also in Schwarzian theory Mertens, Turiaci, Verlinde '17

Mixed kinetic term main difference to Schwarzian theory (there: p?)
Solutions to Hamilton EOM depend on six integration constants

vy

g3 = ho + hye’™/™ G2 = go — ig1T + goe’™/™

shifts hg, go

amplitudes hi, go

periodicity 7 is inverse temperature 8 = 27y

remaining constant g; yields entropy from on-shell action

vvyyvyy

S = _F[Qi7 pi]‘EOM = 2Tkg1 = 27”%)(’h01rizon

> inverse specific heat at fixed charge vanishes since d7'/dS =0
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Derivation of boundary action
Follow derivation of Schwarzian action for JT in BF-formulation Gonzdlez, DG, Salzer '18

» Well-defined variational principle requires boundary term
FBF[B7 A] :IBF[B, A]+Ibdry[B, A]
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Derivation of boundary action

Follow derivation of Schwarzian action for JT in BF-formulation Gonzdlez, DG, Salzer '18
» Well-defined variational principle requires boundary term
FBF[B7 A] — IBF[B, A] + Ibdry[B7 A]
» Boundary action given by

"B, Al = —x /dfC

f is quasi-periodic (with fixed non-periodicity) and C = 1 (B, B)
» Function f appears in relation between connection A and scalar B
-At - fB + G_latG

» Bulk action vanishes on-shell
» Boundary action (after field redefinitions) is twisted warped action

8
Tlh, g = & /dT <h2 <2;Zh+ Z) +g‘>
0
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First order formulation of CGHS

> first order formulation as BF action
IBF[B,A]:F;/(B,F> F—dA+AnA
with Maxwell-algebra valued connection 1-form
A=wJ+e* P, +AZ
with non-zero commutators [Py, P_| = Z and [Py, J] = £Py

interpretation of connection components:
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First order formulation of CGHS

> first order formulation as BF action
IBF[B,A]:F;/(B,D F—dA+AnA
with Maxwell-algebra valued connection 1-form
A=wJ+e"P,+AZ
with non-zero commutators [Py, P_| = Z and [Py, J] = £Py

interpretation of connection components:
» w: (dualized) spin connection
> % zweibein
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First order formulation of CGHS

» first order formulation as BF action
IBF[B,A]:F;/(B,F> F—dA+AnA

with Maxwell-algebra valued connection 1-form
A=wJ+e*P,+AZ
with non-zero commutators [Py, P_| = Z and [Py, J] = £Py

interpretation of connection components:
» w: (dualized) spin connection
P> e zweibein
> A: Maxwell field
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First order formulation of CGHS

> first order formulation as BF action
IBF[B,A]:R/(B,F> F=dA+ANA
with Maxwell-algebra valued connection 1-form
A=wJ+e*P,+AZ

with non-zero commutators [Py, P_]| = Z and [Py, J] = £P
» non-degenerate bilinear form (J, Z) = -1, (P4, P_) =1
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First order formulation of CGHS

> first order formulation as BF action
[BF[B,A]:F;/(B,D F—dA+AAA
with Maxwell-algebra valued connection 1-form

A=wJ+e*P,+AZ

with non-zero commutators [Py, P_]| = Z and [Py, J] = £P
» non-degenerate bilinear form (J, Z) = -1, (P4, P_) =1
» bc's for connection and co-adjoint scalar

A=0b"1(d+a)b B=b"lab
with b = exp(—r P;) and
a=(T(u)Py+ P_+P(u)J) du
z = (do(u) + T(w)zi(uw) Pr + z1(u) P+ Y J +zo(u) Z
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First order formulation of CGHS

> first order formulation as BF action
[BF[B,A]:F;/(B,D F—dA+AAA
with Maxwell-algebra valued connection 1-form

A=wJ+e*P,+AZ

with non-zero commutators [Py, P_]| = Z and [Py, J] = £P
» non-degenerate bilinear form (J, Z) = -1, (P4, P_) =1
» bc's for connection and co-adjoint scalar

A=0b"1(d+a)b B=b"lab
with b = exp(—r P;) and
a=(T(u)Py+ P_+P(u)J) du
z = (do(u) + T(w)zi(uw) Pr + z1(u) P+ Y J +zo(u) Z

» reminiscent of Chern—-Simons formulation of 3d gravity
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Boundary conditions in metric formulation and asymptotic Killing vectors

» in EF gauge most general solution to EOM

ds? = —2dudr + 2(P(u)r + T (u)) du?
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Boundary conditions in metric formulation and asymptotic Killing vectors

» in EF gauge most general solution to EOM
ds? = —2dudr + 2(P(u)r + T (u)) du?

» bc's: allow fluctuations 6P # 0 # 6T
» bc's and gauge fixing preserved by asymptotic Killing vectors

E(e, m) = e(u) By — (E(u)r +n(w)) O
» 2d Coulomb connection A = r du preserved by
0¢ e Ay =10, A, + AL0LEN + 00 o=

» define Laurent modes L,, := (e = —u™t1, 0), J, := £(0, 0 = u")
> asymptotic symmetry algebra is warped Witt, [J,, Ji]|u. = 0 and
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Boundary conditions in metric formulation and asymptotic Killing vectors

» in EF gauge most general solution to EOM
ds? = —2dudr + 2(P(u)r + T (u)) du?

» bc's: allow fluctuations 6P # 0 # 6T
» bc's and gauge fixing preserved by asymptotic Killing vectors

E(e, m) = e(u) By — (E(u)r +n(w)) O
» 2d Coulomb connection A = r du preserved by
0¢ e Ay =10, A, + AL0LEN + 00 o=

» define Laurent modes L,, := (e = —u™t1, 0), J, := £(0, 0 = u")
> asymptotic symmetry algebra is warped Witt, [J,, Ji]|u. = 0 and

[Lna Lm]Lie == (Tl - m) Ln+m [Ln7 Jm]Lie =—-m Jn+m

» dilaton linear in radial coordinate X = x;(u) r + zo(u)
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CGHS-inspired action 4 la Cangemi—Jackiw

» Consider dilaton-Maxwell action in two dimensions

Toons = g / d*z/—g (XR —2Y +2YeM0,A,)
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CGHS-inspired action 4 la Cangemi—Jackiw

» Consider dilaton-Maxwell action in two dimensions
K; v
Toans = 5 / d*zy/=g (XR —2Y +2YeM9,A,)

> field content:
» dilaton X
> metric g,
P auxiliary field Y
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CGHS-inspired action 4 la Cangemi—Jackiw

» Consider dilaton-Maxwell action in two dimensions
K; v
Toans = 5 / d*zy/=g (XR - 2Y +2YeM9,A,)

> field content:
» dilaton X
> metric g,
> auxiliary field Y
> Maxwell field A,

historic note:

integrating out auxiliary field Y and Maxwell field A, yields geometric part of
action by Callan, Giddings, Harvey, Strominger '91, see Cangemi, Jackiw '92
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CGHS-inspired action & la Cangemi—Jackiw

» Consider dilaton-Maxwell action in two dimensions
F'; v
Toans = 5 / d*zy/=g (XR - 2Y +2Ye"9,A,)

> field content:
» dilaton X (on-shell: linear in ‘radial’ coordinate)
» metric g,, (on-shell: Ricci-flat)
» auxiliary field Y (on-shell: U(1) charge)
» Maxwell field A,, (on-shell: constant electric field, A = r du)

> EOM

R=0
"o, A, =1
V. VX — 9w V?X = g, Y
Y = A = const.
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CGHS-inspired action & la Cangemi—Jackiw

» Consider dilaton-Maxwell action in two dimensions
K; v
Toans = 5 / d*zy/=g (XR - 2Y +2Ye"9,A,)

> field content:
» dilaton X (on-shell: linear in ‘radial’ coordinate)
» metric g,, (on-shell: Ricci-flat)
» auxiliary field Y (on-shell: U(1) charge)
» Maxwell field A,, (on-shell: constant electric field, A = r du)

> EOM

R=0
"o, A, =1
V. VX — 9w V?X = g, Y
Y = A = const.

[ Metric locally Ricci flat = candidate for flat space holography! ]

Daniel Grumiller — This is an experimental talk
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Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)
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Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

» Hamiltonian Hsyi = japeat®P00? with a,b,c,d =1... N

> Gaussian random interaction (j%, ;) = J?/N?

» 2-point function G(7) = (Y*(1)*(0))

» sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
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Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

Gaussian random interaction (j%,_,) = J?/N3

2-point function G(1) = (¢*(7)y*(0))

sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
in IR limit 7J > 1 exactly soluble, e.g. on circle (1 ~ 7 + f3)

G(7) ~ sign(r)/sin'/?(x7 /)

» Hamiltonian Hsyi = japeat®P00? with a,b,c,d =1... N
>
>
>
>
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Brief summary of SYK (Kitaev '15; Maldacena, Stanford '16)

Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

Hamiltonian Hevk = japeq??®Py® with a,b,¢,d =1... N
Gaussian random interaction (j%,_,) = J?/N3
2-point function G(1) = (¢*(7)y*(0))
sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
in IR limit 7J > 1 exactly soluble, e.g. on circle (7 ~ 7+ )

G(7) ~ sign(t)/sin’> (77/p) conformal weight A = 1/4

SL(2, R) covariant z — (ax + b)/(cx + d) with z = tan(77/f)
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Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)
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Hamiltonian Hevk = japeq??®Py® with a,b,¢,d =1... N
Gaussian random interaction (j%,_,) = J?/N3
2-point function G(1) = (¢*(7)y*(0))
sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
in IR limit 7J > 1 exactly soluble, e.g. on circle (1 ~ 7 + f3)

G(7) ~ sign(r)/sin'/?(w7/B)

SL(2, R) covariant z — (ax + b)/(cx + d) with z = tan(77/f)
effective action at large IV and large J: Schwarzian action
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Sachdev—-Ye—Kitaev model = strongly interacting quantum system
solvable at large N (NN is number of Majorana fermions %)

Hamiltonian Hevk = japeq??®Py® with a,b,¢,d =1... N
Gaussian random interaction (j%,_,) = J?/N3
2-point function G(1) = (¢*(7)y*(0))
sum melonic diagrams G(w) = 1/(—iw — X(w)) with X(7) = J2G3(7)
in IR limit 7J > 1 exactly soluble, e.g. on circle (1 ~ 7 + f3)

G(7) ~ sign(r)/sin'/?(w7/B)

SL(2, R) covariant z — (ax + b)/(cx + d) with z = tan(77/f)
effective action at large IV and large J: Schwarzian action
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» Schwarzian action also follows from JT gravity
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Motivation

Key question(s) ]

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?
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Motivation

Key question(s) ]

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Let us be modest and refine this question:

More modest question ]

J
(How) does holography work in flat space?

See e.g. work by Bagchi et al.

Would like concrete model for flat space holography
> flat space version of AdS5/CFT,4? = too ambitious

» flat space version of JT/SYK? = let's try this!

» what is flat space analogue of Schwarzian action?
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Flat space holography and complex SYK

Based on 1911.05739

Collaborators:

» Hamid Afshar (TU Wien/IPM Tehran)

» Herndn Gonzalez (U. Adolfo Ibafiez, Santiago)

» Dmitri Vassilevich (UFABC, Sad Paulo/Tomsk State U.)
and also Jakob Salzer (U. Barcelona/Harvard U.)
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https://arxiv.org/pdf/1911.05739.pdf

Flat space holography and complex SYK

Based on 1911.05739

Collaborators:

» Hamid Afshar (TU Wien/IPM Tehran)

» Herndn Gonzalez (U. Adolfo Ibafiez, Santiago)

» Dmitri Vassilevich (UFABC, Sad Paulo/Tomsk State U.)
and also Jakob Salzer (U. Barcelona/Harvard U.)

,“‘

Daniel Grumiller — This is an experimental talk 12/12


https://arxiv.org/pdf/1911.05739.pdf

Bonus slide on Maxwell algebra
Commutators not displayed vanish

> Maxwell algebra = centrally extended Poincaré

[Py Py] = €ap 2 (Pa, T] = " Py
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Bonus slide on Maxwell algebra

Commutators not displayed vanish

> Maxwell algebra = centrally extended Poincaré

[Pa, Po) = €as Z [Pa, T] =€’ Py
» Basis change 1: Lo =7, L1 =P1 — Py, J_1 =P1+ Po, Jg = —22
(Lo, L1] = —L1 (Lo, J-1] = J1 (L1, J_1] = Jo

» Comment 1: maximal subalgebra of warped Witt

Warped Witt (n,m € Z):
[Ln, Lin) = (0 —m) Lyym Ly, Jm] = —m Jngm
Central extension:

[Ly, L] = (n—m) Ly + (n3 — n) Intm,0

<
12
[Ln, Jm] = —m Jppm — ik (n2 — n) In+m,0

~

K
[Jna Jm] = Enén—i—m,o
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Bonus slide on Maxwell algebra
Commutators not displayed vanish

> Maxwell algebra = centrally extended Poincaré

[Pa, Po) = €as Z [Pa, T] =€’ Py
» Basis change 1: Lo =7, L1 =P1 — Py, J_1 =P1+ Po, Jg = —22
(Lo, L1] = —L1 (Lo, J-1] = J1 (L1, J_1] = Jo

» Comment 1: maximal subalgebra of warped Witt

» Change of basis 2: L1 =Py, J1=P_, Lo=J, Jo=2
[Py, P_|=2Z7 [Py, J] = £Py

» Comment 2: contraction of sl(2) @ u(1)

Explicitly: take limit € — 0 of
- 1 A 1 .
Ly=-Py Lo=J+ 557 Jo=2
€ 2e

where [f)n, f)m] =(n—m) £n+m and [jOa f/n] =0
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Bonus slide on Maxwell algebra
Commutators not displayed vanish

> Maxwell algebra = centrally extended Poincaré

[Pas Po] = € Z [Pa, T] = €a" Py
» Basischange 1: Lo=J, L1 =P1 —Po, J-1 =P1+Po, Jo =22
(Lo, L1] = —L1 (Lo, J_1] = J 1 (L1, J_1] = Jo

» Comment 1: maximal subalgebra of warped Witt
» Changeof basis2: Ly =P, J.1=P_, Log=J, Jo=72

Py, P|=Z [Py, J]=+Py

» Comment 2: contraction of sl(2) @& u(1)
Change of basis 3: a = L, at =J_4, H= %aTa =Ly, hl1=Jy

\4

[a', a) = h1 [H, a] = —a [H, o] = a

harmonic oscillator!
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