Towards flat space higher spin models in 2d

Daniel Grumiller

Institute for Theoretical Physics
TU Wien
Higher Spin Gravity: Chaotic, Conformal and Algebraic Aspects Pohang, South Korea, September/October 2019

Outline

Flat space higher spin gravity in 3d

AdS higher spin gravity in 2d

Flat space spin-2 gravity in 2d

Towards flat space higher spin gravity in 2d

Motivations to study flat space higher spin gravity in two dimensions

- Curiosity - does it exist, and if so, how does it look like?

Motivations to study flat space higher spin gravity in two dimensions

- Curiosity - does it exist, and if so, how does it look like?
- Accessibility - we believe we can construct it

Motivations to study flat space higher spin gravity in two dimensions

- Curiosity - does it exist, and if so, how does it look like?
- Accessibility - we believe we can construct it
- SYK-Holography - flat space version of Schwarzian action?

Outline

Flat space higher spin gravity in 3d

AdS higher spin gravity in 2d

Flat space spin-2 gravity in 2d

Towards flat space higher spin gravity in 2d

Lightning review of AdS_{3} contraction to flat space higher spin gravity Afshar, Bagchi, Fareghbal, DG, Rosseel '13; González, Matulich, Pino, Troncoso '13

Here is the recipe:

- Take Chern-Simons on cylinder gauge algebra contains $\mathbf{s l}(2, \mathbb{R}) \oplus \mathbf{s l}(2, \mathbb{R})$

MARILLENKNÖDEL

$$
I_{\mathrm{CS}}[A]=\frac{k}{4 \pi} \int_{\mathbb{R} \times \text { disk }}\left\langle A \wedge A+\frac{2}{3} A \wedge A \wedge A\right\rangle
$$

Lightning review of AdS_{3} contraction to flat space higher spin gravity Afshar, Bagchi, Fareghbal, DG, Rosseel '13; González, Matulich, Pino, Troncoso '13

Here is the recipe:

MARILLENKNÖDEL

$$
I_{\mathrm{CS}}[A]=I_{\mathrm{CS}}\left[A^{+}\right]-I_{\mathrm{CS}}\left[A^{-}\right]
$$

Lightning review of AdS_{3} contraction to flat space higher spin gravity Afshar, Bagchi, Fareghbal, DG, Rosseel '13; González, Matulich, Pino, Troncoso '13

Here is the recipe:

MARILLENKNÖDEL

EatSmarter!

- Take Chern-Simons on cylinder gauge algebra contains $\mathbf{s l}(2, \mathbb{R}) \oplus \mathbf{s l}(2, \mathbb{R})$
- Split into left-/right-chiral parts
- Add bc's in each sector

$$
A^{ \pm}=\left(b^{ \pm}\right)^{-1}\left(\mathrm{~d}+a^{ \pm}\right) b^{ \pm} \quad \delta a^{ \pm} \sim \delta \mathcal{W}^{ \pm}
$$

Lightning review of AdS_{3} contraction to flat space higher spin gravity Afshar, Bagchi, Fareghbal, DG, Rosseel '13; González, Matulich, Pino, Troncoso '13

Here is the recipe:

MARILLENKNÖDEL

EatSmarter

- Take Chern-Simons on cylinder gauge algebra contains $\mathbf{s l}(2, \mathbb{R}) \oplus \mathbf{s l}(2, \mathbb{R})$
- Split into left-/right-chiral parts
- Add bc's in each sector
- Stir well and get AS generators $W_{n}^{ \pm}$

$$
W_{n}^{ \pm}=\oint_{S^{1}} \mathrm{~d} \varphi e^{i n \varphi} \mathcal{W}^{ \pm}
$$

Lightning review of AdS_{3} contraction to flat space higher spin gravity Afshar, Bagchi, Fareghbal, DG, Rosseel '13; González, Matulich, Pino, Troncoso '13

Here is the recipe:

MARILLENKNÖDEL

EatSmarter!

- Take Chern-Simons on cylinder gauge algebra contains $\mathbf{s l}(2, \mathbb{R}) \oplus \mathbf{s l}(2, \mathbb{R})$
- Split into left-/right-chiral parts
- Add bc's in each sector
- Stir well and get AS generators $W_{n}^{ \pm}$
- Boil down to AS algebra

$$
\left[W_{n}^{ \pm}, W_{m}^{ \pm}\right]=f(n, m) W_{n+m}^{ \pm}+Z(n, m) \delta_{n+m}
$$

Lightning review of AdS_{3} contraction to flat space higher spin gravity Afshar, Bagchi, Fareghbal, DG, Rosseel '13; González, Matulich, Pino, Troncoso '13

Here is the recipe:

- Take Chern-Simons on cylinder gauge algebra contains $\mathbf{s l}(2, \mathbb{R}) \oplus \mathbf{s l}(2, \mathbb{R})$
- Split into left-/right-chiral parts
- Add bc's in each sector
- Stir well and get AS generators $W_{n}^{ \pm}$
- Boil down to AS algebra
- Cook up IW contraction ($\ell=$ AdS-radius)

$$
\begin{aligned}
W_{n} & :=W_{n}^{+}-W_{-n}^{-} & & \text {even } \\
V_{n} & :=\frac{1}{\ell}\left(W_{n}^{+}+W_{-n}^{-}\right) & & \text {odd }
\end{aligned}
$$

IW contraction: limit $\ell \rightarrow \infty$ after evaluating brackets

Lightning review of AdS_{3} contraction to flat space higher spin gravity Afshar, Bagchi, Fareghbal, DG, Rosseel '13; González, Matulich, Pino, Troncoso '13

Here is the recipe:

MARILLENKNÖDEL

EatSmarter

- Take Chern-Simons on cylinder gauge algebra contains $\mathbf{s l}(2, \mathbb{R}) \oplus \mathbf{s l}(2, \mathbb{R})$
- Split into left-/right-chiral parts
- Add bc's in each sector
- Stir well and get AS generators $W_{n}^{ \pm}$
- Boil down to AS algebra
- Cook up IW contraction
- Enjoy flat space AS algebra!

$$
\begin{aligned}
{[\text { even }, \text { even }] } & =\text { even } \\
{[\text { even }, \text { odd }] } & =\text { odd }
\end{aligned}
$$

$$
[\text { odd }, \text { odd }]=0 \quad \text { HS-supertranslations }
$$

HS generalization of BMS_{3} (a.k.a. BMW)

Simplest example: flat space spin-3 gravity

- Take spin-3 gravity (sl(3) with principally embedded sl(2))

Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10

Simplest example: flat space spin-3 gravity

- Take spin-3 gravity (sl(3) with principally embedded sl(2)) Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10
- Get two W_{3} symmetry algebras

$$
\begin{aligned}
{\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right] } & =(n-m) L_{n+m}^{ \pm}+\frac{c^{ \pm}}{12} n^{3} \delta_{n+m} \\
{\left[L_{n}^{ \pm}, W_{m}^{ \pm}\right] } & =(2 n-m) W_{n+m}^{ \pm} \\
{\left[W_{n}^{ \pm}, W_{m}^{ \pm}\right] } & =\operatorname{lgthy}\left(L^{ \pm},\left(L^{ \pm}\right)^{2}\right)+\frac{c^{ \pm}}{12} n^{5} \delta_{n+m}
\end{aligned}
$$

Simplest example: flat space spin-3 gravity

- Take spin-3 gravity (sl(3) with principally embedded sl(2)) Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10
- Get two W_{3} symmetry algebras

$$
\begin{aligned}
{\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right] } & =(n-m) L_{n+m}^{ \pm}+\frac{c^{ \pm}}{12} n^{3} \delta_{n+m} \\
{\left[L_{n}^{ \pm}, W_{m}^{ \pm}\right] } & =(2 n-m) W_{n+m}^{ \pm} \\
{\left[W_{n}^{ \pm}, W_{m}^{ \pm}\right] } & =\operatorname{lgthy}\left(L^{ \pm},\left(L^{ \pm}\right)^{2}\right)+\frac{c^{ \pm}}{12} n^{5} \delta_{n+m}
\end{aligned}
$$

- IW contraction in large- ℓ limit

$$
\begin{array}{llr}
L_{n}=L_{n}^{+}-L_{-n}^{-} & W_{n}=W_{n}^{+}-W_{-n}^{-} & \text {even } \tag{even}\\
M_{n}=\frac{1}{\ell}\left(L_{n}^{+}+L_{-n}^{-}\right) & V_{n}=\frac{1}{\ell}\left(W_{n}^{+}+W_{-n}^{-}\right) & \text {odd }
\end{array}
$$

Simplest example: flat space spin-3 gravity

- Take spin-3 gravity (sl(3) with principally embedded sl(2))

Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10

- Get two W_{3} symmetry algebras
- IW contraction in large- ℓ limit

$$
\begin{align*}
L_{n} & =L_{n}^{+}-L_{-n}^{-} & W_{n} & =W_{n}^{+}-W_{-n}^{-} \tag{even}\\
M_{n} & =\frac{1}{\ell}\left(L_{n}^{+}+L_{-n}^{-}\right) & V_{n} & =\frac{1}{\ell}\left(W_{n}^{+}+W_{-n}^{-}\right)
\end{align*}
$$

- Flat space higher spin algebra (spin-3 BMS_{3} a.k.a. BMW_{3})

$$
\begin{array}{rlrl}
{\left[L_{n}, L_{m}\right]} & =(n-m) L_{n+m} & {\left[L_{n}, M_{m}\right]} & =(n-m) M_{n+m}+\frac{c}{12} n^{3} \delta_{n+m} \\
{\left[L_{n}, W_{m}\right]} & =(2 n-m) W_{n+m} & {\left[L_{n}, V_{m}\right]} & =\left[M_{n}, W_{m}\right]=(2 n-m) V_{n+m} \\
{\left[W_{n}, W_{m}\right]} & =\operatorname{lgthy}\left(L, L M, M^{2}\right) & {\left[W_{n}, V_{m}\right]} & =\operatorname{lgthy}\left(M, M^{2}\right)+\frac{c}{12} n^{5} \delta_{n+m} \\
\text { HS supertranslations: } & {\left[M_{n}, M_{m}\right]} & =\left[M_{n}, V_{m}\right]=\left[V_{n}, V_{m}\right]=0
\end{array}
$$

Simplest example: flat space spin-3 gravity

- Take spin-3 gravity (sl(3) with principally embedded sl(2))

Henneaux, Rey '10; Campoleoni, Pfenninger, Fredenhagen, Theisen '10

- Get two W_{3} symmetry algebras
- IW contraction in large- ℓ limit

$$
\begin{align*}
L_{n} & =L_{n}^{+}-L_{-n}^{-} & W_{n} & =W_{n}^{+}-W_{-n}^{-} \tag{even}\\
M_{n} & =\frac{1}{\ell}\left(L_{n}^{+}+L_{-n}^{-}\right) & V_{n} & =\frac{1}{\ell}\left(W_{n}^{+}+W_{-n}^{-}\right)
\end{align*}
$$

- Flat space higher spin algebra (spin-3 BMS_{3} a.k.a. BMW_{3})

$$
\begin{array}{rlrl}
{\left[L_{n}, L_{m}\right]} & =(n-m) L_{n+m} & {\left[L_{n}, M_{m}\right]} & =(n-m) M_{n+m}+\frac{c}{12} n^{3} \delta_{n+m} \\
{\left[L_{n}, W_{m}\right]} & =(2 n-m) W_{n+m} & {\left[L_{n}, V_{m}\right]} & =\left[M_{n}, W_{m}\right]=(2 n-m) V_{n+m} \\
{\left[W_{n}, W_{m}\right]} & =\operatorname{lgthy}\left(L, L M, M^{2}\right) & {\left[W_{n}, V_{m}\right]} & =\operatorname{lgthy}\left(M, M^{2}\right)+\frac{c}{12} n^{5} \delta_{n+m} \\
\text { HS supertranslations: } & {\left[M_{n}, M_{m}\right]} & =\left[M_{n}, V_{m}\right]=\left[V_{n}, V_{m}\right]=0
\end{array}
$$

- Same AS algebra obtained directly from isl(3) CS theory

Is there a similar story in two dimensions?
Required ingredients:

- $\mathrm{AdS}_{2} \mathrm{HS}$ gravity + IW contraction from AdS_{2}
- Or direct computation of flat space HS gravity

Is there a similar story in two dimensions?
Required ingredients:

- $\mathrm{AdS}_{2} \mathrm{HS}$ gravity + IW contraction from AdS_{2}
- Or direct computation of flat space HS gravity

However, structure in two dimensions different from three:

- not two chiral sectors, but just one
- not just metric + HS fields, but additionally dilaton
- not just one coupling constant, but free function(s) in action
- co-dimension-2 boundary charges have no integral

Is there a similar story in two dimensions?
Required ingredients:

- $\mathrm{AdS}_{2} \mathrm{HS}$ gravity + IW contraction from AdS_{2}
- Or direct computation of flat space HS gravity

However, structure in two dimensions different from three:

- not two chiral sectors, but just one
- not just metric + HS fields, but additionally dilaton
- not just one coupling constant, but free function(s) in action
- co-dimension-2 boundary charges have no integral

Not straightforward to translate 3d results to 2d HS gravity!

Is there a similar story in two dimensions?
Required ingredients:

- $\mathrm{AdS}_{2} \mathrm{HS}$ gravity + IW contraction from AdS_{2}
- Or direct computation of flat space HS gravity

However, structure in two dimensions different from three:

- not two chiral sectors, but just one
- not just metric + HS fields, but additionally dilaton
- not just one coupling constant, but free function(s) in action
- co-dimension-2 boundary charges have no integral

Not straightforward to translate 3d results to 2d HS gravity!

Proceed as follows:

- Recap AdS_{2} higher spin theories (known)
- Construct flat space spin-2 theory (new)
- Embed flat space spin-2 algebra in higher rank algebra (to do)

Outline

Flat space higher spin gravity in 3d

AdS higher spin gravity in 2d

Flat space spin-2 gravity in 2d

Towards flat space higher spin gravity in 2d

Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action ($X=$ dilaton):

$$
I\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

- kinetic potential $U(X)$ and dilaton potential $V(X)$

Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action ($X=$ dilaton):

$$
I\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

- kinetic potential $U(X)$ and dilaton potential $V(X)$
- no Einstein frame in 2d (but conformal frame with $\tilde{U}(X)=0$)

Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action ($X=$ dilaton):

$$
I\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

- kinetic potential $U(X)$ and dilaton potential $V(X)$
- no Einstein frame in 2d (but conformal frame with $\tilde{U}(X)=0$)
- two sectors of solutions (all solutions known in closed form):
- constant dilaton vacua: $X=X_{0}=$ const., $V\left(X_{0}\right)=0$, $R=2 V^{\prime}\left(X_{0}\right)=$ const. \Rightarrow locally flat or $(\mathrm{A}) \mathrm{dS}_{2}$

Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action ($X=$ dilaton):

$$
I\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

- kinetic potential $U(X)$ and dilaton potential $V(X)$
- no Einstein frame in 2d (but conformal frame with $\tilde{U}(X)=0$)
- two sectors of solutions (all solutions known in closed form):
- constant dilaton vacua: $X=X_{0}=$ const., $V\left(X_{0}\right)=0$, $R=2 V^{\prime}\left(X_{0}\right)=$ const. \Rightarrow locally flat or (A) dS_{2}
- linear dilaton vacua: $e^{Q(X)} \mathrm{d} X=\mathrm{d} r$ with $Q \propto \int^{X} U(y) \mathrm{d} y$ and

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r-e^{Q(X(r))}(w(X(r))-M) \mathrm{d} u^{2}
$$

where $w(X) \propto \int^{X} e^{Q(y)} V(y) \mathrm{d} y$ and $M=$ conserved mass
generalized Birkhoff theorem: all solutions have Killing vector ∂_{u}

Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action ($X=$ dilaton):

$$
I\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

- kinetic potential $U(X)$ and dilaton potential $V(X)$
- no Einstein frame in 2d (but conformal frame with $\tilde{U}(X)=0$)
- two sectors of solutions (all solutions known in closed form):
- constant dilaton vacua: $X=X_{0}=$ const., $V\left(X_{0}\right)=0$, $R=2 V^{\prime}\left(X_{0}\right)=$ const. \Rightarrow locally flat or (A) dS_{2}
- linear dilaton vacua: $e^{Q(X)} \mathrm{d} X=\mathrm{d} r$ with $Q \propto \int^{X} U(y) \mathrm{d} y$ and

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r-e^{Q(X(r))}(w(X(r))-M) \mathrm{d} u^{2}
$$

where $w(X) \propto \int^{X} e^{Q(y)} V(y) \mathrm{d} y$ and $M=$ conserved mass

- Jackiw-Teitelboim: $U=0, V=\Lambda X$; all solutions locally (A) dS_{2}

Dilaton gravity in 2d (review: see hep-th/0204253)

Bulk action ($X=$ dilaton):

$$
I\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-2 V(X)\right]
$$

- kinetic potential $U(X)$ and dilaton potential $V(X)$
- no Einstein frame in 2d (but conformal frame with $\tilde{U}(X)=0$)
- two sectors of solutions (all solutions known in closed form):
- constant dilaton vacua: $X=X_{0}=$ const., $V\left(X_{0}\right)=0$, $R=2 V^{\prime}\left(X_{0}\right)=$ const. \Rightarrow locally flat or (A) dS_{2}
- linear dilaton vacua: $e^{Q(X)} \mathrm{d} X=\mathrm{d} r$ with $Q \propto \int^{X} U(y) \mathrm{d} y$ and

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r-e^{Q(X(r))}(w(X(r))-M) \mathrm{d} u^{2}
$$

where $w(X) \propto \int^{X} e^{Q(y)} V(y) \mathrm{d} y$ and $M=$ conserved mass

- Jackiw-Teitelboim: $U=0, V=\Lambda X$; all solutions locally (A) dS_{2}

Focus for time being on JT with negative $\Lambda\left(\mathrm{AdS}_{2}\right)$

Selected list of models

Black holes in (A)dS ${ }_{2}$, asymptotically flat or arbitrary spaces (Wheeler property)

Model	$U(X)$	$V(X)$
1. Schwarzschild (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2 b^{2} X$
4. CGHS (1992)	0	$-2 b^{2}$
5. (A)dS2 ground state (1994)	$-\frac{a}{X}$	$B X$
6. Rindler ground state (1996)	$-\frac{a}{X}$	$B X^{a}$
7. Black Hole attractor (2003)	0	$B X^{-1}$
8. Spherically reduced gravity ($N>3)$	$-\frac{N-3}{(N-2) X}$	$-\lambda^{2} X^{(N-4) /(N-2)}$
9. All above: ab-family (1997)	$-\frac{a}{X}$	$B X^{a+b}$
10. Liouville gravity	a	$b e^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}+\frac{Q^{2}}{X}$
12. Schwarzschild-(A)dS	$-\frac{1}{2 X}$	$-\lambda^{2}-\ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^{2}-\Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^{2}}{X}-\frac{J}{4 X^{3}}-\Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2} X\left(c-X^{2}\right)$
16. KK red. conf. flat (2006)	$-\frac{1}{2}$ tanh $(X / 2)$	$A \sinh X$
17. 2D type 0A string Black Hole	$-\frac{1}{X}$	$-2 b^{2} X+\frac{b^{2} q^{2}}{8 \pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Gauge theory formulation of Jackiw-Teitelboim model

BF is to JT what CS is to EH

$$
\begin{gathered}
I_{\mathrm{BF}}[\mathcal{X}, A]=\frac{k}{2 \pi} \int_{\mathcal{M}}\langle\mathcal{X} F\rangle \\
F=\mathrm{d} A+A \wedge A \text { with } A \in \operatorname{sl}(2, \mathbb{R}) ; \text { co-adjoint scalars } \mathcal{X}
\end{gathered}
$$

Gauge theory formulation of Jackiw-Teitelboim model

BF is to JT what CS is to EH

$$
I_{\mathrm{BF}}[\mathcal{X}, A]=\left.\frac{k}{2 \pi} \int_{\mathcal{M}}\langle\mathcal{X} F\rangle \quad \Rightarrow \quad I_{\mathrm{BF}}[\mathcal{X}, A]\right|_{\mathrm{EOM}}=0
$$

$F=\mathrm{d} A+A \wedge A$ with $A \in \operatorname{sl}(2, \mathbb{R}) ;$ co-adjoint scalars \mathcal{X}

- EOM $F=0$ imply torsionlessness and constancy of Ricci-scalar schematically:

$$
\begin{aligned}
& A=e^{a} P_{a}+\omega J \text { with }\left[P_{a}, J\right]=\epsilon_{a}{ }^{b} P_{b} \text { and }\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \\
& \text { EOM: } \underbrace{\mathrm{d} e^{a}+\epsilon^{a}{ }_{b} \omega \wedge e^{b}}_{\text {torsionlessness }}=0=\underbrace{\mathrm{d} \omega-\frac{1}{2} \Lambda \epsilon_{a b} e^{a} \wedge e^{b}}_{\text {constancy of Ricci-scalar }}
\end{aligned}
$$

Gauge theory formulation of Jackiw-Teitelboim model

BF is to JT what CS is to EH

$$
I_{\mathrm{BF}}[\mathcal{X}, A]=\frac{k}{2 \pi} \int_{\mathcal{M}}\langle\mathcal{X} F\rangle
$$

$F=\mathrm{d} A+A \wedge A$ with $A \in \mathrm{sl}(2, \mathbb{R})$; co-adjoint scalars \mathcal{X}

- EOM $F=0$ imply torsionlessness and constancy of Ricci-scalar
- invariance under $\mathrm{sl}(2, \mathbb{R})$ gauge trafos

$$
\delta_{\varepsilon} A=\mathrm{d} \varepsilon+[A, \varepsilon] \quad \delta_{\varepsilon} \mathcal{X}=[\mathcal{X}, \varepsilon]
$$

Gauge theory formulation of Jackiw-Teitelboim model

BF is to JT what CS is to EH

$$
I_{\mathrm{BF}}[\mathcal{X}, A]=\frac{k}{2 \pi} \int_{\mathcal{M}}\langle\mathcal{X} F\rangle
$$

$F=\mathrm{d} A+A \wedge A$ with $A \in \mathrm{sl}(2, \mathbb{R})$; co-adjoint scalars \mathcal{X}

- EOM $F=0$ imply torsionlessness and constancy of Ricci-scalar
- invariance under $\mathrm{sl}(2, \mathbb{R})$ gauge trafos

$$
\delta_{\varepsilon} A=\mathrm{d} \varepsilon+[A, \varepsilon] \quad \delta_{\varepsilon} \mathcal{X}=[\mathcal{X}, \varepsilon]
$$

- variational principle

$$
\left.\delta \Gamma\right|_{\mathrm{EOM}}=\left.\delta\left(I-I_{\partial \mathcal{M}}\right)\right|_{\mathrm{EOM}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}}\langle\mathcal{X} \delta A\rangle-\left.\delta I_{\partial \mathcal{M}}\right|_{\mathrm{EOM}}
$$

well-defined only with integrability condition $\left.A_{\tau}\right|_{\partial \mathcal{M}}=\left.f(\mathcal{X})\right|_{\partial \mathcal{M}}$

Gauge theory formulation of Jackiw-Teitelboim model

BF is to JT what CS is to EH

$$
I_{\mathrm{BF}}[\mathcal{X}, A]=\frac{k}{2 \pi} \int_{\mathcal{M}}\langle\mathcal{X} F\rangle
$$

$F=\mathrm{d} A+A \wedge A$ with $A \in \operatorname{sl}(2, \mathbb{R}) ;$ co-adjoint scalars \mathcal{X}

- EOM $F=0$ imply torsionlessness and constancy of Ricci-scalar
- invariance under $\mathrm{sl}(2, \mathbb{R})$ gauge trafos

$$
\delta_{\varepsilon} A=\mathrm{d} \varepsilon+[A, \varepsilon] \quad \delta_{\varepsilon} \mathcal{X}=[\mathcal{X}, \varepsilon]
$$

- variational principle

$$
\left.\delta \Gamma\right|_{\mathrm{EOM}}=\left.\delta\left(I-I_{\partial \mathcal{M}}\right)\right|_{\mathrm{EOM}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}}\langle\mathcal{X} \delta A\rangle-\left.\delta I_{\partial \mathcal{M}}\right|_{\mathrm{EOM}}
$$

well-defined only with integrability condition $\left.A_{\tau}\right|_{\partial \mathcal{M}}=\left.f(\mathcal{X})\right|_{\partial \mathcal{M}}$

- choose Euklidean disk with coord's $(\tau, \rho) \sim(\tau+\beta, \rho)$ and $\rho \in[0, \infty)$

Gauge theory formulation of Jackiw-Teitelboim model

BF is to JT what CS is to EH

$$
I_{\mathrm{BF}}[\mathcal{X}, A]=\frac{k}{2 \pi} \int_{\mathcal{M}}\langle\mathcal{X} F\rangle
$$

$F=\mathrm{d} A+A \wedge A$ with $A \in \operatorname{sl}(2, \mathbb{R}) ;$ co-adjoint scalars \mathcal{X}

- EOM $F=0$ imply torsionlessness and constancy of Ricci-scalar
- invariance under $\mathrm{sl}(2, \mathbb{R})$ gauge trafos

$$
\delta_{\varepsilon} A=\mathrm{d} \varepsilon+[A, \varepsilon] \quad \delta_{\varepsilon} \mathcal{X}=[\mathcal{X}, \varepsilon]
$$

- variational principle

$$
\left.\delta \Gamma\right|_{\mathrm{EOM}}=\left.\delta\left(I-I_{\partial \mathcal{M}}\right)\right|_{\mathrm{EOM}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}}\langle\mathcal{X} \delta A\rangle-\left.\delta I_{\partial \mathcal{M}}\right|_{\mathrm{EOM}}
$$

well-defined only with integrability condition $\left.A_{\tau}\right|_{\partial \mathcal{M}}=\left.f(\mathcal{X})\right|_{\partial \mathcal{M}}$

- choose Euklidean disk with coord's $(\tau, \rho) \sim(\tau+\beta, \rho)$ and $\rho \in[0, \infty)$
- use convenient parametrization $A=b^{-1}\left(\mathrm{~d}+a_{\tau} \mathrm{d} \tau\right) b, \mathcal{X}=b^{-1} x b$

Gauge theory formulation of Jackiw-Teitelboim model

BF is to JT what CS is to EH

$$
I_{\mathrm{BF}}[\mathcal{X}, A]=\frac{k}{2 \pi} \int_{\mathcal{M}}\langle\mathcal{X} F\rangle
$$

$F=\mathrm{d} A+A \wedge A$ with $A \in \operatorname{sl}(2, \mathbb{R}) ;$ co-adjoint scalars \mathcal{X}

- EOM $F=0$ imply torsionlessness and constancy of Ricci-scalar
- invariance under $\mathrm{sl}(2, \mathbb{R})$ gauge trafos

$$
\delta_{\varepsilon} A=\mathrm{d} \varepsilon+[A, \varepsilon] \quad \delta_{\varepsilon} \mathcal{X}=[\mathcal{X}, \varepsilon]
$$

- variational principle

$$
\left.\delta \Gamma\right|_{\mathrm{EOM}}=\left.\delta\left(I-I_{\partial \mathcal{M}}\right)\right|_{\mathrm{EOM}}=\frac{k}{2 \pi} \int_{\partial \mathcal{M}}\langle\mathcal{X} \delta A\rangle-\left.\delta I_{\partial \mathcal{M}}\right|_{\mathrm{EOM}}
$$

well-defined only with integrability condition $\left.A_{\tau}\right|_{\partial \mathcal{M}}=\left.f(\mathcal{X})\right|_{\partial \mathcal{M}}$

- choose Euklidean disk with coord's $(\tau, \rho) \sim(\tau+\beta, \rho)$ and $\rho \in[0, \infty)$
- use convenient parametrization $A=b^{-1}\left(\mathrm{~d}+a_{\tau} \mathrm{d} \tau\right) b, \mathcal{X}=b^{-1} x b$
- Casimir (mass), $C \sim\langle\mathcal{X} \mathcal{X}\rangle \sim \operatorname{Tr}\left(x^{2}\right)$, conserved on-shell, $\partial_{\tau} C=0$

Boundary and integrability conditions for JT

 See DG, McNees, Salzer, Valcárcel, Vassilevich '17 and González, DG, Salzer '18- Analogous to Brown-Henneaux bc's in AdS_{3} :

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1} \quad b=\exp \left(\rho L_{0}\right)
$$

Boundary and integrability conditions for JT See DG, McNees, Salzer, Valcárcel, Vassilevich '17 and González, DG, Salzer '18

- Analogous to Brown-Henneaux bc's in AdS_{3} :

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1} \quad b=\exp \left(\rho L_{0}\right)
$$

- bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$
\delta_{\varepsilon} \mathcal{L}=\varepsilon \mathcal{L}^{\prime}+2 \varepsilon^{\prime} \mathcal{L}+\frac{1}{2} \varepsilon^{\prime \prime \prime}
$$

Boundary and integrability conditions for JT See DG, McNees, Salzer, Valcárcel, Vassilevich '17 and González, DG, Salzer '18

- Analogous to Brown-Henneaux bc's in AdS_{3} :

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1} \quad b=\exp \left(\rho L_{0}\right)
$$

- bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$
\delta_{\varepsilon} \mathcal{L}=\varepsilon \mathcal{L}^{\prime}+2 \varepsilon^{\prime} \mathcal{L}+\frac{1}{2} \varepsilon^{\prime \prime \prime}
$$

- integrability condition (f_{τ} has fixed zero mode $1 / \bar{y}$)

$$
a_{\tau}=f_{\tau} x+g^{-1} \partial_{\tau} g
$$

with $g=\exp \left(-\frac{1}{2} y^{\prime} L_{-1}\right) \exp \left(\ln (y) L_{0}\right)$ where $f_{\tau}=1 / y$

Boundary and integrability conditions for JT See DG, McNees, Salzer, Valcárcel, Vassilevich '17 and González, DG, Salzer '18

- Analogous to Brown-Henneaux bc's in AdS_{3} :

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1} \quad b=\exp \left(\rho L_{0}\right)
$$

- bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$
\delta_{\varepsilon} \mathcal{L}=\varepsilon \mathcal{L}^{\prime}+2 \varepsilon^{\prime} \mathcal{L}+\frac{1}{2} \varepsilon^{\prime \prime \prime}
$$

- integrability condition (f_{τ} has fixed zero mode $1 / \bar{y}$)

$$
a_{\tau}=f_{\tau} x+g^{-1} \partial_{\tau} g
$$

rewrite $f_{\tau}=\frac{1}{\bar{y}} \partial_{\tau} f$, with well-defined diffeo, $f(\tau+\beta)=f(\tau)+\beta$

Boundary and integrability conditions for JT See DG, McNees, Salzer, Valcárcel, Vassilevich '17 and González, DG, Salzer '18

- Analogous to Brown-Henneaux bc's in AdS_{3} :

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1} \quad b=\exp \left(\rho L_{0}\right)
$$

- bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$
\delta_{\varepsilon} \mathcal{L}=\varepsilon \mathcal{L}^{\prime}+2 \varepsilon^{\prime} \mathcal{L}+\frac{1}{2} \varepsilon^{\prime \prime \prime}
$$

- integrability condition (f_{τ} has fixed zero mode $1 / \bar{y}$)

$$
a_{\tau}=f_{\tau} x+g^{-1} \partial_{\tau} g
$$

- rewrite $f_{\tau}=\frac{1}{\bar{y}} \partial_{\tau} f$, with well-defined diffeo, $f(\tau+\beta)=f(\tau)+\beta$
- finite on-shell action, $\left.\Gamma\right|_{F=0}=-k \beta C /(2 \pi \bar{y})$
note: boundary action given by

$$
I_{\partial \mathcal{M}} \sim \int \mathrm{d} \tau f_{\tau} \operatorname{Tr}\left(x^{2}\right) \sim \int \mathrm{d} \tau f_{\tau} C
$$

Boundary and integrability conditions for JT See DG, McNees, Salzer, Valcárcel, Vassilevich '17 and González, DG, Salzer '18

- Analogous to Brown-Henneaux bc's in AdS_{3} :

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1} \quad b=\exp \left(\rho L_{0}\right)
$$

- bc-preserving gauge trafos ε act on \mathcal{L} by infinitesimal Schwarzian

$$
\delta_{\varepsilon} \mathcal{L}=\varepsilon \mathcal{L}^{\prime}+2 \varepsilon^{\prime} \mathcal{L}+\frac{1}{2} \varepsilon^{\prime \prime \prime}
$$

- integrability condition (f_{τ} has fixed zero mode $1 / \bar{y}$)

$$
a_{\tau}=f_{\tau} x+g^{-1} \partial_{\tau} g
$$

- rewrite $f_{\tau}=\frac{1}{\bar{y}} \partial_{\tau} f$, with well-defined diffeo, $f(\tau+\beta)=f(\tau)+\beta$
- finite on-shell action, $\left.\Gamma\right|_{F=0}=-k \beta C /(2 \pi \bar{y})$
- defining inverse diffeo, $f^{-1}(u):=\tau(u)$ and inserting into Casimir

$$
\left.\Gamma\right|_{F=0}[\tau]=-\frac{k \bar{y}}{2 \pi} \int_{0}^{\beta} \mathrm{d} u\left[\dot{\tau}^{2} \mathcal{L}+\frac{1}{2}\{\tau ; u\}\right] \quad\{\tau ; u\}=\frac{\dddot{\tau}}{\dot{\tau}}-\frac{3}{2} \frac{\ddot{\tau}^{2}}{\dot{\tau}^{2}}
$$

yields Schwarzian action, with $k \sim N_{\text {SYK }}$ and $1 / \bar{y} \sim J_{\text {SYK }}$

Spin-2 to HS: similar recipe as in 3d

pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13

Spin-2 to HS: similar recipe as in 3d

- pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13
- basic idea analogous to 3d: higher spin = higher rank gauge theory embed $\mathrm{sl}(2)$ principally in $\mathrm{sl}(N)$ to get spin- N gravity

Spin-2 to HS: similar recipe as in 3d

- pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13
- basic idea analogous to 3d: higher spin = higher rank gauge theory embed $\mathrm{sl}(2)$ principally in $\mathrm{sl}(N)$ to get spin- N gravity
- for instance, for $N=3$ impose bc's

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1}+\mathcal{W}(\tau) W_{-2}
$$

Spin-2 to HS: similar recipe as in 3d

- pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13
- basic idea analogous to 3d: higher spin = higher rank gauge theory embed $\mathrm{sl}(2)$ principally in $\mathrm{sl}(N)$ to get spin- N gravity
- for instance, for $N=3$ impose bc's

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1}+\mathcal{W}(\tau) W_{-2}
$$

- calculate bc's preserving gauge trafos

Spin-2 to HS: similar recipe as in 3d

- pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13
- basic idea analogous to 3d: higher spin = higher rank gauge theory embed $\mathrm{sl}(2)$ principally in $\mathrm{sl}(N)$ to get spin- N gravity
- for instance, for $N=3$ impose bc's

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1}+\mathcal{W}(\tau) W_{-2}
$$

- calculate bc's preserving gauge trafos
- get quadratic and cubic Casimirs, $C_{2} \sim \operatorname{Tr}\left(x^{2}\right), C_{3} \sim \operatorname{Tr}\left(x^{3}\right)$

Spin-2 to HS: similar recipe as in 3d

- pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13
- basic idea analogous to 3d: higher spin = higher rank gauge theory embed $\mathrm{sl}(2)$ principally in $\mathrm{sl}(N)$ to get spin- N gravity
- for instance, for $N=3$ impose bc's

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1}+\mathcal{W}(\tau) W_{-2}
$$

- calculate bc's preserving gauge trafos
- get quadratic and cubic Casimirs, $C_{2} \sim \operatorname{Tr}\left(x^{2}\right), C_{3} \sim \operatorname{Tr}\left(x^{3}\right)$
- impose suitable integrability conditions

$$
a_{\tau}=f_{\tau}^{(2)} x+f_{\tau}^{(3)}\left(x^{2}-\frac{1}{3} \operatorname{Tr}\left(x^{2}\right)\right)+g^{-1} \partial_{\tau} g
$$

Spin-2 to HS: similar recipe as in 3d

- pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13
- basic idea analogous to 3d: higher spin = higher rank gauge theory embed $\mathrm{sl}(2)$ principally in $\mathrm{sl}(N)$ to get spin- N gravity
- for instance, for $N=3$ impose bc's

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1}+\mathcal{W}(\tau) W_{-2}
$$

- calculate bc's preserving gauge trafos
- get quadratic and cubic Casimirs, $C_{2} \sim \operatorname{Tr}\left(x^{2}\right), C_{3} \sim \operatorname{Tr}\left(x^{3}\right)$
- impose suitable integrability conditions

$$
a_{\tau}=f_{\tau}^{(2)} x+f_{\tau}^{(3)}\left(x^{2}-\frac{1}{3} \operatorname{Tr}\left(x^{2}\right)\right)+g^{-1} \partial_{\tau} g
$$

- boundary action given by sum of Casimirs

$$
I_{\partial \mathcal{M}} \sim \int_{\partial \mathcal{M}} \mathrm{d} \tau\left(f^{(2)} C_{2}+f^{(3)} C_{3}\right)
$$

Spin-2 to HS: similar recipe as in 3d

- pre-SYK history: Rey '11, Alkalaev '13, DG, Leston, Vassilevich '13
- basic idea analogous to 3d: higher spin = higher rank gauge theory embed $\mathrm{sl}(2)$ principally in $\mathrm{sl}(N)$ to get spin- N gravity
- for instance, for $N=3$ impose bc's

$$
a_{\tau}=L_{1}+\mathcal{L}(\tau) L_{-1}+\mathcal{W}(\tau) W_{-2}
$$

- calculate bc's preserving gauge trafos
- get quadratic and cubic Casimirs, $C_{2} \sim \operatorname{Tr}\left(x^{2}\right), C_{3} \sim \operatorname{Tr}\left(x^{3}\right)$
- impose suitable integrability conditions

$$
a_{\tau}=f_{\tau}^{(2)} x+f_{\tau}^{(3)}\left(x^{2}-\frac{1}{3} \operatorname{Tr}\left(x^{2}\right)\right)+g^{-1} \partial_{\tau} g
$$

- boundary action given by sum of Casimirs

$$
I_{\partial \mathcal{M}} \sim \int_{\partial \mathcal{M}} \mathrm{d} \tau\left(f^{(2)} C_{2}+f^{(3)} C_{3}\right)
$$

- after some gymnastics: spin-3 generalization of Schwarzian action (see González, DG, Salzer '18)

Outline

Flat space higher spin gravity in 3d

AdS higher spin gravity in 2 d

Flat space spin-2 gravity in 2d

Towards flat space higher spin gravity in 2d

Callan-Giddings-Harvey-Strominger model Mandal, Sengupta, Wadia '91; Elitzur, Forge, Rabinovici '91; Witten '91; CGHS '92

Want interesting flat space spin-2 gravity model in 2d:

- $\Lambda \rightarrow 0$ limit of JT boring model (no horizons)

Callan-Giddings-Harvey-Strominger model
 Mandal, Sengupta, Wadia '91; Elitzur, Forge, Rabinovici '91; Witten '91; CGHS '92

Want interesting flat space spin-2 gravity model in 2d:

- $\Lambda \rightarrow 0$ limit of JT boring model (no horizons)
- cannot simply take contraction of JT results (would yield Poincaré ${ }_{2}$)

$$
\lim _{\Lambda \rightarrow 0} I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\lim _{\Lambda \rightarrow 0} \frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X(R-2 \Lambda)]=\text { boring }
$$

Callan-Giddings-Harvey-Strominger model
 Mandal, Sengupta, Wadia '91; Elitzur, Forge, Rabinovici '91; Witten '91; CGHS '92

Want interesting flat space spin-2 gravity model in 2d:

- $\Lambda \rightarrow 0$ limit of JT boring model (no horizons)
- cannot simply take contraction of JT results (would yield Poincaré ${ }_{2}$)

$$
\lim _{\Lambda \rightarrow 0} I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\lim _{\Lambda \rightarrow 0} \frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X(R-2 \Lambda)]=\text { boring }
$$

- instead, either centrally extend Poincaré ${ }_{2}$

$$
\left[P_{a}, P_{b}\right]=\varepsilon_{a b} Z \quad\left[P_{a}, J\right]=\varepsilon_{a}^{b} P_{b}
$$

Callan-Giddings-Harvey-Strominger model
Mandal, Sengupta, Wadia '91; Elitzur, Forge, Rabinovici '91; Witten '91; CGHS '92
Want interesting flat space spin-2 gravity model in 2d:

- $\Lambda \rightarrow 0$ limit of JT boring model (no horizons)
- cannot simply take contraction of JT results (would yield Poincaré ${ }_{2}$)

$$
\lim _{\Lambda \rightarrow 0} I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\lim _{\Lambda \rightarrow 0} \frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X(R-2 \Lambda)]=\text { boring }
$$

- instead, either centrally extend Poincaré ${ }_{2}$

$$
\left[P_{a}, P_{b}\right]=\varepsilon_{a b} Z \quad\left[P_{a}, J\right]=\varepsilon_{a}^{b} P_{b}
$$

- or add dilaton-independent term to dilaton potential

$$
I_{\widehat{\mathrm{CGHS}}}\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X R-2 \Lambda]
$$

Note: original CGHS-model/Witten black hole has bulk action

$$
I_{\mathrm{CGHS}}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{|g|}\left(X R-\frac{1}{X}(\nabla X)^{2}-2 \Lambda X-\frac{1}{2}(\nabla f)^{2}\right)
$$

eliminate extra scalars $(f=0)$ and make Weyl rescaling to get $I_{\widehat{\mathrm{CHHS}}}$

Callan-Giddings-Harvey-Strominger model
 Mandal, Sengupta, Wadia '91; Elitzur, Forge, Rabinovici '91; Witten '91; CGHS '92

Want interesting flat space spin-2 gravity model in 2d:

- $\Lambda \rightarrow 0$ limit of JT boring model (no horizons)
- cannot simply take contraction of JT results (would yield Poincaré ${ }_{2}$)

$$
\lim _{\Lambda \rightarrow 0} I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\lim _{\Lambda \rightarrow 0} \frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X(R-2 \Lambda)]=\text { boring }
$$

- add dilaton-independent term to dilaton potential

$$
I_{\widehat{\mathrm{CGHS}}}\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X R-2 \Lambda]
$$

- model above is (conformally transformed) CGHS model

Callan-Giddings-Harvey-Strominger model
 Mandal, Sengupta, Wadia '91; Elitzur, Forge, Rabinovici '91; Witten '91; CGHS '92

Want interesting flat space spin-2 gravity model in 2d:

- $\Lambda \rightarrow 0$ limit of JT boring model (no horizons)
- cannot simply take contraction of JT results (would yield Poincaré ${ }_{2}$)

$$
\lim _{\Lambda \rightarrow 0} I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\lim _{\Lambda \rightarrow 0} \frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X(R-2 \Lambda)]=\text { boring }
$$

- add dilaton-independent term to dilaton potential

$$
I_{\mathrm{CGHS}}\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X R-2 \Lambda]
$$

- model above is (conformally transformed) CGHS model
- all solutions have vanishing curvature (only linear dilaton sector exists)

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

Callan-Giddings-Harvey-Strominger model
Mandal, Sengupta, Wadia '91; Elitzur, Forge, Rabinovici '91; Witten '91; CGHS '92
Want interesting flat space spin-2 gravity model in 2d:

- $\Lambda \rightarrow 0$ limit of JT boring model (no horizons)
- cannot simply take contraction of JT results (would yield Poincaré ${ }_{2}$)

$$
\lim _{\Lambda \rightarrow 0} I_{\mathrm{JT}}\left[X, g_{\mu \nu}\right]=\lim _{\Lambda \rightarrow 0} \frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X(R-2 \Lambda)]=\text { boring }
$$

- add dilaton-independent term to dilaton potential

$$
I_{\mathrm{CGHS}}\left[X, g_{\mu \nu}\right]=\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}[X R-2 \Lambda]
$$

- model above is (conformally transformed) CGHS model
- all solutions have vanishing curvature (only linear dilaton sector exists)

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

Reasonable starting point for (Rindler-type) flat space holography

Asymptotic Killing vectors and BMS_{2} symmetries
Work in progress with Afshar, González, Salzer, Vassilevich '19
CGHS line-element

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

has asymptotic Killing vectors

$$
\xi=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

Asymptotic Killing vectors and BMS_{2} symmetries
Work in progress with Afshar, González, Salzer, Vassilevich '19
CGHS line-element

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

has asymptotic Killing vectors

$$
\xi=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

Laurent modes $L_{n}=\xi\left(\epsilon=-u^{n+1}, \eta=0\right), M_{n}=\xi\left(\epsilon=0, \eta=u^{n-1}\right)$ yield BMS_{2} asymptotic symmetry algebra

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]_{\text {Lie }} } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right]_{\text {Lie }} } & =-(n+m) M_{n+m} \\
{\left[M_{n}, M_{m}\right]_{\text {Lie }} } & =0
\end{aligned}
$$

Asymptotic Killing vectors and BMS_{2} symmetries

Work in progress with Afshar, González, Salzer, Vassilevich '19
CGHS line-element

$$
\mathrm{d} s^{2}=-2 \mathrm{~d} u \mathrm{~d} r+2(\mathcal{P}(u) r+\mathcal{T}(u)) \mathrm{d} u^{2}
$$

has asymptotic Killing vectors

$$
\xi=\epsilon(u) \partial_{u}-\left(\epsilon^{\prime}(u) r+\eta(u)\right) \partial_{r}
$$

Laurent modes $L_{n}=\xi\left(\epsilon=-u^{n+1}, \eta=0\right), M_{n}=\xi\left(\epsilon=0, \eta=u^{n-1}\right)$ yield BMS_{2} asymptotic symmetry algebra

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]_{\text {Lie }} } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right]_{\text {Lie }} } & =-(n+m) M_{n+m} \\
{\left[M_{n}, M_{m}\right]_{\text {Lie }} } & =0
\end{aligned}
$$

isomorphic ($J_{n}=n M_{n}$ for $n \neq 0, J_{0}=M_{0}$) to warped conformal algebra

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]_{\text {Lie }} } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right]_{\text {Lie }} } & =-m J_{n+m} \\
{\left[J_{n}, J_{m}\right]_{\text {Lie }} } & =0
\end{aligned}
$$

Cangemi-Jackiw gauge theoretic formulation and bc's

- Ansatz for connection and scalar field

$$
A=\omega J+e^{a} P_{a}+A Z \quad \mathcal{X}=X Z+X^{a} \varepsilon_{a}^{b} P_{b}+Y J
$$

with centrally extended Poincaré ${ }_{2}$

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

Cangemi-Jackiw gauge theoretic formulation and bc's

- Ansatz for connection and scalar field

$$
A=\omega J+e^{a} P_{a}+A Z \quad \mathcal{X}=X Z+X^{a} \varepsilon_{a}{ }^{b} P_{b}+Y J
$$

with centrally extended Poincaré 2

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

- bilinear form non-degenerate, $\left\langle P_{+} P_{-}\right\rangle=-\langle J Z\rangle=1$

Cangemi-Jackiw gauge theoretic formulation and bc's

- Ansatz for connection and scalar field

$$
A=\omega J+e^{a} P_{a}+A Z \quad \mathcal{X}=X Z+X^{a} \varepsilon_{a}{ }^{b} P_{b}+Y J
$$

with centrally extended Poincaré ${ }_{2}$

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

- bilinear form non-degenerate, $\left\langle P_{+} P_{-}\right\rangle=-\langle J Z\rangle=1$ propose bc's

$$
\begin{gathered}
A=b^{-1}\left(\mathrm{~d}+a_{u} \mathrm{~d} u\right) b \quad \mathcal{X}=b^{-1} x b \quad b=\exp \left(-r P_{+}\right) \\
a_{u}=\mathcal{T} P_{+}+P_{-}+\mathcal{P} J \quad x=\left(\eta^{\prime}+\mathcal{T} \varepsilon\right) P_{+}+\varepsilon P_{-}+\left(\varepsilon^{\prime}+\mathcal{P} \varepsilon\right) J+\eta Z
\end{gathered}
$$

Cangemi-Jackiw gauge theoretic formulation and bc's

- Ansatz for connection and scalar field

$$
A=\omega J+e^{a} P_{a}+A Z \quad \mathcal{X}=X Z+X^{a} \varepsilon_{a}{ }^{b} P_{b}+Y J
$$

with centrally extended Poincaré ${ }_{2}$

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

- bilinear form non-degenerate, $\left\langle P_{+} P_{-}\right\rangle=-\langle J Z\rangle=1$ propose bc's

$$
\begin{gathered}
A=b^{-1}\left(\mathrm{~d}+a_{u} \mathrm{~d} u\right) b \quad \mathcal{X}=b^{-1} x b \quad b=\exp \left(-r P_{+}\right) \\
a_{u}=\mathcal{T} P_{+}+P_{-}+\mathcal{P} J \quad x=\left(\eta^{\prime}+\mathcal{T} \varepsilon\right) P_{+}+\varepsilon P_{-}+\left(\varepsilon^{\prime}+\mathcal{P} \varepsilon\right) J+\eta Z
\end{gathered}
$$

- compatible with EOM

$$
\mathrm{d} a+a \wedge a=0=\mathrm{d} x+[a, x]
$$

Cangemi-Jackiw gauge theoretic formulation and bc's

- Ansatz for connection and scalar field

$$
A=\omega J+e^{a} P_{a}+A Z \quad \mathcal{X}=X Z+X^{a} \varepsilon_{a}{ }^{b} P_{b}+Y J
$$

with centrally extended Poincaré ${ }_{2}$

$$
\left[P_{+}, P_{-}\right]=Z \quad\left[P_{ \pm}, J\right]= \pm P_{ \pm}
$$

- bilinear form non-degenerate, $\left\langle P_{+} P_{-}\right\rangle=-\langle J Z\rangle=1$
- propose bc's

$$
\begin{gathered}
A=b^{-1}\left(\mathrm{~d}+a_{u} \mathrm{~d} u\right) b \quad \mathcal{X}=b^{-1} x b \quad b=\exp \left(-r P_{+}\right) \\
a_{u}=\mathcal{T} P_{+}+P_{-}+\mathcal{P} J \quad x=\left(\eta^{\prime}+\mathcal{T} \varepsilon\right) P_{+}+\varepsilon P_{-}+\left(\varepsilon^{\prime}+\mathcal{P} \varepsilon\right) J+\eta Z
\end{gathered}
$$

- compatible with EOM

$$
\mathrm{d} a+a \wedge a=0=\mathrm{d} x+[a, x]
$$

- yields metric in EF-gauge, with same functions \mathcal{P}, \mathcal{T} as before

Consequence of bc's and integrability conditions

Proceed analogously to JT-case:

- bc-preserving gauge trafos

$$
\lambda=b^{-1}\left(\left(\left(\varepsilon^{Z}\right)^{\prime}+\mathcal{T} \varepsilon^{-}\right) P_{+}+\varepsilon^{-} P_{-}+\left(\left(\varepsilon^{-}\right)^{\prime}+\mathcal{P} \varepsilon^{-}\right) J+\varepsilon^{Z} Z\right) b
$$

Consequence of bc's and integrability conditions

Proceed analogously to JT-case:

- bc-preserving gauge trafos

$$
\lambda=b^{-1}\left(\left(\left(\varepsilon^{Z}\right)^{\prime}+\mathcal{T} \varepsilon^{-}\right) P_{+}+\varepsilon^{-} P_{-}+\left(\left(\varepsilon^{-}\right)^{\prime}+\mathcal{P} \varepsilon^{-}\right) J+\varepsilon^{Z} Z\right) b
$$

- their action on state-dependent functions:

$$
\begin{aligned}
& \delta_{\lambda} \mathcal{P}=\varepsilon^{-} \mathcal{P}^{\prime}+\left(\varepsilon^{-}\right)^{\prime} \mathcal{P}+\left(\varepsilon^{-}\right)^{\prime \prime} \\
& \delta_{\lambda} \mathcal{T}=\varepsilon^{-} \mathcal{T}+2 \varepsilon^{-\prime} \mathcal{T}+\left(\varepsilon^{Z}\right)^{\prime \prime}-\left(\varepsilon^{Z}\right)^{\prime} \mathcal{P}
\end{aligned}
$$

Consequence of bc's and integrability conditions
Proceed analogously to JT-case:

- bc-preserving gauge trafos

$$
\lambda=b^{-1}\left(\left(\left(\varepsilon^{Z}\right)^{\prime}+\mathcal{T} \varepsilon^{-}\right) P_{+}+\varepsilon^{-} P_{-}+\left(\left(\varepsilon^{-}\right)^{\prime}+\mathcal{P} \varepsilon^{-}\right) J+\varepsilon^{Z} Z\right) b
$$

- their action on state-dependent functions:

$$
\begin{aligned}
& \delta_{\lambda} \mathcal{P}=\varepsilon^{-} \mathcal{P}^{\prime}+\left(\varepsilon^{-}\right)^{\prime} \mathcal{P}+\left(\varepsilon^{-}\right)^{\prime \prime} \\
& \delta_{\lambda} \mathcal{T}=\varepsilon^{-} \mathcal{T}+2 \varepsilon^{-\prime} \mathcal{T}+\left(\varepsilon^{Z}\right)^{\prime \prime}-\left(\varepsilon^{Z}\right)^{\prime} \mathcal{P}
\end{aligned}
$$

Twisted warped transformation behavior!
Note: in modes $\left(L_{n} \leftarrow \mathcal{T}, J_{n} \leftarrow \mathcal{P}\right)$ trafo-behavior above corresponds to twisted warped conformal algebra (see Afshar, Detournay, DG, Oblak '15)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, J_{m}\right] } & =-m J_{n+m}+i n^{2} \delta_{n+m} \\
{\left[J_{n}, J_{m}\right] } & =0
\end{aligned}
$$

Consequence of bc's and integrability conditions

Proceed analogously to JT-case:

- bc-preserving gauge trafos

$$
\lambda=b^{-1}\left(\left(\left(\varepsilon^{Z}\right)^{\prime}+\mathcal{T} \varepsilon^{-}\right) P_{+}+\varepsilon^{-} P_{-}+\left(\left(\varepsilon^{-}\right)^{\prime}+\mathcal{P} \varepsilon^{-}\right) J+\varepsilon^{Z} Z\right) b
$$

- their action on state-dependent functions:

$$
\begin{aligned}
& \delta_{\lambda} \mathcal{P}=\varepsilon^{-} \mathcal{P}^{\prime}+\left(\varepsilon^{-}\right)^{\prime} \mathcal{P}+\left(\varepsilon^{-}\right)^{\prime \prime} \\
& \delta_{\lambda} \mathcal{T}=\varepsilon^{-} \mathcal{T}+2 \varepsilon^{-\prime} \mathcal{T}+\left(\varepsilon^{Z}\right)^{\prime \prime}-\left(\varepsilon^{Z}\right)^{\prime} \mathcal{P}
\end{aligned}
$$

Twisted warped transformation behavior!

- same transformation behavior follows from asymptotic Killing vectors

Consequence of bc's and integrability conditions

Proceed analogously to JT-case:

- bc-preserving gauge trafos

$$
\lambda=b^{-1}\left(\left(\left(\varepsilon^{Z}\right)^{\prime}+\mathcal{T} \varepsilon^{-}\right) P_{+}+\varepsilon^{-} P_{-}+\left(\left(\varepsilon^{-}\right)^{\prime}+\mathcal{P} \varepsilon^{-}\right) J+\varepsilon^{Z} Z\right) b
$$

- their action on state-dependent functions:

$$
\begin{aligned}
& \delta_{\lambda} \mathcal{P}=\varepsilon^{-} \mathcal{P}^{\prime}+\left(\varepsilon^{-}\right)^{\prime} \mathcal{P}+\left(\varepsilon^{-}\right)^{\prime \prime} \\
& \delta_{\lambda} \mathcal{T}=\varepsilon^{-} \mathcal{T}+2 \varepsilon^{-\prime} \mathcal{T}+\left(\varepsilon^{Z}\right)^{\prime \prime}-\left(\varepsilon^{Z}\right)^{\prime} \mathcal{P}
\end{aligned}
$$

Twisted warped transformation behavior!

- same transformation behavior follows from asymptotic Killing vectors
- dual field theory (if exists) has twisted warped conformal symmetries

Consequence of bc's and integrability conditions

Proceed analogously to JT-case:

- bc-preserving gauge trafos

$$
\lambda=b^{-1}\left(\left(\left(\varepsilon^{Z}\right)^{\prime}+\mathcal{T} \varepsilon^{-}\right) P_{+}+\varepsilon^{-} P_{-}+\left(\left(\varepsilon^{-}\right)^{\prime}+\mathcal{P} \varepsilon^{-}\right) J+\varepsilon^{Z} Z\right) b
$$

- their action on state-dependent functions:

$$
\begin{aligned}
& \delta_{\lambda} \mathcal{P}=\varepsilon^{-} \mathcal{P}^{\prime}+\left(\varepsilon^{-}\right)^{\prime} \mathcal{P}+\left(\varepsilon^{-}\right)^{\prime \prime} \\
& \delta_{\lambda} \mathcal{T}=\varepsilon^{-} \mathcal{T}+2 \varepsilon^{-\prime} \mathcal{T}+\left(\varepsilon^{Z}\right)^{\prime \prime}-\left(\varepsilon^{Z}\right)^{\prime} \mathcal{P}
\end{aligned}
$$

Twisted warped transformation behavior!

- same transformation behavior follows from asymptotic Killing vectors
- dual field theory (if exists) has twisted warped conformal symmetries
- boundary action needs finite version of trafos above (like Schwarzian)

Consequence of bc's and integrability conditions

Proceed analogously to JT-case:

- bc-preserving gauge trafos

$$
\lambda=b^{-1}\left(\left(\left(\varepsilon^{Z}\right)^{\prime}+\mathcal{T} \varepsilon^{-}\right) P_{+}+\varepsilon^{-} P_{-}+\left(\left(\varepsilon^{-}\right)^{\prime}+\mathcal{P} \varepsilon^{-}\right) J+\varepsilon^{Z} Z\right) b
$$

- their action on state-dependent functions:

$$
\begin{aligned}
& \delta_{\lambda} \mathcal{P}=\varepsilon^{-} \mathcal{P}^{\prime}+\left(\varepsilon^{-}\right)^{\prime} \mathcal{P}+\left(\varepsilon^{-}\right)^{\prime \prime} \\
& \delta_{\lambda} \mathcal{T}=\varepsilon^{-} \mathcal{T}+2 \varepsilon^{-\prime} \mathcal{T}+\left(\varepsilon^{Z}\right)^{\prime \prime}-\left(\varepsilon^{Z}\right)^{\prime} \mathcal{P}
\end{aligned}
$$

Twisted warped transformation behavior!

- same transformation behavior follows from asymptotic Killing vectors
- dual field theory (if exists) has twisted warped conformal symmetries
- boundary action needs finite version of trafos above (like Schwarzian)
- finite trafos also featured recently in Afshar '19

Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:

- Casimir $C \sim\langle\mathcal{X} \mathcal{X}\rangle$ again conserved on-shell, $\partial_{u} C=0$

Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:

- Casimir $C \sim\langle\mathcal{X} \mathcal{X}\rangle$ again conserved on-shell, $\partial_{u} C=0$
- integrability condition again solved by $a_{u}=f_{u} x+g^{-1} \partial_{u} g$ with $g=\exp \left(-\eta P_{+}\right) \exp (-\ln \varepsilon J) \exp \left(-\int \eta / \varepsilon Z\right)$ and $f_{u}=1 / \varepsilon$

Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:

- Casimir $C \sim\langle\mathcal{X} \mathcal{X}\rangle$ again conserved on-shell, $\partial_{u} C=0$
- integrability condition again solved by $a_{u}=f_{u} x+g^{-1} \partial_{u} g$ with $g=\exp \left(-\eta P_{+}\right) \exp (-\ln \varepsilon J) \exp \left(-\int \eta / \varepsilon Z\right)$ and $f_{u}=1 / \varepsilon$
- on-shell action again proportional to Casimir, $\left.\Gamma\right|_{F=0} \propto C$

Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:

- Casimir $C \sim\langle\mathcal{X} \mathcal{X}\rangle$ again conserved on-shell, $\partial_{u} C=0$
- integrability condition again solved by $a_{u}=f_{u} x+g^{-1} \partial_{u} g$ with $g=\exp \left(-\eta P_{+}\right) \exp (-\ln \varepsilon J) \exp \left(-\int \eta / \varepsilon Z\right)$ and $f_{u}=1 / \varepsilon$
- on-shell action again proportional to Casimir, $\left.\Gamma\right|_{F=0} \propto C$
- use again $f_{u} \propto \partial_{u} f$ and assume $f(u)$ is regular diffeo

Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:

- Casimir $C \sim\langle\mathcal{X} \mathcal{X}\rangle$ again conserved on-shell, $\partial_{u} C=0$
- integrability condition again solved by $a_{u}=f_{u} x+g^{-1} \partial_{u} g$ with $g=\exp \left(-\eta P_{+}\right) \exp (-\ln \varepsilon J) \exp \left(-\int \eta / \varepsilon Z\right)$ and $f_{u}=1 / \varepsilon$
- on-shell action again proportional to Casimir, $\left.\Gamma\right|_{F=0} \propto C$
- use again $f_{u} \propto \partial_{u} f$ and assume $f(u)$ is regular diffeo
- Casimir given by

$$
C=\frac{1}{\left(f^{\prime}\right)^{2}}\left(\mathcal{T}-f^{\prime} \eta \mathcal{P}+f^{\prime} \eta^{\prime}+f^{\prime \prime} \eta\right)
$$

Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:

- Casimir $C \sim\langle\mathcal{X} \mathcal{X}\rangle$ again conserved on-shell, $\partial_{u} C=0$
- integrability condition again solved by $a_{u}=f_{u} x+g^{-1} \partial_{u} g$ with $g=\exp \left(-\eta P_{+}\right) \exp (-\ln \varepsilon J) \exp \left(-\int \eta / \varepsilon Z\right)$ and $f_{u}=1 / \varepsilon$
- on-shell action again proportional to Casimir, $\left.\Gamma\right|_{F=0} \propto C$
- use again $f_{u} \propto \partial_{u} f$ and assume $f(u)$ is regular diffeo
- Casimir given by

$$
C=\frac{1}{\left(f^{\prime}\right)^{2}}\left(\mathcal{T}-f^{\prime} \eta \mathcal{P}+f^{\prime} \eta^{\prime}+f^{\prime \prime} \eta\right)
$$

- with $f^{-1}(\tau):=u(\tau)$ get on-shell action

$$
\left.\Gamma\right|_{F=0}[\tau, \eta] \sim \int_{0}^{\beta} \mathrm{d} u[\dot{\tau}^{2} \mathcal{T}-\dot{\tau} \mathcal{P}-\underbrace{\eta \ddot{\tau}}]
$$

Boundary action and twisted Schwarzian

Continue to proceed by analogy to JT-case:

- Casimir $C \sim\langle\mathcal{X} \mathcal{X}\rangle$ again conserved on-shell, $\partial_{u} C=0$
- integrability condition again solved by $a_{u}=f_{u} x+g^{-1} \partial_{u} g$ with $g=\exp \left(-\eta P_{+}\right) \exp (-\ln \varepsilon J) \exp \left(-\int \eta / \varepsilon Z\right)$ and $f_{u}=1 / \varepsilon$
- on-shell action again proportional to Casimir, $\left.\Gamma\right|_{F=0} \propto C$
- use again $f_{u} \propto \partial_{u} f$ and assume $f(u)$ is regular diffeo
- Casimir given by

$$
C=\frac{1}{\left(f^{\prime}\right)^{2}}\left(\mathcal{T}-f^{\prime} \eta \mathcal{P}+f^{\prime} \eta^{\prime}+f^{\prime \prime} \eta\right)
$$

- with $f^{-1}(\tau):=u(\tau)$ get on-shell action

$$
\left.\Gamma\right|_{F=0}[\tau, \eta] \sim \int_{0}^{\beta} \mathrm{d} u[\dot{\tau}^{2} \mathcal{T}-\dot{\tau} \mathcal{P}-\underbrace{\eta \ddot{\tau}}]
$$

twisted Schwarzian

Coincides with boundary action derived in 1908.08089

Outline

Flat space higher spin gravity in 3d

AdS higher spin gravity in 2d

Flat space spin-2 gravity in 2d

Towards flat space higher spin gravity in 2d

Outlook on flat space higher spin gravity in 2d

- I have no results to offer yet

Outlook on flat space higher spin gravity in 2d

- I have no results to offer yet
- however, higher spin AdS_{2} and FS_{3} results suggest following recipe:

Outlook on flat space higher spin gravity in 2d

- I have no results to offer yet
- however, higher spin AdS_{2} and FS_{3} results suggest following recipe:

Towards flat space higher spin dilaton gravity in 2d

- Take BF-action

Outlook on flat space higher spin gravity in 2 d

- I have no results to offer yet
- however, higher spin AdS_{2} and FS_{3} results suggest following recipe:

Towards flat space higher spin dilaton gravity in 2d

- Take BF-action
- Assume higher rank gauge group with suitable embedding of centrally extended Poincaré ${ }_{2}$

Outlook on flat space higher spin gravity in 2 d

- I have no results to offer yet
- however, higher spin AdS_{2} and FS_{3} results suggest following recipe:

Towards flat space higher spin dilaton gravity in 2d

- Take BF-action
- Assume higher rank gauge group with suitable embedding of centrally extended Poincaré ${ }_{2}$
- Impose highest-weight bc's on connection

$$
a_{u} \sim P_{-}+\mathcal{T} P_{+}+\cdots+\mathcal{P} J
$$

Outlook on flat space higher spin gravity in 2 d

- I have no results to offer yet
- however, higher spin AdS_{2} and FS_{3} results suggest following recipe:

Towards flat space higher spin dilaton gravity in 2d

- Take BF-action
- Assume higher rank gauge group with suitable embedding of centrally extended Poincaré ${ }_{2}$
- Impose highest-weight bc's on connection

$$
a_{u} \sim P_{-}+\mathcal{T} P_{+}+\cdots+\mathcal{P} J
$$

- Demand suitable integrability condition

$$
a_{u}=f_{u}^{(2)} x+\cdots+g^{-1} \partial_{u} g
$$

Outlook on flat space higher spin gravity in 2 d

- I have no results to offer yet
- however, higher spin AdS_{2} and FS_{3} results suggest following recipe:

Towards flat space higher spin dilaton gravity in 2d

- Take BF-action
- Assume higher rank gauge group with suitable embedding of centrally extended Poincaré ${ }_{2}$
- Impose highest-weight bc's on connection

$$
a_{u} \sim P_{-}+\mathcal{T} P_{+}+\cdots+\mathcal{P} J
$$

- Demand suitable integrability condition

$$
a_{u}=f_{u}^{(2)} x+\cdots+g^{-1} \partial_{u} g
$$

Flat space higher spin gravity in 2d probably exists

Thanks for your attention!

Thanks to

Hamid Afshar, Hernán González, Jakob Salzer and Dima Vassilevich for collaborations on (flat space) dilaton (higher spin) gravity in 2d!

Bonus-slide

González, DG, Salzer '18

Spin-3 Schwarzian action (zero temperature)

$$
I \sim \int \mathrm{~d} \tau\left[\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{4}{3}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}+\frac{e^{\prime \prime \prime}}{e^{\prime}}-\frac{4}{3}\left(\frac{e^{\prime \prime}}{e^{\prime}}\right)^{2}-\frac{1}{3} \frac{f^{\prime \prime} e^{\prime \prime}}{f^{\prime} e^{\prime}}\right]
$$

with

$$
e=s^{\prime} / f^{\prime}
$$

has $\mathrm{SL}(3)$-invariance

$$
s \rightarrow \frac{a_{11} s+a_{12} f+a_{13}}{a_{31} s+a_{32} f+a_{33}} \quad f \rightarrow \frac{a_{21} s+a_{22} f+a_{23}}{a_{31} s+a_{32} f+a_{33}}
$$

where $a_{i j}$ are components of $\mathrm{SL}(3)$-matrix

See Marshakov, Morozov '90; . . . ; Li, Theisen '15

