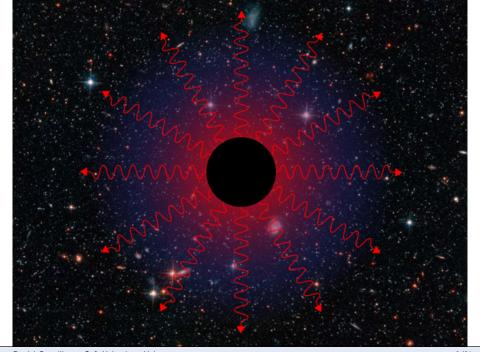
Soft Heisenberg Hair

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

Natal, February 2017



Two simple punchlines

1. Heisenberg algebra

$$[X_n, P_m] = i \, \delta_{n, m}$$

fundamental not only in quantum mechanics but also in near horizon physics of (higher spin) gravity theories

Two simple punchlines

1. Heisenberg algebra

$$[X_n, P_m] = i \, \delta_{n, m}$$

fundamental not only in quantum mechanics but also in near horizon physics of (higher spin) gravity theories

2. Black hole microstates identified as specific "soft hair" descendants

Two simple punchlines

1. Heisenberg algebra

$$[X_n, P_m] = i \, \delta_{n, m}$$

fundamental not only in quantum mechanics but also in near horizon physics of (higher spin) gravity theories

2. Black hole microstates identified as specific "soft hair" descendants

based on work with

- ► Hamid Afshar [IPM Teheran]
- Stephane Detournay [ULB]
- Wout Merbis [TU Wien]
- Blagoje Oblak [ULB / ETH]
- Alfredo Perez [CECS Valdivia]
- Stefan Prohazka [TU Wien]
- Shahin Sheikh-Jabbari [IPM Teheran]
- David Tempo [CECS Valdivia]
- ► Ricardo Troncoso [CECS Valdivia]

Outline

Motivation

Near horizon boundary conditions

Explicit construction of BTZ microstates

Discussion

Outline

Motivation

Near horizon boundary conditions

Explicit construction of BTZ microstates

Discussion

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

▶ Motivation: microscopic understanding of generic black hole entropy

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- Motivation: microscopic understanding of generic black hole entropy
- ▶ Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- Motivation: microscopic understanding of generic black hole entropy
- ► Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula
- ► Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT, warped CFT, ...)

warped CFT: Detournay, Hartman, Hofman '12

Galilean CFT: Bagchi, Detournay, Fareghbal, Simon '13; Barnich '13

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- Motivation: microscopic understanding of generic black hole entropy
- ► Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula
- ► Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
- Main idea: consider near horizon symmetries for non-extremal horizons

Related ideas pursued e.g. by

- Donnay, Giribet, Gonzalez, Pino '15
- ► Hawking, Perry, Strominger '16

Postpone comparison with related approaches after discussing our approach

Bekenstein-Hawking

$$S_{\rm BH} = \frac{A}{4G_N}$$

- Motivation: microscopic understanding of generic black hole entropy
- ▶ Microstate counting from CFT₂ symmetries (Strominger, Carlip, ...) using Cardy formula
- ► Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
- Main idea: consider near horizon symmetries for non-extremal horizons
- ▶ Near horizon line-element with Rindler acceleration *a*:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Meaning of coordinates:

- ho: radial direction ($\rho = 0$ is horizon)
- $\varphi \sim \varphi + 2\pi$: angular direction
- v: (advanced) time

▶ Rindler acceleration: state-dependent or chemical potential?

- ► Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale

Recall scale invariance

$$\frac{a}{} \rightarrow \lambda a \qquad \rho \rightarrow \lambda \rho \qquad v {\rightarrow} v/\lambda$$

of Rindler metric

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2$$

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

Recall scale invariance

$$a \rightarrow \lambda a \qquad \rho \rightarrow \lambda \rho \qquad v \rightarrow v/\lambda$$

of Rindler metric

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2$$

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

 If chemical potential: all states in theory have same (Unruh-)temperature

$$T_U = \frac{a}{2\pi}$$

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

► If chemical potential: all states in theory have same (Unruh-)temperature

$$T_U = \frac{a}{2\pi}$$

suggestion in 1511.08687

We make this choice in this talk!

- Rindler acceleration: state-dependent or chemical potential?
- ▶ If state-dependent: need mechanism to fix scale suggestion in 1512.08233:

$$v \sim v + 2\pi L$$

Works technically but physical interpretation difficult

If chemical potential: all states in theory have same (Unruh-)temperature

$$T_U = \frac{a}{2\pi}$$

Work in 3d Einstein gravity in Chern–Simons formulation

$$I_{\text{CS}} = \pm \sum_{+} \frac{k}{4\pi} \int \langle A^{\pm} \wedge dA^{\pm} + \frac{2}{3} A^{\pm} \wedge A^{\pm} \wedge A^{\pm} \rangle$$

with sl(2) connections A^{\pm} and $k=\ell/(4G_N)$ with AdS radius $\ell=1$

Outline

Motivation

Near horizon boundary conditions

Explicit construction of BTZ microstates

Discussion

▶ In any physical theory need bc's imposed on fields

- ▶ In any physical theory need bc's imposed on fields
- ▶ In many instances 'natural' bc's suitable

Example:

$$\Phi(x \to \infty) = 0$$

- ▶ In any physical theory need bc's imposed on fields
- ▶ In many instances 'natural' bc's suitable
- ▶ In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically

- ▶ In any physical theory need bc's imposed on fields
- ▶ In many instances 'natural' bc's suitable
- In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS

Example: Brown-Henneaux type of bc's ($aAdS_3$):

$$ds_{aAdS}^{2} = d\rho^{2} + (e^{2\rho}\eta_{\mu\nu} + \gamma_{\mu\nu} + \mathcal{O}(e^{-2\rho})) dx^{\mu} dx^{\nu}$$

with $\delta \gamma = \text{arbitrary}$

- ▶ In any physical theory need bc's imposed on fields
- ▶ In many instances 'natural' bc's suitable
- ► In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- ► Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- ▶ No algorithm determining 'right' bc's always choice!

- ▶ In any physical theory need bc's imposed on fields
- ▶ In many instances 'natural' bc's suitable
- ▶ In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- ► Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- ▶ No algorithm determining 'right' bc's always choice!
- Algorithm exists to check consistency of bc's

- ▶ In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- ▶ In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- ▶ No algorithm determining 'right' bc's always choice!
- Algorithm exists to check consistency of bc's
- Local diffeos and gauge trafos fall into three classes:
 - 1. Trafos that violate bc's (forbidden)
 - 2. Trafos that preserve bc's and remain pure gauge (trivial)
 - 3. Trafos that preserve bc's but are not pure gauge at the asymptotic boundary (asymptotic symmetries)

- In any physical theory need bc's imposed on fields
- ▶ In many instances 'natural' bc's suitable
- ▶ In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- ▶ No algorithm determining 'right' bc's always choice!
- Algorithm exists to check consistency of bc's
- ▶ Local diffeos and gauge trafos fall into three classes:
 - 1. Trafos that violate bc's (forbidden)
 - 2. Trafos that preserve bc's and remain pure gauge (trivial)
 - 3. Trafos that preserve bc's but are not pure gauge at the asymptotic boundary (asymptotic symmetries)
- Canonical boundary charges (á la Regge—Teitelboim) generate asympotic symmetries of "edge states"

- ▶ In any physical theory need bc's imposed on fields
- In many instances 'natural' bc's suitable
- ▶ In gravity 'natural' bc's most unnatural: metric cannot be assumed to vanish asymptotically
- Instead, metric should approach some suitable class of metrics, like asymptotically flat or asymptotically (A)dS
- ▶ No algorithm determining 'right' bc's always choice!
- Algorithm exists to check consistency of bc's
- ▶ Local diffeos and gauge trafos fall into three classes:
 - 1. Trafos that violate bc's (forbidden)
 - 2. Trafos that preserve bc's and remain pure gauge (trivial)
 - 3. Trafos that preserve bc's but are not pure gauge at the asymptotic boundary (asymptotic symmetries)
- Canonical boundary charges (á la Regge—Teitelboim) generate asympotic symmetries of "edge states"
- Consistency means they are finite, integrable, non-trivial and conserved (in time)

Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:

▶ Brown–Henneaux (1986): two Virasoros (2d conformal algebra)

Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:

- ▶ Brown–Henneaux (1986): two Virasoros (2d conformal algebra)
- ightharpoonup Compere–Song–Strominger (2013): Virasoro plus u(1) current algebra
- ▶ Troessaert (2013): 2 Virasoros plus 2 u(1) current algebras
- \blacktriangleright Avery–Poojary–Suryanarayana (2013): Virasoro plus sl(2) current algebra
- ▶ Donnay-Giribet-Gonzalez-Pino (2015): centerless warped conformal
- ► Afshar–Detournay–DG–Oblak (2015): twisted warped conformal

Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:

- ▶ Brown–Henneaux (1986): two Virasoros (2d conformal algebra)
- ightharpoonup Compere–Song–Strominger (2013): Virasoro plus u(1) current algebra
- ightharpoonup Troessaert (2013): 2 Virasoros plus 2 u(1) current algebras
- \blacktriangleright Avery–Poojary–Suryanarayana (2013): Virasoro plus sl(2) current algebra
- ▶ Donnay-Giribet-Gonzalez-Pino (2015): centerless warped conformal
- ► Afshar–Detournay–DG–Oblak (2015): twisted warped conformal
- ▶ DG-Riegler (2016): two sl(2) current algebras (most general case!)

Even restricting to Einstein gravity in three dimensions (with negative cosmological constant) different choices exist for bc's and their associated asymptotic symmetry algebras:

- ▶ Brown–Henneaux (1986): two Virasoros (2d conformal algebra)
- ▶ Compere–Song–Strominger (2013): Virasoro plus u(1) current algebra
- ightharpoonup Troessaert (2013): 2 Virasoros plus 2 u(1) current algebras
- lacktriangle Avery-Poojary-Suryanarayana (2013): Virasoro plus sl(2) current algebra
- ▶ Donnay-Giribet-Gonzalez-Pino (2015): centerless warped conformal
- ► Afshar–Detournay–DG–Oblak (2015): twisted warped conformal
- ▶ DG-Riegler (2016): two sl(2) current algebras (most general case!)

Our near horizon bc's simpler than any of the above!

Explicit specification of our bc's in diagonal gauge

Standard trick: partially fix gauge

$$A^{\pm} = b_{\pm}^{-1}(\rho) \left(d + \mathfrak{a}_{\pm}(x^0, x^1) \right) b_{\pm}(\rho)$$

with some group element $b \in SL(2)$ depending on radius ρ with $\delta b = 0$

Drop \pm decorations in most of talk

Manifold topologically a cylinder or torus, with radial coordinate ρ and boundary coordinates $(x^0,x^1)\sim (v,\varphi)$

Explicit specification of our bc's in diagonal gauge

Standard trick: partially fix gauge

$$A = b^{-1}(\rho) \left(d + \mathfrak{a}(x^0, x^1) \right) b(\rho)$$

with some group element $b \in SL(2)$ depending on radius ρ with $\delta b = 0$

Standard AdS₃ approach: highest weight gauge

$$\mathfrak{a} \sim L_{+} + \mathcal{L}(x^{0}, x^{1})L_{-}$$
 $b(\rho) = \exp(\rho L_{0})$

$$sl(2)$$
: $[L_n, L_m] = (n-m)L_{n+m}, \quad n, m = -1, 0, 1$

Explicit specification of our bc's in diagonal gauge

Standard trick: partially fix gauge

$$A = b^{-1}(\rho) \left(d + \mathfrak{a}(x^0, x^1) \right) b(\rho)$$

with some group element $b \in SL(2)$ depending on radius ρ with $\delta b = 0$

Standard AdS₃ approach: highest weight gauge

$$\mathfrak{a} \sim L_{+} + \mathcal{L}(x^{0}, x^{1})L_{-}$$
 $b(\rho) = \exp(\rho L_{0})$

$$sl(2)$$
: $[L_n, L_m] = (n-m)L_{n+m}, \quad n, m = -1, 0, 1$

For near horizon purposes diagonal gauge useful:

$$\mathfrak{a} \sim \mathcal{J}(x^0, x^1) L_0$$

▶ Precise boundary conditions (ζ : chemical potential):

$$\mathfrak{a} = (\mathcal{J} d\varphi + \mathcal{C} dv) L_0 \qquad \delta \mathfrak{a} = \delta \mathcal{J} d\varphi L_0$$

and $b=\exp{(\frac{1}{\zeta}\,L_+)}\cdot\exp{(\frac{\rho}{2}\,L_-)}$. (assume constant ζ for simplicity)

Near horizon metric

Using

$$g_{\mu\nu} = \frac{1}{2} \left\langle \left(A_{\mu}^{+} - A_{\mu}^{-} \right) \left(A_{\nu}^{+} - A_{\nu}^{-} \right) \right\rangle$$

Using

$$g_{\mu\nu} = \frac{1}{2} \left\langle \left(A_{\mu}^{+} - A_{\mu}^{-} \right) \left(A_{\nu}^{+} - A_{\nu}^{-} \right) \right\rangle$$
/(2a))

yields $(f := 1 + \rho/(2\boldsymbol{a}))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a} f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$

For simplicity set $\Omega=0$ and $a=\mathrm{const.}$ in metric above

EOM imply
$$\partial_v \mathcal{J}^{\pm} = \pm \partial_{\varphi} \zeta^{\pm}$$
; in this case $\partial_v \mathcal{J}^{\pm} = 0$

Using

$$g_{\mu\nu}=\frac{1}{2}\left\langle \left(A_{\mu}^{+}-A_{\mu}^{-}\right)\left(A_{\nu}^{+}-A_{\nu}^{-}\right)\right\rangle$$
 yields $(f:=1+
ho/(2a))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a} f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms $(\omega=0)$ yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

Recover desired near horizon metric

Using

$$g_{\mu
u}=rac{1}{2}\left\langle \left(A_{\mu}^{+}-A_{\mu}^{-}
ight)\left(A_{
u}^{+}-A_{
u}^{-}
ight)
ight
angle$$
 yields $(f:=1+
ho/(2a))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a} f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms ($\omega=0$) yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

- Recover desired near horizon metric
- ▶ Rindler acceleration *a* indeed state-independent

Using

$$g_{\mu
u}=rac{1}{2}\left\langle \left(A_{\mu}^{+}-A_{\mu}^{-}
ight)\left(A_{
u}^{+}-A_{
u}^{-}
ight)
ight
angle$$
 yields $(f:=1+
ho/(2a))$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a}f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms ($\omega=0$) yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

- Recover desired near horizon metric
- ▶ Rindler acceleration *a* indeed state-independent
- ▶ Two state-dependent functions (γ, ω) as usual in 3d gravity

Using

$$g_{\mu\nu}=\tfrac{1}{2}\left\langle \left(A_{\mu}^+-A_{\mu}^-\right)\left(A_{\nu}^+-A_{\nu}^-\right)\right\rangle$$
 yields $\left(f:=1+\rho/(2a)\right)$

$$ds^{2} = -2a\rho f dv^{2} + 2 dv d\rho - 2\omega a^{-1} d\varphi d\rho + 4\omega\rho f dv d\varphi + \left[\gamma^{2} + \frac{2\rho}{a}f(\gamma^{2} - \omega^{2})\right] d\varphi^{2}$$

state-dependent functions $\mathcal{J}^{\pm}=\gamma\pm\omega$, chemical potentials $\zeta^{\pm}=-a\pm\Omega$ Neglecting rotation terms $(\omega=0)$ yields Rindler plus higher order terms:

$$ds^2 = -2a\rho dv^2 + 2 dv d\rho + \gamma^2 d\varphi^2 + \dots$$

Comments:

- ► Recover desired near horizon metric
- Rindler acceleration a indeed state-independent
- ▶ Two state-dependent functions (γ, ω) as usual in 3d gravity
- $ightharpoonup \gamma = \gamma(\varphi)$: "black flower"

Canonical boundary charges

- Canonical boundary charges non-zero for large trafos that preserve boundary conditions
- Zero mode charges: mass and angular momentum

Canonical boundary charges

- Canonical boundary charges non-zero for large trafos that preserve boundary conditions
- Zero mode charges: mass and angular momentum

Background independent result for Chern-Simons yields

$$Q[\eta] = \frac{k}{4\pi} \oint d\varphi \, \eta(\varphi) \, \mathcal{J}(\varphi)$$

- Finite
- Integrable
- Conserved
- Non-trivial

Canonical boundary charges

- Canonical boundary charges non-zero for large trafos that preserve boundary conditions
- Zero mode charges: mass and angular momentum

Background independent result for Chern-Simons yields

$$Q[\eta] = \frac{k}{4\pi} \oint d\varphi \, \eta(\varphi) \, \mathcal{J}(\varphi)$$

- Finite
- Integrable
- Conserved
- Non-trivial

Meaningful near horizon boundary conditions and non-trivial theory!

► Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos

Most general trafo

$$\delta_{\epsilon}\mathfrak{a} = d\epsilon + [\mathfrak{a}, \, \epsilon] = \mathcal{O}(\delta\mathfrak{a})$$

that preserves our boundary conditions for constant ζ given by

$$\epsilon = \epsilon^+ L_+ + \eta L_0 + \epsilon^- L_-$$

with

$$\partial_v \eta = 0$$

implying

$$\delta_{\epsilon} \mathcal{J} = \partial_{\varphi} \eta$$

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} \left(\varphi\right)$$

What should we expect?

- Virasoro? (spacetime is locally AdS₃)
- ▶ BMS₃? (Rindler boundary similar to scri)
- warped conformal algebra? (this is what we found for Rindleresque holography and what Donnay, Giribet, Gonzalez, Pino found in their near horizon analysis)

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} (\varphi)$$

Near horizon symmetry algebra

$$[J_n^{\pm}, J_m^{\pm}] = \pm \frac{1}{2} kn \delta_{n+m,0} \qquad [J_n^{+}, J_m^{-}] = 0$$

Two $\hat{u}(1)$ current algebras with non-zero levels

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} (\varphi)$$

Near horizon symmetry algebra

$$[J_n^{\pm}, J_m^{\pm}] = \pm \frac{1}{2} kn \delta_{n+m,0} \qquad [J_n^{+}, J_m^{-}] = 0$$

Two $\hat{u}(1)$ current algebras with non-zero levels

▶ Much simpler than CFT₂, warped CFT₂, Galilean CFT₂, etc.

- Near horizon symmetry algebra = all near horizon boundary conditions preserving trafos, modulo trivial gauge trafos
- Expand charges in Fourier modes

$$J_n^{\pm} = \frac{k}{4\pi} \oint d\varphi \, e^{in\varphi} \mathcal{J}^{\pm} (\varphi)$$

Near horizon symmetry algebra

$$[J_n^{\pm}, J_m^{\pm}] = \pm \frac{1}{2} kn \delta_{n+m,0} \qquad [J_n^{+}, J_m^{-}] = 0$$

Two $\hat{u}(1)$ current algebras with non-zero levels

- ▶ Much simpler than CFT₂, warped CFT₂, Galilean CFT₂, etc.
- Map

$$P_0 = J_0^+ + J_0^ P_n = \frac{i}{kn} (J_{-n}^+ + J_{-n}^-) \text{ if } n \neq 0$$
 $X_n = J_n^+ - J_n^-$

yields Heisenberg algebra (with Casimirs X_0 , P_0)

$$[X_n, X_m] = [P_n, P_m] = [X_0, P_n] = [P_0, X_n] = 0$$

 $[X_n, P_m] = i\delta_{n,m} \text{ if } n \neq 0$

Brief list of generalizations

Heisenberg algebras as near horizon symmetries arise not only in AdS_3 Einstein gravity, but also in ...

- ... flat space Einstein gravity in three dimensions Afshar, DG, Merbis, Perez, Tempo, Troncoso '16
- ... higher spin gravity in three dimensions DG, Perez, Prohazka, Tempo, Troncoso '16
- ... higher derivative gravity in three dimensions Setare, Adami '16
- ... general relativity (in four dimensions)
 Afshar, DG, Sheikh-Jabbari '16
- ... flat space higher spin gravity in three dimensions Ammon, Grumiller, Prohazka, Riegler, Wutte '17

Conclusions about near horizon symmetry algebra fairly general!

Outline

Motivation

Near horizon boundary conditions

Explicit construction of BTZ microstates

Discussion

▶ Denote "near horizon" generators with calligraphic letters

- ▶ Denote "near horizon" generators with calligraphic letters
- Near horizon algebra (conveniently rescaled)

$$\left[\mathcal{J}_n^{\pm},\,\mathcal{J}_m^{\pm}\right] = \frac{1}{2}\,n\,\delta_{n,-m}$$

- ▶ Denote "near horizon" generators with calligraphic letters
- Near horizon algebra (conveniently rescaled)

$$\left[\mathcal{J}_n^{\pm},\,\mathcal{J}_m^{\pm}\right] = \frac{1}{2}\,n\,\delta_{n,-m}$$

Near horizon Hilbert space: define vacuum by highest weight conditions

$$\mathcal{J}_n^{\pm}|0\rangle = 0$$
 for all $n \ge 0$.

- ▶ Denote "near horizon" generators with calligraphic letters
- Near horizon algebra (conveniently rescaled)

$$\left[\mathcal{J}_n^{\pm},\,\mathcal{J}_m^{\pm}\right] = \frac{1}{2}\,n\,\delta_{n,-m}$$

Near horizon Hilbert space: define vacuum by highest weight conditions

$$\mathcal{J}_n^{\pm}|0\rangle = 0$$
 for all $n \ge 0$.

Construct near horizon Virasoro through standard Sugawara construction

$$\mathcal{L}_n^{\pm} \equiv \sum_{p \in \mathbb{Z}} : \mathcal{J}_{n-p}^{\pm} \, \mathcal{J}_p^{\pm} :$$

- ▶ Denote "near horizon" generators with calligraphic letters
- Near horizon algebra (conveniently rescaled)

$$\left[\mathcal{J}_n^{\pm},\,\mathcal{J}_m^{\pm}\right] = \frac{1}{2}\,n\,\delta_{n,-m}$$

Near horizon Hilbert space: define vacuum by highest weight conditions

$$\mathcal{J}_n^{\pm}|0\rangle = 0$$
 for all $n \ge 0$.

Construct near horizon Virasoro through standard Sugawara construction

$$\mathcal{L}_n^{\pm} \equiv \sum_{p \in \mathbb{Z}} : \mathcal{J}_{n-p}^{\pm} \, \mathcal{J}_p^{\pm} :$$

Get Virasoro algebra with central charge 1

$$[\mathcal{L}_{n}^{\pm}, \mathcal{L}_{m}^{\pm}] = (n-m)\mathcal{L}_{n+m}^{\pm} + \frac{1}{12}(n^{3}-n)\delta_{n,-m}$$

 $[\mathcal{L}_{n}^{\pm}, \mathcal{J}_{m}^{\pm}] = -m\mathcal{J}_{n+m}^{\pm}$

- ▶ Denote "near horizon" generators with calligraphic letters
- Near horizon algebra (conveniently rescaled)

$$\left[\mathcal{J}_n^{\pm},\,\mathcal{J}_m^{\pm}\right] = \frac{1}{2}\,n\,\delta_{n,-m}$$

 Near horizon Hilbert space: define vacuum by highest weight conditions

$$\mathcal{J}_n^{\pm}|0\rangle = 0$$
 for all $n \ge 0$.

Construct near horizon Virasoro through standard Sugawara construction

$$\mathcal{L}_n^{\pm} \equiv \sum_{p \in \mathbb{Z}} : \mathcal{J}_{n-p}^{\pm} \, \mathcal{J}_p^{\pm} :$$

Get Virasoro algebra with central charge 1

$$[\mathcal{L}_{n}^{\pm}, \mathcal{L}_{m}^{\pm}] = (n-m)\mathcal{L}_{n+m}^{\pm} + \frac{1}{12}(n^{3}-n)\delta_{n,-m}$$

 $[\mathcal{L}_{n}^{\pm}, \mathcal{J}_{m}^{\pm}] = -m\mathcal{J}_{n+m}^{\pm}$

ightharpoonup Call this "near horizon symmetry algebra" (note: independent from ℓ)

Generic descendant of vacuum:

Generic descendant of vacuum:

$$|\Psi(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-}\right) |0\rangle$$

with set of positive integers $\{n_i^{\pm}>0\}$

▶ Near horizon Hamiltonian $H \sim \mathcal{J}_0^+ + \mathcal{J}_0^-$ commutes with near horizon symmetry algebra

Generic descendant of vacuum:

$$|\Psi(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \! \left(\mathcal{J}_{-n_i^+}^+ \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

- Near horizon Hamiltonian $H \sim \mathcal{J}_0^+ + \mathcal{J}_0^-$ commutes with near horizon symmetry algebra
- Descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)

Generic descendant of vacuum:

$$|\Psi(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \! \left(\mathcal{J}_{-n_i^+}^+ \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

- ▶ Near horizon Hamiltonian $H \sim \mathcal{J}_0^+ + \mathcal{J}_0^-$ commutes with near horizon symmetry algebra
- Descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)
- ▶ Immediate issue for entropy: infinite soft hair degeneracy!

Generic descendant of vacuum:

$$|\Psi(\{n_i^\pm\})\rangle = \prod_{\{n_i^\pm>0\}} \! \left(\mathcal{J}_{-n_i^+}^+ \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

- Near horizon Hamiltonian $H \sim \mathcal{J}_0^+ + \mathcal{J}_0^-$ commutes with near horizon symmetry algebra
- Descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)
- Immediate issue for entropy: infinite soft hair degeneracy!
- ▶ Note: descendants have positive eigenvalues of \mathcal{L}_0^\pm

$$\mathcal{L}_0^{\pm}|\Psi(\{n_i^{\pm})\}\rangle = \sum_i n_i^{\pm}|\Psi(\{n_i^{\pm}\})\rangle \equiv \mathcal{E}_{\Psi}^{\pm}|\Psi(\{n_i^{\pm}\})\rangle$$

Generic descendant of vacuum:

$$|\Psi(\{n_i^\pm\})\rangle = \prod_{\{n_i^\pm>0\}} \! \left(\mathcal{J}_{-n_i^+}^+ \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

with set of positive integers $\{n_i^{\pm}>0\}$

- Near horizon Hamiltonian $H \sim \mathcal{J}_0^+ + \mathcal{J}_0^-$ commutes with near horizon symmetry algebra
- Descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)
- ▶ Immediate issue for entropy: infinite soft hair degeneracy!
- ▶ Note: descendants have positive eigenvalues of \mathcal{L}_0^{\pm}

$$\mathcal{L}_0^{\pm}|\Psi(\{n_i^{\pm})\}\rangle = \sum_i n_i^{\pm}|\Psi(\{n_i^{\pm}\})\rangle \equiv \mathcal{E}_{\Psi}^{\pm}|\Psi(\{n_i^{\pm}\})\rangle$$

▶ Will exploit this property to provide cut-off on soft hair spectrum!

▶ Our algebra in original form

$$[J_n^{\pm}, J_m^{\pm}] = \frac{k}{2} n \, \delta_{n,-m}$$

Our algebra in original form

$$[J_n^{\pm}, J_m^{\pm}] = \frac{k}{2} n \, \delta_{n,-m}$$

 Map to asymptotic Virasoro algebra through twisted Sugawara construction

$$[L_n^\pm,\,J_m^\pm] = -m\,J_{n+m}^\pm + i\tfrac{k}{2}\,m^2\,\delta_{n,-m}$$

Note to experts: twist-term follows uniquely from mapping our connection into highest weight gauge

Our algebra in original form

$$[J_n^{\pm}, J_m^{\pm}] = \frac{k}{2} n \, \delta_{n,-m}$$

 Map to asymptotic Virasoro algebra through twisted Sugawara construction

$$[L_n^\pm,\,J_m^\pm] = -m\,J_{n+m}^\pm + i\tfrac{k}{2}\,m^2\,\delta_{n,-m}$$

Note to experts: twist-term follows uniquely from mapping our connection into highest weight gauge

▶ Get asymptotic Virasoro with Brown–Henneaux central charge

$$[L_n^{\pm}, L_m^{\pm}] = (n-m)L_{n+m}^{\pm} + \frac{c}{12} n^3 \delta_{n,-m}$$

where $c = 6k = 3\ell/(2G_N)$ in large k-limit

Our algebra in original form

$$[J_n^{\pm}, J_m^{\pm}] = \frac{k}{2} n \, \delta_{n,-m}$$

 Map to asymptotic Virasoro algebra through twisted Sugawara construction

$$[L_n^{\pm},\,J_m^{\pm}] = -m\,J_{n+m}^{\pm} + i\frac{k}{2}\,m^2\,\delta_{n,-m}$$

Note to experts: twist-term follows uniquely from mapping our connection into highest weight gauge

▶ Get asymptotic Virasoro with Brown–Henneaux central charge

$$[L_n^{\pm}, L_m^{\pm}] = (n-m)L_{n+m}^{\pm} + \frac{c}{12}n^3\delta_{n,-m}$$

where $c = 6k = 3\ell/(2G_N)$ in large k-limit

Algebra gets twisted

$$[L_n^{\pm}, J_m^{\pm}] = -m J_{n+m}^{\pm} + i \frac{k}{2} m^2 \delta_{n,-m}$$

Suggestive proposal (see Bañados 9811162)

$$cL_0^{\pm} = \mathcal{L}_0^{\pm} - \frac{1}{24}$$

Suggestive proposal (see Bañados 9811162)

$$cL_0^{\pm} = \mathcal{L}_0^{\pm} - \frac{1}{24}$$

Consistency of algebras then implies

$$J_n^{\pm} = \frac{1}{\sqrt{6}} \mathcal{J}_{nc}^{\pm}, \qquad n \neq 0$$

Suggestive proposal (see Bañados 9811162)

$$cL_0^{\pm} = \mathcal{L}_0^{\pm} - \frac{1}{24}$$

Consistency of algebras then implies

$$J_n^{\pm} = \frac{1}{\sqrt{6}} \mathcal{J}_{nc}^{\pm}, \qquad n \neq 0$$

▶ Even though J_n and \mathcal{J}_n algebras isomorphic, near horizon algebra has more generators than asymptotic one due to relation above, namely \mathcal{J}_m with $m \neq nc$

Suggestive proposal (see Bañados 9811162)

$$cL_0^{\pm} = \mathcal{L}_0^{\pm} - \frac{1}{24}$$

Consistency of algebras then implies

$$J_n^{\pm} = \frac{1}{\sqrt{6}} \mathcal{J}_{nc}^{\pm}, \qquad n \neq 0$$

- ▶ Even though J_n and \mathcal{J}_n algebras isomorphic, near horizon algebra has more generators than asymptotic one due to relation above, namely \mathcal{J}_m with $m \neq nc$
- \blacktriangleright Relation between J_0 and \mathcal{J}_0 also induced by above, but not needed

Suggestive proposal (see Bañados 9811162)

$$cL_0^{\pm} = \mathcal{L}_0^{\pm} - \frac{1}{24}$$

Consistency of algebras then implies

$$J_n^{\pm} = \frac{1}{\sqrt{6}} \mathcal{J}_{nc}^{\pm}, \qquad n \neq 0$$

- Even though J_n and \mathcal{J}_n algebras isomorphic, near horizon algebra has more generators than asymptotic one due to relation above, namely \mathcal{J}_m with $m \neq nc$
- lacktriangle Relation between J_0 and \mathcal{J}_0 also induced by above, but not needed
- Main point: use eigenvalues of asymptotic generators L_0^\pm (essentially mass and angular momentum of BTZ) to provide cut-off on soft hair spectrum

$$\langle L_0^{\pm} \rangle_{\mathrm{BTZ}} = \Delta^{\pm} \qquad \langle L_{n \neq 0}^{\pm} \rangle_{\mathrm{BTZ}} = 0$$

Proposed map between near horizon and asymptotic generators

Suggestive proposal (see Bañados 9811162)

$$cL_0^{\pm} = \mathcal{L}_0^{\pm} - \frac{1}{24}$$

Consistency of algebras then implies

$$J_n^{\pm} = \frac{1}{\sqrt{6}} \mathcal{J}_{nc}^{\pm}, \qquad n \neq 0$$

- Even though J_n and \mathcal{J}_n algebras isomorphic, near horizon algebra has more generators than asymptotic one due to relation above, namely \mathcal{J}_m with $m \neq nc$
- lacktriangle Relation between J_0 and \mathcal{J}_0 also induced by above, but not needed
- Main point: use eigenvalues of asymptotic generators L_0^\pm (essentially mass and angular momentum of BTZ) to provide cut-off on soft hair spectrum

$$\langle L_0^{\pm} \rangle_{\text{BTZ}} = \Delta^{\pm} \qquad \langle L_{n \neq 0}^{\pm} \rangle_{\text{BTZ}} = 0$$

 Microstates = all states in near horizon Hilbert space obeying equations above

Horizon fluffs as microstates We are now ready to identify all BTZ microstates

lacktriangle Vector space $\mathcal{V}_{\mathcal{B}}$ of BTZ microstates defined by

$$\langle \mathcal{B}' | L_{n \neq 0}^{\pm} | \mathcal{B} \rangle = 0 \qquad \forall \mathcal{B}, \mathcal{B}' \in \mathcal{V}_{\mathcal{B}}$$

We are now ready to identify all BTZ microstates

lacktriangle Vector space $\mathcal{V}_{\mathcal{B}}$ of BTZ microstates defined by

$$\langle \mathcal{B}' | L_{n \neq 0}^{\pm} | \mathcal{B} \rangle = 0 \qquad \forall \mathcal{B}, \mathcal{B}' \in \mathcal{V}_{\mathcal{B}}$$

All BTZ microstates ("horizon fluffs") are then of the form

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \mathcal{N}_{\{n_i^{\pm}\}} \prod_{\{0 < n_i^{\pm}\}} \!\! \left(\mathcal{J}_{-n_i^+}^+ \, \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to
$$\langle L_0^\pm
angle_{
m BTZ} = \Delta^\pm$$

We are now ready to identify all BTZ microstates

lacktriangle Vector space $\mathcal{V}_{\mathcal{B}}$ of BTZ microstates defined by

$$\langle \mathcal{B}' | L_{n \neq 0}^{\pm} | \mathcal{B} \rangle = 0 \qquad \forall \mathcal{B}, \mathcal{B}' \in \mathcal{V}_{\mathcal{B}}$$

▶ All BTZ microstates ("horizon fluffs") are then of the form

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \mathcal{N}_{\{n_i^{\pm}\}} \prod_{\{0 < n_i^{\pm}\}} \!\! \left(\mathcal{J}_{-n_i^+}^+ \, \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to
$$\langle L_0^\pm
angle_{
m BTZ} = \Delta^\pm$$

This is the key result

We are now ready to identify all BTZ microstates

lacktriangle Vector space $\mathcal{V}_{\mathcal{B}}$ of BTZ microstates defined by

$$\langle \mathcal{B}' | L_{n \neq 0}^{\pm} | \mathcal{B} \rangle = 0 \qquad \forall \mathcal{B}, \mathcal{B}' \in \mathcal{V}_{\mathcal{B}}$$

► All BTZ microstates ("horizon fluffs") are then of the form

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \mathcal{N}_{\{n_i^{\pm}\}} \prod_{\{0 < n_i^{\pm}\}} \!\! \left(\mathcal{J}_{-n_i^+}^+ \, \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to
$$\langle L_0^{\pm}
angle_{ ext{BTZ}} = \Delta^{\pm}$$

- This is the key result
- ▶ Normalization constant $\mathcal{N}_{\{n_i^{\pm}\}}$ fixed by compatibility:

$$\langle \mathcal{B}' | L_0^{\pm} | \mathcal{B} \rangle = \Delta^{\pm} \delta_{\mathcal{B}, \mathcal{B}'}$$

We are now ready to identify all BTZ microstates

lacktriangle Vector space $\mathcal{V}_{\mathcal{B}}$ of BTZ microstates defined by

$$\langle \mathcal{B}' | L_{n \neq 0}^{\pm} | \mathcal{B} \rangle = 0 \qquad \forall \mathcal{B}, \mathcal{B}' \in \mathcal{V}_{\mathcal{B}}$$

► All BTZ microstates ("horizon fluffs") are then of the form

$$|\mathcal{B}(\{n_i^\pm\})\rangle = \mathcal{N}_{\{n_i^\pm\}} \prod_{\{0 < n_i^\pm\}} \!\! \left(\mathcal{J}_{-n_i^+}^+ \, \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to
$$\langle L_0^{\pm} \rangle_{\mathrm{BTZ}} = \Delta^{\pm}$$

- This is the key result
- ▶ Normalization constant $\mathcal{N}_{\{n_i^{\pm}\}}$ fixed by compatibility:

$$\langle \mathcal{B}' | L_0^{\pm} | \mathcal{B} \rangle = \Delta^{\pm} \delta_{\mathcal{B}, \mathcal{B}'}$$

Useful observation:

$$\Delta^{\pm} = \langle \mathcal{B} | L_0^{\pm} | \mathcal{B} \rangle \approx \frac{1}{c} \langle \mathcal{B} | \mathcal{L}_0^{\pm} | \mathcal{B} \rangle = \frac{1}{c} \sum_i n_i^{\pm} = \frac{1}{c} \ \mathcal{E}_{\mathcal{B}}^{\pm}$$

▶ Problem of counting microstates now reduced to combinatorics

- Problem of counting microstates now reduced to combinatorics
- lacktriangle Count all horizon fluffs with same energy $\mathcal{E}_{\mathcal{B}}^{\pm}$

- Problem of counting microstates now reduced to combinatorics
- lacktriangle Count all horizon fluffs with same energy $\mathcal{E}_{\mathcal{B}}^{\pm}$
- ▶ Mathematically, reduces to number p(N) of ways positive integer N partitioned into positive integers

- Problem of counting microstates now reduced to combinatorics
- lacktriangle Count all horizon fluffs with same energy $\mathcal{E}_{\mathcal{B}}^{\pm}$
- lacktriangle Mathematically, reduces to number p(N) of ways positive integer N partitioned into positive integers
- lacktriangle Work semi-classically, i.e., in limit of large N

- Problem of counting microstates now reduced to combinatorics
- lacktriangle Count all horizon fluffs with same energy $\mathcal{E}_{\mathcal{B}}^{\pm}$
- lacktriangle Mathematically, reduces to number p(N) of ways positive integer N partitioned into positive integers
- lacktriangle Work semi-classically, i.e., in limit of large N
- Problem above solved long ago by Hardy and Ramanujan

$$p(N)\big|_{N\gg 1} \simeq \frac{1}{4N\sqrt{3}} \exp\left(2\pi\sqrt{\frac{N}{6}}\right)$$

- Problem of counting microstates now reduced to combinatorics
- lacktriangle Count all horizon fluffs with same energy $\mathcal{E}_{\mathcal{B}}^{\pm}$
- lacktriangle Mathematically, reduces to number p(N) of ways positive integer N partitioned into positive integers
- lacktriangle Work semi-classically, i.e., in limit of large N
- ▶ Problem above solved long ago by Hardy and Ramanujan

$$p(N)\big|_{N\gg 1} \simeq \frac{1}{4N\sqrt{3}} \exp\left(2\pi\sqrt{\frac{N}{6}}\right)$$

 \blacktriangleright Number of BTZ microstates: $p(\mathcal{E}_{\mathcal{B}}^+) \cdot p(\mathcal{E}_{\mathcal{B}}^-)$

- Problem of counting microstates now reduced to combinatorics
- lacktriangle Count all horizon fluffs with same energy $\mathcal{E}_{\mathcal{B}}^{\pm}$
- lacktriangle Mathematically, reduces to number p(N) of ways positive integer N partitioned into positive integers
- lacktriangle Work semi-classically, i.e., in limit of large N
- ▶ Problem above solved long ago by Hardy and Ramanujan

$$p(N)\big|_{N\gg 1} \simeq \frac{1}{4N\sqrt{3}} \exp\left(2\pi\sqrt{\frac{N}{6}}\right)$$

- ▶ Number of BTZ microstates: $p(\mathcal{E}_{\mathcal{B}}^+) \cdot p(\mathcal{E}_{\mathcal{B}}^-)$
- Result for entropy:

$$S = \ln p(\mathcal{E}_{\mathcal{B}}^{+}) + \ln p(\mathcal{E}_{\mathcal{B}}^{-}) = 2\pi \left(\sqrt{\frac{c\Delta^{+}}{6}} + \sqrt{\frac{c\Delta^{-}}{6}} \right) + \dots$$

- Problem of counting microstates now reduced to combinatorics
- lacktriangle Count all horizon fluffs with same energy $\mathcal{E}_{\mathcal{B}}^{\pm}$
- lacktriangle Mathematically, reduces to number p(N) of ways positive integer N partitioned into positive integers
- lacktriangle Work semi-classically, i.e., in limit of large N
- Problem above solved long ago by Hardy and Ramanujan

$$p(N)\big|_{N\gg 1} \simeq \frac{1}{4N\sqrt{3}} \exp\left(2\pi\sqrt{\frac{N}{6}}\right)$$

- ▶ Number of BTZ microstates: $p(\mathcal{E}_{\mathcal{B}}^+) \cdot p(\mathcal{E}_{\mathcal{B}}^-)$
- Result for entropy:

$$S = \ln p(\mathcal{E}_{\mathcal{B}}^+) + \ln p(\mathcal{E}_{\mathcal{B}}^-) = 2\pi \left(\sqrt{\frac{c\Delta^+}{6}} + \sqrt{\frac{c\Delta^-}{6}} \right) + \dots$$

► Agrees with Bekenstein-Hawking and Cardy formula

Outline

Motivation

Near horizon boundary conditions

Explicit construction of BTZ microstates

Discussion

► Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg

- ► Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg
- ► Strominger, Vafa '96: string construction of microstates that relies on BPS/extremality

- Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg
- ► Strominger, Vafa '96: string construction of microstates that relies on BPS/extremality
- ► Strominger '97: exploits Cardy formula for microstate counting, but does not identify microstates

- Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg
- ► Strominger, Vafa '96: string construction of microstates that relies on BPS/extremality
- Strominger '97: exploits Cardy formula for microstate counting, but does not identify microstates
- Mathur '05: fuzzballs, like horizon fluffs, do not have horizon; we need only semi-classical near horizon description, not full quantum gravity

- Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg
- ► Strominger, Vafa '96: string construction of microstates that relies on BPS/extremality
- Strominger '97: exploits Cardy formula for microstate counting, but does not identify microstates
- Mathur '05: fuzzballs, like horizon fluffs, do not have horizon; we need only semi-classical near horizon description, not full quantum gravity
- ▶ Donnay, Giribet, Gonzalez, Pino '15: near horizon bc's (fixed Rindler) with centerless warped algebra

- ► Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg
- ► Strominger, Vafa '96: string construction of microstates that relies on BPS/extremality
- Strominger '97: exploits Cardy formula for microstate counting, but does not identify microstates
- Mathur '05: fuzzballs, like horizon fluffs, do not have horizon; we need only semi-classical near horizon description, not full quantum gravity
- ▶ Donnay, Giribet, Gonzalez, Pino '15: near horizon bc's (fixed Rindler) with centerless warped algebra
- Afshar, Detournay, DG, Oblak '15: near horizon bc's (varying Rindler) and null compactification with twisted warped algebra

- Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg
- ► Strominger, Vafa '96: string construction of microstates that relies on BPS/extremality
- Strominger '97: exploits Cardy formula for microstate counting, but does not identify microstates
- Mathur '05: fuzzballs, like horizon fluffs, do not have horizon; we need only semi-classical near horizon description, not full quantum gravity
- ▶ Donnay, Giribet, Gonzalez, Pino '15: near horizon bc's (fixed Rindler) with centerless warped algebra
- Afshar, Detournay, DG, Oblak '15: near horizon bc's (varying Rindler) and null compactification with twisted warped algebra
- ► Hawking, Perry, Strominger '16: introduced notion of "soft hair", but did not attempt microstate counting

- Carlip '94: conceptually very close; main difference: Carlip stresses near horizon Virasoro, while we exploit near horizon Heisenberg
- ► Strominger, Vafa '96: string construction of microstates that relies on BPS/extremality
- Strominger '97: exploits Cardy formula for microstate counting, but does not identify microstates
- Mathur '05: fuzzballs, like horizon fluffs, do not have horizon; we need only semi-classical near horizon description, not full quantum gravity
- Donnay, Giribet, Gonzalez, Pino '15: near horizon bc's (fixed Rindler) with centerless warped algebra
- ▶ Afshar, Detournay, DG, Oblak '15: near horizon bc's (varying Rindler) and null compactification with twisted warped algebra
- ► Hawking, Perry, Strominger '16: introduced notion of "soft hair", but did not attempt microstate counting
- Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16: introduced near horizon bc's we use; did not attempt construction of microstates (but does Cardy-type of counting)

Compare with near horizon construction of Donnay, Giribet, Gonzalez, Pino '15

▶ Near horizon algebra similar to but different from BT-BMS₄:

$$[\mathcal{Y}_n^{\pm}, \mathcal{Y}_m^{\pm}] = (n-m) \mathcal{Y}_{n+m}^{\pm}$$
$$[\mathcal{Y}_l^{+}, \mathcal{T}_{(n,m)}] = -n \mathcal{T}_{(n+l,m)}$$
$$[\mathcal{Y}_l^{-}, \mathcal{T}_{(n,m)}] = -m \mathcal{T}_{(n,m+l)}$$

Compare with near horizon construction of Donnay, Giribet, Gonzalez, Pino '15

▶ Near horizon algebra similar to but different from BT-BMS₄:

$$[\mathcal{Y}_n^{\pm}, \mathcal{Y}_m^{\pm}] = (n-m) \mathcal{Y}_{n+m}^{\pm}$$
$$[\mathcal{Y}_l^{+}, \mathcal{T}_{(n,m)}] = -n \mathcal{T}_{(n+l,m)}$$
$$[\mathcal{Y}_l^{-}, \mathcal{T}_{(n,m)}] = -m \mathcal{T}_{(n,m+l)}$$

Intriguing algebraic observation: introducing again

$$[\mathcal{J}_n^{\pm}, \, \mathcal{J}_m^{\pm}] = \frac{1}{2} \, n \, \delta_{n,-m} = -[\mathcal{K}_n^{\pm}, \, \mathcal{K}_m^{\pm}]$$

recovers 4d algebra above by "Sugawara construction"

$$\mathcal{T}_{(n,m)} = \left(\mathcal{J}_n^+ + \mathcal{K}_n^+\right) \left(\mathcal{J}_m^- + \mathcal{K}_m^-\right)$$
$$\mathcal{Y}_n^{\pm} = \sum_{p \in \mathbb{Z}} \left(\mathcal{J}_{n-p}^{\pm} + \mathcal{K}_{n-p}^{\pm}\right) \left(\mathcal{J}_p^{\pm} - \mathcal{K}_p^{\pm}\right)$$

Compare with near horizon construction of Donnay, Giribet, Gonzalez, Pino '15

Near horizon algebra similar to but different from BT-BMS₄:

$$[\mathcal{Y}_n^{\pm}, \mathcal{Y}_m^{\pm}] = (n-m) \mathcal{Y}_{n+m}^{\pm}$$
$$[\mathcal{Y}_l^{+}, \mathcal{T}_{(n,m)}] = -n \mathcal{T}_{(n+l,m)}$$
$$[\mathcal{Y}_l^{-}, \mathcal{T}_{(n,m)}] = -m \mathcal{T}_{(n,m+l)}$$

▶ Intriguing algebraic observation: introducing again

$$[\mathcal{J}_n^{\pm}, \, \mathcal{J}_m^{\pm}] = \frac{1}{2} \, n \, \delta_{n,-m} = -[\mathcal{K}_n^{\pm}, \, \mathcal{K}_m^{\pm}]$$

recovers 4d algebra above by "Sugawara construction"

$$\mathcal{T}_{(n,m)} = \left(\mathcal{J}_n^+ + \mathcal{K}_n^+\right) \left(\mathcal{J}_m^- + \mathcal{K}_m^-\right)$$
$$\mathcal{Y}_n^{\pm} = \sum_{p \in \mathbb{Z}} \left(\mathcal{J}_{n-p}^{\pm} + \mathcal{K}_{n-p}^{\pm}\right) \left(\mathcal{J}_p^{\pm} - \mathcal{K}_p^{\pm}\right)$$

 Making AKVs in DGGP state-dependent to leading order relates their canonical boundary charges to Heisenberg boundary charges

Compare with near horizon construction of Donnay, Giribet, Gonzalez, Pino '15

▶ Near horizon algebra similar to but different from BT-BMS₄:

$$[\mathcal{Y}_n^{\pm}, \mathcal{Y}_m^{\pm}] = (n-m) \mathcal{Y}_{n+m}^{\pm}$$
$$[\mathcal{Y}_l^{+}, \mathcal{T}_{(n,m)}] = -n \mathcal{T}_{(n+l,m)}$$
$$[\mathcal{Y}_l^{-}, \mathcal{T}_{(n,m)}] = -m \mathcal{T}_{(n,m+l)}$$

Intriguing algebraic observation: introducing again

$$[\mathcal{J}_n^{\pm}, \, \mathcal{J}_m^{\pm}] = \frac{1}{2} \, n \, \delta_{n,-m} = -[\mathcal{K}_n^{\pm}, \, \mathcal{K}_m^{\pm}]$$

recovers 4d algebra above by "Sugawara construction"

$$\mathcal{T}_{(n,m)} = \left(\mathcal{J}_n^+ + \mathcal{K}_n^+\right) \left(\mathcal{J}_m^- + \mathcal{K}_m^-\right)$$
$$\mathcal{Y}_n^{\pm} = \sum_{p \in \mathbb{Z}} \left(\mathcal{J}_{n-p}^{\pm} + \mathcal{K}_{n-p}^{\pm}\right) \left(\mathcal{J}_p^{\pm} - \mathcal{K}_p^{\pm}\right)$$

- Making AKVs in DGGP state-dependent to leading order relates their canonical boundary charges to Heisenberg boundary charges
 - Indicates existence of soft Heisenberg hair in 4d

Microstates of non-extremal Kerr?

Main challenge: how to provide (controlled) cut-off on soft hair spectrum in four dimensions?

Thanks for your attention!

H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez, D. Tempo and R. Troncoso "Soft Heisenberg hair on black holes in three dimensions," Phys.Rev. **D93** (2016) 101503(R); 1603.04824.

Thanks to Bob McNees for providing the LATEX beamerclass!

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J}x = 1$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J} x = 1$

Near horizon chemical potential transforms into combination of asymptotic charge and chemical potential!

$$\mu' - \mathcal{J}\mu = -\zeta$$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J}x = 1$

Near horizon chemical potential transforms into combination of asymptotic charge and chemical potential!

$$\mu' - \mathcal{J}\mu = -\zeta$$

 Asymptotic charges: twisted Sugawara construction with near horizon charges

$$\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$$

▶ Usual asymptotic AdS₃ connection with chemical potential μ :

$$\hat{A} = \hat{b}^{-1} (d + \hat{a}) \hat{b} \qquad \hat{a}_{\varphi} = L_{+} - \frac{1}{2} \mathcal{L} L_{-}$$

$$\hat{b} = e^{\rho L_{0}} \quad \hat{a}_{t} = \mu L_{+} - \mu' L_{0} + (\frac{1}{2} \mu'' - \frac{1}{2} \mathcal{L} \mu) L_{-}$$

▶ Gauge trafo $\hat{\mathfrak{a}} = g^{-1} (d+\mathfrak{a}) g$ with

$$g = \exp(xL_+) \cdot \exp\left(-\frac{1}{2}\mathcal{J}L_-\right)$$

where $\partial_v x - \zeta x = \mu$ and $x' - \mathcal{J}x = 1$

Near horizon chemical potential transforms into combination of asymptotic charge and chemical potential!

$$\mu' - \mathcal{J}\mu = -\zeta$$

 Asymptotic charges: twisted Sugawara construction with near horizon charges

$$\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$$

• Get Virasoro with non-zero central charge $\delta \mathcal{L} = 2\mathcal{L}\varepsilon' + \mathcal{L}'\varepsilon - \varepsilon'''$

Remarks on asymptotic and near horizon variables

► Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

Remarks on asymptotic and near horizon variables

► Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

 Our boundary conditions singled out: whole spectrum compatible with regularity

Remarks on asymptotic and near horizon variables

 Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

- Our boundary conditions singled out: whole spectrum compatible with regularity
- For constant chemical potential ζ : regularity = holonomy condition

$$\mu \mu'' - \frac{1}{2} \mu'^2 - \mu^2 \mathcal{L} = -2\pi^2/\beta^2$$

Solved automatically from map to asymptotic observables; reminder:

$$\mu' - \mathcal{J}\mu = -\zeta$$
 $\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$

Remarks on asymptotic and near horizon variables

 Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey still Heisenberg algebra

$$\delta Q = -\frac{k}{4\pi} \oint d\varphi \, \varepsilon \, \delta \mathcal{L} = -\frac{k}{4\pi} \oint d\varphi \, \eta \, \delta \mathcal{J}$$

Reason: asymptotic "chemical potentials" μ depend on near horizon charges ${\cal J}$ and chemical potentials ${\pmb \zeta}$

- Our boundary conditions singled out: whole spectrum compatible with regularity
- For constant chemical potential ζ : regularity = holonomy condition

$$\mu \mu'' - \frac{1}{2}\mu'^2 - \mu^2 \mathcal{L} = -2\pi^2/\beta^2$$

Solved automatically from map to asymptotic observables; reminder:

$$\mu' - \mathcal{J}\mu = -\zeta$$
 $\mathcal{L} = \frac{1}{2}\mathcal{J}^2 + \mathcal{J}'$

Near horizon boundary conditions natural for near horizon observer

On compatibility with AdS_3/CFT_2 Punchline: our proposal is Bohr-type quantization of spectrum

 \blacktriangleright Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$

On compatibility with AdS_3/CFT_2 Punchline: our proposal is Bohr-type quantization of spectrum

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$

On compatibility with AdS_3/CFT_2 Punchline: our proposal is Bohr-type quantization of spectrum

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction

On compatibility with AdS_3/CFT_2 Punchline: our proposal is Bohr-type quantization of spectrum

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^{\pm}) and set of integers (Virasoro excitations)

On compatibility with AdS_3/CFT_2 Punchline: our proposal is Bohr-type quantization of spectrum

- \blacktriangleright Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- ▶ States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^{\pm}) and set of integers (Virasoro excitations)
- ▶ Gravity side, near horizon: soft hair Hilbert space $\mathcal{H}_{\mathrm{NH}}$ includes all soft hair descendants of vacuum labeled by set of integers

On compatibility with AdS₃/CFT₂ Punchline: our proposal is Bohr-type quantization of spectrum

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- ▶ States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^{\pm}) and set of integers (Virasoro excitations)
- ▶ Gravity side, near horizon: soft hair Hilbert space \mathcal{H}_{NH} includes all soft hair descendants of vacuum labeled by set of integers
- $ightharpoonup \mathcal{H}_{\mathrm{NH}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$

On compatibility with AdS₃/CFT₂

- \blacktriangleright Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- ▶ States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^\pm) and set of integers (Virasoro excitations)
- ▶ Gravity side, near horizon: soft hair Hilbert space $\mathcal{H}_{\mathrm{NH}}$ includes all soft hair descendants of vacuum labeled by set of integers
- $ightharpoonup \mathcal{H}_{\mathrm{NH}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- CFT side: expected to have discrete set of primaries

On compatibility with AdS_3/CFT_2

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- ▶ States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^\pm) and set of integers (Virasoro excitations)
- ▶ Gravity side, near horizon: soft hair Hilbert space \mathcal{H}_{NH} includes all soft hair descendants of vacuum labeled by set of integers
- $ightharpoonup \mathcal{H}_{\mathrm{NH}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- CFT side: expected to have discrete set of primaries
- $ightharpoonup \mathcal{H}_{\mathrm{CFT}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$

On compatibility with AdS_3/CFT_2

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- ▶ Gravity side, asymptotically: \mathcal{H}_{Vir} splits into \mathcal{H}_{BTZ} , \mathcal{H}_{Conic} and \mathcal{H}_{AdS}
- \blacktriangleright Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- ▶ States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^\pm) and set of integers (Virasoro excitations)
- ▶ Gravity side, near horizon: soft hair Hilbert space \mathcal{H}_{NH} includes all soft hair descendants of vacuum labeled by set of integers
- $ightharpoonup \mathcal{H}_{\mathrm{NH}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- CFT side: expected to have discrete set of primaries
- $lacktriangleright \mathcal{H}_{\mathrm{CFT}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- ▶ Our proposal: $\mathcal{H}_{\mathrm{NH}} = \mathcal{H}_{\mathrm{CFT}}$

On compatibility with AdS_3/CFT_2

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- ▶ Gravity side, asymptotically: \mathcal{H}_{Vir} splits into \mathcal{H}_{BTZ} , \mathcal{H}_{Conic} and \mathcal{H}_{AdS}
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- ▶ States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^\pm) and set of integers (Virasoro excitations)
- ▶ Gravity side, near horizon: soft hair Hilbert space $\mathcal{H}_{\mathrm{NH}}$ includes all soft hair descendants of vacuum labeled by set of integers
- $ightharpoonup \mathcal{H}_{\mathrm{NH}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- CFT side: expected to have discrete set of primaries
- $lacktriangleright \mathcal{H}_{\mathrm{CFT}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- ▶ Our proposal: $\mathcal{H}_{\mathrm{NH}} = \mathcal{H}_{\mathrm{CFT}}$
- Example ([Lunin], Maldacena, Maoz '02): states in $\mathcal{H}_{\mathrm{CFT}}$ corresponding to conic spaces discrete family $L_0^{\pm} = -rk/4$ (r=0: massless BTZ, r=k: global AdS, 0 < r < k: spectral flow)

On compatibility with AdS₃/CFT₂

- lacktriangle Unitary representations of Virasoro algebra span Hilbert space $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Gravity side, asymptotically: $\mathcal{H}_{\mathrm{Vir}}$ splits into $\mathcal{H}_{\mathrm{BTZ}}$, $\mathcal{H}_{\mathrm{Conic}}$ and $\mathcal{H}_{\mathrm{AdS}}$
- lacktriangle Only states in $\mathcal{H}_{\mathrm{BTZ}}$ captured by twisted Sugawara construction
- ▶ States in \mathcal{H}_{BTZ} labelled by two positive numbers (L_0^{\pm}) and set of integers (Virasoro excitations)
- ▶ Gravity side, near horizon: soft hair Hilbert space \mathcal{H}_{NH} includes all soft hair descendants of vacuum labeled by set of integers
- $ightharpoonup \mathcal{H}_{\mathrm{NH}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- CFT side: expected to have discrete set of primaries
- $lacktriangleright \mathcal{H}_{\mathrm{CFT}}$ contained in $\mathcal{H}_{\mathrm{Vir}}$
- lacktriangle Our proposal: $\mathcal{H}_{\mathrm{NH}}=\mathcal{H}_{\mathrm{CFT}}$
- Example ([Lunin], Maldacena, Maoz '02): states in $\mathcal{H}_{\mathrm{CFT}}$ corresponding to conic spaces discrete family $L_0^{\pm} = -rk/4$ (r=0: massless BTZ, r=k: global AdS, 0 < r < k: spectral flow)
- Spectral flow and discrete conic spaces generated by \mathcal{J}_r^{\pm} $(r=1,2,\ldots c-1)$, the "horizon fluffs"

► Semi-classically

$$S = S_0 + \# \cdot \ln S_0 + \mathcal{O}(1)$$

► Semi-classically

$$S = S_0 + \# \cdot \ln S_0 + \mathcal{O}(1)$$

► Carlip '00:

$$S_{\mathrm{BTZ}} = S_{\mathrm{BH}} - \frac{3}{2} \cdot \ln S_{\mathrm{BH}} + \mathcal{O}(1)$$

Semi-classically

$$S = S_0 + \# \cdot \ln S_0 + \mathcal{O}(1)$$

► Carlip '00:

$$S_{\rm BTZ} = S_{\rm BH} - \frac{3}{2} \cdot \ln S_{\rm BH} + \mathcal{O}(1)$$

Naive application of Hardy–Ramanujan

$$S = S_{\rm BH} - 2 \cdot \ln S_{\rm BH} + \mathcal{O}(1)$$

Semi-classically

$$S = S_0 + \# \cdot \ln S_0 + \mathcal{O}(1)$$

► Carlip '00:

$$S_{\rm BTZ} = S_{\rm BH} - \frac{3}{2} \cdot \ln S_{\rm BH} + \mathcal{O}(1)$$

Naive application of Hardy–Ramanujan

$$S = S_{\rm BH} - 2 \cdot \ln S_{\rm BH} + \mathcal{O}(1)$$

Mismatch in coefficients; not sure yet if bug or feature