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Main conclusions as Q&A’s

I Q1: What is the flat space analogue of JT?

I A1: Essentially the CGHS model
I Q2: What is the flat space analogue of the Schwarzian action?
I A2: The twisted warped action

Γ[h, g] = κ

β∫
0

dτ

(
ḣ2 − ġ

(
2πi

β
ḣ+

ḧ

ḣ

)
+ g̈

)
I Q3: What is the twisted warped analogue of the Virasoro and sl(2)

symmetries governing the Schwarzian?
I A3: The twisted warped and two-dimensional Maxwell symmetries
I Q4: What is the flat space analogue of SYK?
I A4: Complex SYK for large specific heat and zero compressibility

Concrete model for flat space holography
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(
2πi

β
ḣ+
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ḣ

)
+ g̈

)
I Q3: What is the twisted warped analogue of the Virasoro and sl(2)
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ḧ

ḣ
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Scaling limit of complex SYK

I Effective action of collective low temperature modes

ΓcSYK[h, g] =
NK

2

β∫
0

dτ
(
ġ + 2πiE

β ḣ
)2 − Nγ

4π2

β∫
0

dτ {tan(πβh); τ}

with Schwarzian derivative

{f ; τ} :=

...
f

ḟ
− 3

2

f̈2

ḟ2

Definitions:
I N : (large) number of complex fermions
I NK: zero-temperature charge compressibility
I Nγ: specific heat at fixed charge
I E : spectral asymmetry parameter
I β: inverse temperature
I h(τ): time-reparametrization field, quasi-periodic h(τ + β) = h(τ) + β
I g(τ): phase field

Davison, Fu, Georges, Gu, Jensen, Sachdev ’16; Gu, Kitaev, Sachdev, Tarnopolsky ’19

I shifting phase field

g → g − κ
NK

(
ln ḣ+ 2πi

β h
)

yields ‘twisted warped Schwarzian action’ Afshar ’19
I large specific heat limit Nγ →∞ yields ‘twisted warped action’

Γ[h, g] = κ

β∫
0

dτ

(
ḣ2 − ġ

(
2πi

β
ḣ+

ḧ

ḣ

)
+ g̈

)

Coincides with boundary action obtained from CGHS
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ḣ2 − ġ
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Hamiltonian formulation of twisted warped action and thermodynamics

I First order form involves three canonical pairs (i = 1, 2, 3)

Γ[qi, pi] = −κ
β∫

0

dτ
(
piq̇i − p1p2 − eq1p3

)

Note: relation to h and g as follows:

q3(τ) = e2πih(τ)/β q2(τ) = g(τ)− β
2πi

h(τ)

I also in Schwarzian theory Mertens, Turiaci, Verlinde ’17

I main difference to Schwarzian theory (there: p2
1)

I Solutions to Hamilton EOM depend on six integration constants

I
I
I is inverse temperature β = 2πτ0

I yields entropy from on-shell action

S = −Γ[qi, pi]|EOM = 2πκg1 = 2πκX|horizon

I inverse specific heat at fixed charge vanishes since dT/dS = 0
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Derivation of boundary action
Follow derivation of Schwarzian action for JT in BF-formulation González, DG, Salzer ’18

I Well-defined variational principle requires boundary term

ΓBF[B, A] = IBF[B, A] + Ibdry[B, A]

I Boundary action given by

Ibdry[B, A] = −κ
∫

df C

f is quasi-periodic (with fixed non-periodicity) and C = 1
2 〈B, B〉

I Function f appears in relation between connection A and scalar B

At = ḟ B +G−1∂tG

I Bulk action vanishes on-shell
I Boundary action (after field redefinitions) is twisted warped action

Γ[h, g] = κ

β∫
0

dτ

(
ḣ2 − ġ

(
2πi

β
ḣ+

ḧ

ḣ

)
+ g̈

)
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ḣ

)
+ g̈

)

Daniel Grumiller — This is an experimental talk 6/12



Derivation of boundary action
Follow derivation of Schwarzian action for JT in BF-formulation González, DG, Salzer ’18
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First order formulation of CGHS

I first order formulation as BF action

IBF[B, A] = κ

∫
〈B, F 〉 F = dA+A ∧A

with Maxwell-algebra valued connection 1-form

A = ω J + ea Pa +AZ

with non-zero commutators [P+, P−] = Z and [P±, J ] = ±P±
interpretation of connection components:

I
I
I A: Maxwell field

I non-degenerate bilinear form 〈J, Z〉 = −1, 〈P+, P−〉 = 1
I bc’s for connection and co-adjoint scalar

A = b−1(d+a) b B = b−1xb

with b = exp(−r P+) and

a = (T (u)P+ + P− + P(u) J) du

x = (ẋ0(u) + T (u)x1(u))P+ + x1(u)P− + Y J + x0(u)Z

I reminiscent of Chern–Simons formulation of 3d gravity
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Boundary conditions in metric formulation and asymptotic Killing vectors

I in EF gauge most general solution to EOM

ds2 = −2 dudr + 2
(
P(u) r + T (u)

)
du2

I bc’s: allow fluctuations δP 6= 0 6= δT
I bc’s and gauge fixing preserved by asymptotic Killing vectors

ξ(ε, η) = ε(u) ∂u −
(
ε̇(u)r + η(u)

)
∂r

I 2d Coulomb connection A = r du preserved by

δξ,σAν = ξµ∂µAν +Aµ∂νξ
µ + ∂νσ σ̇ = η

I define Laurent modes Ln := ξ(ε = −un+1, 0), Jn := ξ(0, σ = un)

I asymptotic symmetry algebra is warped Witt, [Jn, Jm]Lie = 0 and

[Ln, Lm]Lie = (n−m)Ln+m [Ln, Jm]Lie = −mJn+m

I dilaton linear in radial coordinate X = x1(u) r + x0(u)
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CGHS-inspired action á la Cangemi–Jackiw

I Consider dilaton-Maxwell action in two dimensions

ICGHS =
κ

2

∫
d2x
√
−g
(
XR− 2Y + 2Y εµν∂µAν

)

I field content:

I
I
I
I

I EOM

R = 0

εµν∂µAν = 1

∇µ∇νX − gµν∇2X = gµνY

Y = Λ = const.

Metric locally Ricci flat ⇒ candidate for flat space holography!
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I Consider dilaton-Maxwell action in two dimensions

ICGHS =
κ

2

∫
d2x
√
−g
(
XR− 2Y + 2Y εµν∂µAν

)
I field content:

I dilaton X (on-shell: linear in ‘radial’ coordinate)
I metric gµν (on-shell: Ricci-flat)
I auxiliary field Y (on-shell: U(1) charge)
I Maxwell field Aµ (on-shell: constant electric field, A = r du)

I EOM

R = 0

εµν∂µAν = 1

∇µ∇νX − gµν∇2X = gµνY

Y = Λ = const.

Metric locally Ricci flat ⇒ candidate for flat space holography!

Daniel Grumiller — This is an experimental talk 9/12



Brief summary of SYK (Kitaev ’15; Maldacena, Stanford ’16)

Sachdev–Ye–Kitaev model = strongly interacting quantum system
solvable at large N (N is number of Majorana fermions ψa)

I Hamiltonian HSYK = jabcdψ
aψbψcψd with a, b, c, d = 1 . . . N

I Gaussian random interaction 〈j2
abcd〉 = J2/N3

I 2-point function G(τ) = 〈ψa(τ)ψa(0)〉
I sum melonic diagrams G(ω) = 1/(−iω−Σ(ω)) with Σ(τ) = J2G3(τ)
I in IR limit τJ � 1 exactly soluble, e.g. on circle (τ ∼ τ + β)

G(τ) ∼ sign(τ)/ sin(πτ/β)

I SL(2, R) covariant x→ (ax+ b)/(cx+ d) with x = tan(πτ/β)
I effective action at large N and large J : Schwarzian action

Γ[h] ∼ −N
J

β∫
0

dτ
[
ḣ2 + 1

2 {h; τ}
]

{h; τ} =

...
h

ḣ
− 3

2

ḧ2

ḣ2

I Schwarzian action also follows from JT gravity
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ḣ2 + 1

2 {h; τ}
]

{h; τ} =

...
h

ḣ
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ḣ
− 3

2

ḧ2

ḣ2

I Schwarzian action also follows from JT gravity

Daniel Grumiller — This is an experimental talk 10/12



Brief summary of SYK (Kitaev ’15; Maldacena, Stanford ’16)

Sachdev–Ye–Kitaev model = strongly interacting quantum system
solvable at large N (N is number of Majorana fermions ψa)

I Hamiltonian HSYK = jabcdψ
aψbψcψd with a, b, c, d = 1 . . . N

I Gaussian random interaction 〈j2
abcd〉 = J2/N3

I 2-point function G(τ) = 〈ψa(τ)ψa(0)〉
I sum melonic diagrams G(ω) = 1/(−iω−Σ(ω)) with Σ(τ) = J2G3(τ)
I in IR limit τJ � 1 exactly soluble, e.g. on circle (τ ∼ τ + β)

G(τ) ∼ sign(τ)/ sin2∆(πτ/β) conformal weight ∆ = 1/4

I SL(2, R) covariant x→ (ax+ b)/(cx+ d) with x = tan(πτ/β)

I effective action at large N and large J : Schwarzian action

Γ[h] ∼ −N
J

β∫
0

dτ
[
ḣ2 + 1

2 {h; τ}
]

{h; τ} =

...
h

ḣ
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Motivation

(When) is quantum gravity in D + 1 dimensions equivalent
to (which) quantum field theory in D dimensions?

Key question(s)

Let us be modest and refine this question:

(How) does holography work in flat space?

More modest question

See e.g. work by Bagchi et al.

Would like concrete model for flat space holography

I flat space version of AdS5/CFT4? ⇒ too ambitious

I flat space version of JT/SYK? ⇒ let’s try this!

I what is flat space analogue of Schwarzian action?
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Flat space holography and complex SYK

Based on 1911.05739

Collaborators:
I Hamid Afshar (TU Wien/IPM Tehran)
I Hernán Gonzalez (U. Adolfo Ibáñez, Santiago)
I Dmitri Vassilevich (UFABC, Saõ Paulo/Tomsk State U.)

and also Jakob Salzer (U. Barcelona/Harvard U.)
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Bonus slide on Maxwell algebra
Commutators not displayed vanish

I Maxwell algebra = centrally extended Poincaré

[Pa, Pb] = εabZ [Pa, J ] = εa
b Pb

I Basis change 1: L0 = J , L1 = P1 − P0, J−1 = P1 + P0, J0 = −2Z

[L0, L1] = −L1 [L0, J−1] = J−1 [L1, J−1] = J0

I Comment 1: maximal subalgebra of warped Witt
I Change of basis 2: L1 = P+, J−1 = P−, L0 = J , J0 = Z

[P+, P−] = Z [P±, J ] = ±P±
I Comment 2: contraction of sl(2)⊕ u(1)
I Change of basis 3: a = L1, a† = J−1, H = 1

~ a
†a = L0, ~ 1l = J0

[a†, a] = ~ 1l [H, a] = −a [H, a†] = a†

harmonic oscillator!
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[Ln, Lm] = (n−m)Ln+m +
c

12

(
n3 − n

)
δn+m, 0

[Ln, Jm] = −mJn+m − iκ
(
n2 − n

)
δn+m, 0

[Jn, Jm] =
K̂

2
n δn+m, 0
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1

2ε2
Z Ĵ0 = Z
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