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Motivations to study flat space higher spin gravity in two dimensions

I Curiosity — does it exist, and if so, how does it look like?

I Accessibility — we believe we can construct it
I SYK-Holography — flat space version of Schwarzian action?
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Lightning review of AdS3 contraction to flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13; González, Matulich, Pino, Troncoso ’13

Here is the recipe:

I Take Chern–Simons on cylinder
gauge algebra contains sl(2,R)⊕ sl(2,R)

I Split into left-/right-chiral parts

I Add bc’s in each sector

I Stir well and get AS generators W±n
I Boil down to AS algebra

I Cook up IW contraction

I Enjoy flat space AS algebra!

ICS[A] =
k

4π

∫
R×disk
〈A ∧A+ 2

3 A ∧A ∧A〉
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ICS[A] = ICS[A+]− ICS[A−]
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Lightning review of AdS3 contraction to flat space higher spin gravity
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Here is the recipe:

I Take Chern–Simons on cylinder
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I Split into left-/right-chiral parts

I Add bc’s in each sector

I Stir well and get AS generators W±n
I Boil down to AS algebra
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I Enjoy flat space AS algebra!

A± = (b±)−1
(

d+a±
)
b± δa± ∼ δW±
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Lightning review of AdS3 contraction to flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13; González, Matulich, Pino, Troncoso ’13

Here is the recipe:

I Take Chern–Simons on cylinder
gauge algebra contains sl(2,R)⊕ sl(2,R)

I Split into left-/right-chiral parts

I Add bc’s in each sector

I Stir well and get AS generators W±n
I Boil down to AS algebra

I Cook up IW contraction

I Enjoy flat space AS algebra!

[W±n , W
±
m ] = f(n,m)W±n+m + Z(n,m) δn+m
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Lightning review of AdS3 contraction to flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13; González, Matulich, Pino, Troncoso ’13

Here is the recipe:

I Take Chern–Simons on cylinder
gauge algebra contains sl(2,R)⊕ sl(2,R)

I Split into left-/right-chiral parts

I Add bc’s in each sector

I Stir well and get AS generators W±n
I Boil down to AS algebra

I Cook up IW contraction (` = AdS-radius)

I Enjoy flat space AS algebra!

Wn := W+
n −W−−n even

Vn :=
1

`

(
W+
n +W−−n

)
odd

IW contraction: limit `→∞ after evaluating brackets
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Lightning review of AdS3 contraction to flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel ’13; González, Matulich, Pino, Troncoso ’13

Here is the recipe:

I Take Chern–Simons on cylinder
gauge algebra contains sl(2,R)⊕ sl(2,R)

I Split into left-/right-chiral parts

I Add bc’s in each sector

I Stir well and get AS generators W±n
I Boil down to AS algebra

I Cook up IW contraction

I Enjoy flat space AS algebra!

[even, even] = even

[even, odd] = odd

[odd, odd] = 0 HS-supertranslations

HS generalization of BMS3 (a.k.a. BMW)
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Simplest example: flat space spin-3 gravity

I Take spin-3 gravity (sl(3) with principally embedded sl(2))
Henneaux, Rey ’10; Campoleoni, Pfenninger, Fredenhagen, Theisen ’10

I Get two W3 symmetry algebras
I IW contraction in large-` limit

Ln = L+
n − L−−n Wn = W+

n −W−−n even

Mn =
1

`

(
L+
n + L−−n

)
Vn =

1

`

(
W+
n +W−−n

)
odd

I Flat space higher spin algebra (spin-3 BMS3 a.k.a. BMW3)

[Ln, Lm] = (n−m)Ln+m [Ln,Mm] = (n−m)Mn+m +
c

12
n3δn+m

[Ln,Wm] = (2n−m)Wn+m [Ln, Vm] = [Mn,Wm] = (2n−m)Vn+m

[Wn,Wm] = lgthy(L,LM,M2) [Wn, Vm] = lgthy(M,M2) +
c

12
n5 δn+m

HS supertranslations: [Mn,Mm] = [Mn, Vm] = [Vn, Vm] = 0

I Same AS algebra obtained directly from isl(3) CS theory
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Is there a similar story in two dimensions?

Required ingredients:
I AdS2 HS gravity + IW contraction from AdS2

I Or direct computation of flat space HS gravity

However, structure in two dimensions different from three:
I not two chiral sectors, but just one
I not just metric + HS fields, but additionally dilaton
I not just one coupling constant, but free function(s) in action
I co-dimension-2 boundary charges have no integral

Not straightforward to translate 3d results to 2d HS gravity!

I Recap AdS2 higher spin theories (known)

I Construct flat space spin-2 theory (new)

I Embed flat space spin-2 algebra in higher rank algebra (to do)

Proceed as follows:
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Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action (X = dilaton):

I[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g|
[
XR− U(X)(∇X)2 − 2V (X)

]
I kinetic potential U(X) and dilaton potential V (X)

I no Einstein frame in 2d (but conformal frame with Ũ(X) = 0)
I two sectors of solutions (all solutions known in closed form):

I constant dilaton vacua: X = X0 = const., V (X0) = 0,
R = 2V ′(X0) = const. ⇒ locally flat or (A)dS2

I linear dilaton vacua: eQ(X) dX = dr with Q ∝
∫X

U(y) dy and

ds2 = −2 dudr − eQ(X(r))
(
w(X(r))−M

)
du2

where w(X) ∝
∫X

eQ(y)V (y) dy and M = conserved mass

I Jackiw–Teitelboim: U = 0, V = ΛX; all solutions locally (A)dS2

Focus for time being on JT with negative Λ (AdS2)
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Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action (X = dilaton):

I[X, gµν ] =
1
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∫
M
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|g|
[
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]
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Selected list of models
Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

Model U(X) V (X)

1. Schwarzschild (1916) − 1
2X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX
3. Witten Black Hole (1991) − 1

X
−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − a
X

BX
6. Rindler ground state (1996) − a

X
BXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3
(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − a
X

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordström (1916) − 1
2X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 1
2X

−λ2 − `X
13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X
− J

4X3 − ΛX
15. KK reduced CS (2003) 0 1

2
X(c−X2)

16. KK red. conf. flat (2006) − 1
2

tanh (X/2) A sinhX

17. 2D type 0A string Black Hole − 1
X

−2b2X + b2q2

8π

18. exact string Black Hole (2005) lengthy lengthy
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Gauge theory formulation of Jackiw–Teitelboim model

BF is to JT what CS is to EH

IBF[X , A] =
k

2π

∫
M
〈X F 〉

F = dA+A ∧A with A ∈ sl(2,R); co-adjoint scalars X

I EOM F = 0 imply torsionlessness and constancy of Ricci-scalar
I invariance under sl(2,R) gauge trafos

δεA = dε+ [A, ε] δεX = [X , ε]
I variational principle

δΓ
∣∣
EOM

= δ(I − I∂M)
∣∣
EOM

=
k

2π

∫
∂M
〈X δA〉 − δI∂M

∣∣
EOM

well-defined only with integrability condition Aτ
∣∣
∂M = f(X )

∣∣
∂M

I choose Euklidean disk with coord’s (τ, ρ) ∼ (τ + β, ρ) and ρ ∈ [0,∞)
I use convenient parametrization A = b−1

(
d+aτ dτ

)
b, X = b−1xb

I Casimir (mass), C ∼ 〈X X〉 ∼ Tr (x2), conserved on-shell, ∂τC = 0
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Boundary and integrability conditions for JT
See DG, McNees, Salzer, Valcárcel, Vassilevich ’17 and González, DG, Salzer ’18

I Analogous to Brown–Henneaux bc’s in AdS3:

aτ = L1 + L(τ)L−1 b = exp (ρL0)

I bc-preserving gauge trafos ε act on L by infinitesimal Schwarzian

δεL = εL′ + 2ε′L+ 1
2 ε
′′′

I integrability condition (fτ has fixed zero mode 1/ȳ)

aτ = fτ x+ g−1∂τg

I rewrite fτ = 1
ȳ∂τf , with well-defined diffeo, f(τ + β) = f(τ) + β

I finite on-shell action, Γ|F=0 = −k β C/(2π ȳ)
I defining inverse diffeo, f−1(u) := τ(u) and inserting into Casimir

Γ|F=0[τ ] = −k ȳ
2π

∫ β

0
du
[
τ̇2L+ 1

2 {τ ; u}
]

{τ ; u} =

...
τ

τ̇
− 3

2

τ̈2

τ̇2

yields Schwarzian action, with k ∼ NSYK and 1/ȳ ∼ JSYK
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ȳ∂τf , with well-defined diffeo, f(τ + β) = f(τ) + β

I finite on-shell action, Γ|F=0 = −k β C/(2π ȳ)
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Spin-2 to HS: similar recipe as in 3d

I pre-SYK history: Rey ’11, Alkalaev ’13, DG, Leston, Vassilevich ’13

I basic idea analogous to 3d: higher spin = higher rank gauge theory
embed sl(2) principally in sl(N) to get spin-N gravity

I for instance, for N = 3 impose bc’s

aτ = L1 + L(τ)L−1 +W(τ)W−2

I calculate bc’s preserving gauge trafos
I get quadratic and cubic Casimirs, C2 ∼ Tr (x2), C3 ∼ Tr (x3)
I impose suitable integrability conditions

aτ = f (2)
τ x+ f (3)

τ

(
x2 − 1

3 Tr (x2)
)

+ g−1∂τg

I boundary action given by sum of Casimirs

I∂M ∼
∫
∂M

dτ
(
f (2)C2 + f (3)C3

)
I after some gymnastics: spin-3 generalization of Schwarzian action

(see González, DG, Salzer ’18)
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Outline

Flat space higher spin gravity in 3d

AdS higher spin gravity in 2d

Flat space spin-2 gravity in 2d

Towards flat space higher spin gravity in 2d
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Callan–Giddings–Harvey–Strominger model
Mandal, Sengupta, Wadia ’91; Elitzur, Forge, Rabinovici ’91; Witten ’91; CGHS ’92

Want interesting flat space spin-2 gravity model in 2d:
I Λ→ 0 limit of JT boring model (no horizons)

I cannot simply take contraction of JT results (would yield Poincaré2)

lim
Λ→0

IJT[X, gµν ] = lim
Λ→0

1

16πG2

∫
M

d2x
√
|g| [X(R− 2Λ)] = boring

I instead, either centrally extend Poincaré2

[Pa, Pb] = εab Z [Pa, J ] = εa
bPb

I add dilaton-independent term to dilaton potential

IĈGHS[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g| [XR− 2Λ]

I model above is (conformally transformed) CGHS model
I all solutions have vanishing curvature (only linear dilaton sector exists)

ds2 = −2 dudr + 2
(
P(u) r + T (u)

)
du2

Reasonable starting point for (Rindler-type) flat space holography
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Want interesting flat space spin-2 gravity model in 2d:
I Λ→ 0 limit of JT boring model (no horizons)
I cannot simply take contraction of JT results (would yield Poincaré2)

lim
Λ→0

IJT[X, gµν ] = lim
Λ→0

1

16πG2

∫
M

d2x
√
|g| [X(R− 2Λ)] = boring
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IĈGHS[X, gµν ] =
1

16πG2

∫
M

d2x
√
|g| [XR− 2Λ]

I model above is (conformally transformed) CGHS model
I all solutions have vanishing curvature (only linear dilaton sector exists)

ds2 = −2 dudr + 2
(
P(u) r + T (u)

)
du2

Reasonable starting point for (Rindler-type) flat space holography

Daniel Grumiller — Towards flat space higher spin models in 2d Flat space spin-2 gravity in 2d 15/23



Callan–Giddings–Harvey–Strominger model
Mandal, Sengupta, Wadia ’91; Elitzur, Forge, Rabinovici ’91; Witten ’91; CGHS ’92

Want interesting flat space spin-2 gravity model in 2d:
I Λ→ 0 limit of JT boring model (no horizons)
I cannot simply take contraction of JT results (would yield Poincaré2)
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Asymptotic Killing vectors and BMS2 symmetries
Work in progress with Afshar, González, Salzer, Vassilevich ’19

CGHS line-element

ds2 = −2 dudr + 2
(
P(u) r + T (u)

)
du2

has asymptotic Killing vectors

ξ = ε(u) ∂u −
(
ε′(u)r + η(u)

)
∂r

Laurent modes Ln = ξ(ε = −un+1, η = 0), Mn = ξ(ε = 0, η = un−1)
yield BMS2 asymptotic symmetry algebra

[Ln, Lm]Lie = (n−m)Ln+m

[Ln, Mm]Lie = −(n+m)Mn+m

[Mn, Mm]Lie = 0

isomorphic (Jn = nMn for n 6= 0, J0 = M0) to warped conformal algebra

[Ln, Lm]Lie = (n−m)Ln+m

[Ln, Jm]Lie = −mJn+m

[Jn, Jm]Lie = 0
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Cangemi–Jackiw gauge theoretic formulation and bc’s

I Ansatz for connection and scalar field

A = ωJ + eaPa +AZ X = XZ +Xaεa
bPb + Y J

with centrally extended Poincaré2

[P+, P−] = Z [P±, J ] = ±P±

I bilinear form non-degenerate, 〈P+ P−〉 = −〈J Z〉 = 1

I propose bc’s

A = b−1
(

d+au du
)
b X = b−1xb b = exp(−r P+)

au = T P+ +P−+PJ x =
(
η′+T ε

)
P+ +εP−+

(
ε′+Pε

)
J+η Z

I compatible with EOM

da+ a ∧ a = 0 = dx+ [a, x]

I yields metric in EF-gauge, with same functions P, T as before
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Consequence of bc’s and integrability conditions

Proceed analogously to JT-case:

I bc-preserving gauge trafos

λ = b−1
(
((εZ)′ + T ε−)P+ + ε−P− + ((ε−)′ + Pε−)J + εZZ

)
b

I their action on state-dependent functions:

δλP = ε−P ′ + (ε−)′P+(ε−)′′

δλT = ε−T + 2ε−
′T +(εZ)′′ − (εZ)′P

Twisted warped transformation behavior!

I same transformation behavior follows from asymptotic Killing vectors
I dual field theory (if exists) has twisted warped conformal symmetries
I boundary action needs finite version of trafos above (like Schwarzian)
I finite trafos also featured recently in Afshar ’19
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Note: in modes (Ln ← T , Jn ← P) trafo-behavior above corresponds to
twisted warped conformal algebra (see Afshar, Detournay, DG, Oblak ’15)
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[Ln, Jm] = −mJn+m+i n2δn+m
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Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:
I Casimir C ∼ 〈X X〉 again conserved on-shell, ∂uC = 0

I integrability condition again solved by au = fux+ g−1∂ug
with g = exp(−ηP+) exp(− ln εJ) exp(−

∫
η/εZ) and fu = 1/ε

I on-shell action again proportional to Casimir, Γ|F=0 ∝ C
I use again fu ∝ ∂uf and assume f(u) is regular diffeo
I Casimir given by

C =
1

(f ′)2

(
T − f ′ηP + f ′η′ + f ′′η

)
I with f−1(τ) := u(τ) get on-shell action

Γ|F=0[τ, η] ∼
∫ β

0
du
[
τ̇2 T − τ̇ P − ητ̈︸︷︷︸

twisted Schwarzian

]

Coincides with boundary action derived in 1908.08089
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Outline

Flat space higher spin gravity in 3d

AdS higher spin gravity in 2d

Flat space spin-2 gravity in 2d

Towards flat space higher spin gravity in 2d
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Outlook on flat space higher spin gravity in 2d

I I have no results to offer yet

I however, higher spin AdS2 and FS3 results suggest following recipe:

I Take BF-action

I Assume higher rank gauge group with suitable embedding of
centrally extended Poincaré2

I Impose highest-weight bc’s on connection
au ∼ P− + T P+ + · · ·+ PJ

I Demand suitable integrability condition

au = f
(2)
u x+ · · ·+ g−1∂ug

Towards flat space higher spin dilaton gravity in 2d

Flat space higher spin gravity in 2d probably exists
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Thanks for your attention!

Thanks to
Hamid Afshar, Hernán González, Jakob Salzer and Dima Vassilevich
for collaborations on (flat space) dilaton (higher spin) gravity in 2d!
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Bonus-slide
González, DG, Salzer ’18

Spin-3 Schwarzian action (zero temperature)

I ∼
∫

dτ

[
f ′′′

f ′
− 4

3

(
f ′′

f ′

)2

+
e′′′

e′
− 4

3

(
e′′

e′

)2

− 1

3

f ′′e′′

f ′e′

]
with

e = s′/f ′

has SL(3)-invariance

s→ a11s+ a12f + a13

a31s+ a32f + a33
f → a21s+ a22f + a23

a31s+ a32f + a33

where aij are components of SL(3)-matrix

See Marshakov, Morozov ’90; . . . ; Li, Theisen ’15
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