Model for gravity at large distances

Daniel Grumiller

Institute for Theoretical Physics Vienna University of Technology

Physik-Kolloquium Johannes Kepler Universität, March 2011

e-prints: 1011.3625, 1103.0274

Outline

Life, the Universe and Everything (we know) Particle Physics Cosmology

Puzzles

Energy budget of the Universe Dark matter

Model for Gravity at Large Distances As simple as possible, but not simpler Rindler force Observations

Outline

Life, the Universe and Everything (we know) Particle Physics Cosmology

Puzzles

Energy budget of the Universe Dark matter

Model for Gravity at Large Distances As simple as possible, but not simpler Rindler force Observations

Particles we know and have observed:

Three light generations

Particles we know and have observed:

- Three light generations
- Two leptons and quarks in each

Particles we know and have observed:

- Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)

- Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)
- Characterized by charges and masses

- Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)
- Characterized by charges and masses
- Only difference between generations: masses!

- Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)
- Characterized by charges and masses
- Only difference between generations: masses!
- Forces mediated by particles (spin 1)

- Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)
- Characterized by charges and masses
- Only difference between generations: masses!
- Forces mediated by particles (spin 1)
- \blacktriangleright Electromagnetic force: photon γ

- ► Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)
- Characterized by charges and masses
- Only difference between generations: masses!
- Forces mediated by particles (spin 1)
- Electromagnetic force: photon γ
- Weak force: vector bosons W^{\pm}, Z

- Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)
- Characterized by charges and masses
- Only difference between generations: masses!
- Forces mediated by particles (spin 1)
- Electromagnetic force: photon γ
- Weak force: vector bosons W^{\pm}, Z
- Strong force: gluons g

- Three light generations
- Two leptons and quarks in each
- All matter particles are fermions (spin 1/2)
- Characterized by charges and masses
- Only difference between generations: masses!
- Forces mediated by particles (spin 1)
- Electromagnetic force: photon γ
- Weak force: vector bosons W^{\pm}, Z
- ► Strong force: gluons g
- That's it! (well, almost...)

Standard Model of Particle Physics

A theory of (almost) everything:

Standard Model (SM) Lagrange density $F_{\mu\nu}$: bosons, Ψ : fermions, Φ : Higgs

 All experiments so far in accordance with SM! Standard Model of Particle Physics

A theory of (almost) everything:

Standard Model (SM) Lagrange density $F_{\mu\nu}$: bosons, Ψ : fermions, Φ : Higgs

- All experiments so far in accordance with SM!
- Amazingly accurate!
 e.g. gyromagnetic ratio of μ Experiment (2002):

 $\frac{g_{\mu}^{\rm exp}}{2} = 1.0011659209 \pm 0.0000000005$

Theory (2009):

$$\frac{g_{\mu}^{\rm the}}{2} = 1.0011659183 \pm 0.0000000004$$

Standard Model of Particle Physics

A theory of (almost) everything:

Standard Model (SM) Lagrange density $F_{\mu\nu}$: bosons, Ψ : fermions, Φ : Higgs

- All experiments so far in accordance with SM!
- Amazingly accurate!
 e.g. gyromagnetic ratio of μ Experiment (2002):

 $\frac{g_{\mu}^{\rm exp}}{2} = 1.0011659209 \pm 0.0000000005$

Theory (2009):

 $\frac{g_{\mu}^{\rm the}}{2} = 1.0011659183 \pm 0.0000000004$

Currently SM improved at LHC

$\mathsf{Gravity} = \mathsf{Geometry}$

 SM describes three of four forces as Quantum Field Theories

$\mathsf{Gravity} = \mathsf{Geometry}$

- SM describes three of four forces as Quantum Field Theories
- Gravity so far is described mostly as classical theory, General Relativity

$\mathsf{Gravity} = \mathsf{Geometry}$

- SM describes three of four forces as Quantum Field Theories
- Gravity so far is described mostly as classical theory, General Relativity
- General Relativity = geometry = theory of metric g_{μν}

$\mathsf{Gravity} = \mathsf{Geometry}$

- SM describes three of four forces as Quantum Field Theories
- Gravity so far is described mostly as classical theory, General Relativity
- General Relativity = geometry = theory of metric g_{μν}
- Einstein eqs. deceptively simple

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi G \, T_{\mu\nu}$$

left: geometry, right: matter

D. Grumiller — Model for gravity at large distances

$\mathsf{Gravity} = \mathsf{Geometry}$

- SM describes three of four forces as Quantum Field Theories
- Gravity so far is described mostly as classical theory, General Relativity
- General Relativity = geometry = theory of metric g_{μν}
- Einstein eqs. deceptively simple

$$R_{\mu\nu} - \frac{1}{2} \, g_{\mu\nu} R = 8\pi G \, T_{\mu\nu}$$

left: geometry, right: matter

► Tested to high accuracy: Perihelion shifts $(\beta - 1 < 2 \cdot 10^{-4})$ Radar echo delay $(\gamma - 1 < 2 \cdot 10^{-5})$ Binary pulsars $(\alpha_3 < 4 \cdot 10^{-20})$

Life, the Universe and Everything (we know)

D. Grumiller — Model for gravity at large distances

Missing Entries in the Periodic Table

Particle in the SM not found yet:

Higgs particle! (or whatever causes electro-weak symmetry breaking...) LHC will find it this decade!

Missing Entries in the Periodic Table

Particle in the SM not found yet:

Particles beyond SM not found yet:

Graviton (gravitational wave) LIGO will find it this decade!

Higgs particle! (or whatever causes electro-weak symmetry breaking...) LHC will find it this decade!

Missing Entries in the Periodic Table

Particle in the SM not found yet:

Higgs particle! (or whatever causes electro-weak symmetry breaking...) LHC will find it this decade!

D. Grumiller — Model for gravity at large distances

Particles beyond SM not found yet:

Graviton (gravitational wave) LIGO will find it this decade!

Further particles beyond SM? Inflaton?, SUSY?, Axions?, Dark Spinors?, Kaluza–Kleins?, ... LHC and Astro/Astroparticle--physics may find clues!

CMB:

▶ 370000 years: $3000K \approx 0.3 \text{eV}$

CMB:

- ▶ 370000 years: $3000K \approx 0.3 \text{eV}$
- …that means no ions any more!

CMB:

- ▶ 370000 years: $3000K \approx 0.3 \text{eV}$
- …that means no ions any more!
- Universe became transparent

CMB:

- ▶ 370000 years: $3000K \approx 0.3 \text{eV}$
- …that means no ions any more!
- Universe became transparent
- Fluctuations: "echo" of Big Bang

CMB:

- ▶ 370000 years: $3000K \approx 0.3 \text{eV}$
- …that means no ions any more!
- Universe became transparent
- Fluctuations: "echo" of Big Bang
- COBE (1989-1993), WMAP (since 2001), Planck (since 2009)

D. Grumiller — Model for gravity at large distances

CMB:

Above: COBE satellite (900km) Below: WMAP satellite at Lagrange point L2 $(1.5 * 10^6$ km)

Standard Model of Cosmology

 Cosmology is now a precision science!

Standard Model of Cosmology

- Cosmology is now a precision science!
- E.g. energy densities know within %-range: Ω_b, Ω_ν, Ω_γ, Ω_m, Ω_Λ, ... (baryons, neutrinos, radiation, matter, cosmological constant, ...)

Standard Model of Cosmology

- Cosmology is now a precision science!
- E.g. energy densities know within %-range: Ω_b, Ω_ν, Ω_γ, Ω_m, Ω_Λ, ... (baryons, neutrinos, radiation, matter, cosmological constant, ...)
- Currently many experiments!

Summary of What We Know

 Standard Models of Particle Physics and Cosmology (including General Relativity) consistent with nearly everything that we observe in Nature, with amazing accuracy

Summary of What We Know

- Standard Models of Particle Physics and Cosmology (including General Relativity) consistent with nearly everything that we observe in Nature, with amazing accuracy
- Missing pieces that we know indirectly to exist are Higgs and graviton
Summary of What We Know

- Standard Models of Particle Physics and Cosmology (including General Relativity) consistent with nearly everything that we observe in Nature, with amazing accuracy
- Missing pieces that we know indirectly to exist are Higgs and graviton
- If they exist both will be found in this decade

Summary of What We Know

- Standard Models of Particle Physics and Cosmology (including General Relativity) consistent with nearly everything that we observe in Nature, with amazing accuracy
- Missing pieces that we know indirectly to exist are Higgs and graviton
- If they exist both will be found in this decade

Is anything else missing?

Outline

Life, the Universe and Everything (we know) Particle Physics Cosmology

Puzzles

Energy budget of the Universe Dark matter

Model for Gravity at Large Distances As simple as possible, but not simpler Rindler force Observations

Collect all the available data:

 Progress of last two decades: we understand less than 5% of the Universe, and we know it!

D. Grumiller — Model for gravity at large distances

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- Dark Matter: many indications, many candidates

D. Grumiller — Model for gravity at large distances

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- Dark Matter: many indications, many candidates
- Plausible candidate: SUSY

13.7 BILLION YEARS AGO

12%

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- Dark Matter: many indications, many candidates
- Plausible candidate: SUSY
- Might be discovered at LHC

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- Dark Matter: many indications, many candidates
- Plausible candidate: SUSY
- Might be discovered at LHC
- Less plausible, but logically possible: dark matter is gravitational effect

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- More than 70% "Dark Energy"

D. Grumiller — Model for gravity at large distances

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- More than 70% "Dark Energy"
- Simplest correct explanation: cosmological constant

13.7 BILLION YEARS AGO

12%

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- More than 70% "Dark Energy"
- Simplest correct explanation: cosmological constant
- BUT: why so small??? 10^{-123}

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- More than 70% "Dark Energy"
- Simplest correct explanation: cosmological constant
- BUT: why so small??? 10^{-123}
- Logical possibility: acceleration is gravitational effect

D. Grumiller — Model for gravity at large distances

Collect all the available data:

- Progress of last two decades: we understand less than 5% of the Universe, and we know it!
- Dark Matter: many indications, many candidates
- Logically possible: dark matter is gravitational effect
- More than 70% "Dark Energy"
- Logical possibility: acceleration is gravitational effect

To address these issues we need to understand GRAVITY AT LARGE DISTANCES!

D. Grumiller — Model for gravity at large distances

Neptune:

 1821: Alexis Bouvard published tables of orbit of Uranus

(picture by NASA)

(picture by NASA)

- 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!

(picture by NASA)

- 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies

(picture by NASA)

- 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ► 1845: John Couch Adams and especially Urbain Le Verrier predict new planet and calculate its position

(picture by NASA)

- 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- 1845: John Couch Adams and especially Urbain Le Verrier predict new planet and calculate its position
- 1846: Observational confirmation by Johann Gottfried Galle and Heinrich Louis d'Arrest

Neptune:

(picture by NASA)

- 1821: Alexis Bouvard published tables of orbit of Uranus
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- 1845: John Couch Adams and especially Urbain Le Verrier predict new planet and calculate its position
- 1846: Observational confirmation by Johann Gottfried Galle and Heinrich Louis d'Arrest

Discovery of Neptune was first success of the Dark Matter concept!

Vulcan:

(picture based on

Star Trek)

 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier

Vulcan:

(picture based on

- 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!

Vulcan:

(picture based on

- 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies

Vulcan:

(picture based on

- 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- 1859: Urbain Le Verrier predicts new planet and calculates its position

Vulcan:

(picture based on

- 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ► 1859: Urbain Le Verrier predicts new planet and calculates its position
- ▶ 1860: Observational 'confirmation' by Lescarbault

Vulcan:

(picture based on

- 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ► 1859: Urbain Le Verrier predicts new planet and calculates its position
- ▶ 1860: Observational 'confirmation' by Lescarbault
- ► 1915: Einstein explains perihelion shift of Mercury with General Relativity

Vulcan:

(picture based on

Star Trek)

- ► 1840: François Arago suggests problem of Mercury orbit to Urbain Le Verrier
- Observations deviate from tables: gravitational anomalies!
- Different explanations: change law of gravitation or predict Dark Matter to account for anomalies
- ► 1859: Urbain Le Verrier predicts new planet and calculates its position
- ▶ 1860: Observational 'confirmation' by Lescarbault
- ► 1915: Einstein explains perihelion shift of Mercury with General Relativity

Non-discovery of Vulcan was first failure of the Dark Matter concept!

Astrophysics Modern gravitational anomalies

 $\label{eq:anomalies} \mbox{Anomalies} = \mbox{differences} \mbox{ between theory and observations} \\ \mbox{Prominent examples:} \label{eq:anomalies}$

Astrophysics Modern gravitational anomalies

 $\label{eq:anomalies} \mbox{Anomalies} = \mbox{differences} \mbox{ between theory and observations} \\ \mbox{Prominent examples:} \label{eq:anomalies}$

► Galactic rotation curves (pictures by Wikipedia)

A = Theory, B = Observation

Astrophysics Modern gravitational anomalies

Anomalies = differences between theory and observations Prominent examples:

- Galactic rotation curves
- Pioneer anomaly? (pictures by NASA)

Anomalous acceleration towards the Sun?

Some crucial facts about the Dark Side of life:

 Fact 1: Vulcan scenario seems unlikely for Dark Matter, but cannot be excluded

MOND, TeVeS, modified theories of gravity, ...

Some crucial facts about the Dark Side of life:

- Fact 1: Vulcan scenario seems unlikely for Dark Matter, but cannot be excluded
- Fact 2: Neptune scenario seems likely, but Dark Matter has not been detected (yet)

LSP, axion, WIMP, MACHO, ELKO, ...

Some crucial facts about the Dark Side of life:

- Fact 1: Vulcan scenario seems unlikely for Dark Matter, but cannot be excluded
- Fact 2: Neptune scenario seems likely, but Dark Matter has not been detected (yet)
- Conclusion: some people have quasi-religious feelings about

Some crucial facts about the Dark Side of life:

- Fact 1: Vulcan scenario seems unlikely for Dark Matter, but cannot be excluded
- Fact 2: Neptune scenario seems likely, but Dark Matter has not been detected (yet)
- Conclusion: some people have quasi-religious feelings about

Possible strategies to make progress:

- Show that Vulcan scenario is correct
- Show that Neptune scenario is correct

Both strategies are currently out of reach!

Some crucial facts about the Dark Side of life:

- Fact 1: Vulcan scenario seems unlikely for Dark Matter, but cannot be excluded
- Fact 2: Neptune scenario seems likely, but Dark Matter has not been detected (yet)
- Conclusion: some people have quasi-religious feelings about

Possible strategies to make progress:

- Show that Vulcan scenario is correct
- Show that Neptune scenario is correct

Both strategies are currently out of reach!

My strategy: remain agnostic and rephrase the question

Outline

Life, the Universe and Everything (we know) Particle Physics Cosmology

Puzzles

Energy budget of the Universe Dark matter

Model for Gravity at Large Distances As simple as possible, but not simpler Rindler force Observations Gravity at large distances

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:
Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

Make model as simple as possible (but not simpler)

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances
- Assume absence of pathologies at large distances

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances
- Assume absence of pathologies at large distances
- ... and some (generally accepted) technical assumptions

D. Grumiller — Model for gravity at large distances

Model for Gravity at Large Distances

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances
- Assume absence of pathologies at large distances
- ... and some (generally accepted) technical assumptions
 Output:

Force = Newton

$$F/m = -M/r^2$$

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances
- Assume absence of pathologies at large distances
- ... and some (generally accepted) technical assumptions Output:

Force = Newton + Centrifugal

$$F/m = -M/r^2 + \ell^2/r^3$$

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances
- Assume absence of pathologies at large distances
- ... and some (generally accepted) technical assumptions Output:

Force = Newton + Centrifugal + Einstein

$$F/m = -M/r^2 + \ell^2/r^3 - 3M\ell^2/r^4$$

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances
- Assume absence of pathologies at large distances
- ... and some (generally accepted) technical assumptions
 Output:

Force = Newton + Centrifugal + Einstein + Cosmological

$$F/m=-M/r^2+\ell^2/r^3-3M\ell^2/r^4+\Lambda r$$

Key question:

What is the most general effective theory of gravity at large distances that can possibly exist?

Input:

- Make model as simple as possible (but not simpler)
- Assume spherical symmetry at large distances
- Assume absence of pathologies at large distances
- ... and some (generally accepted) technical assumptions

Output:

Force = Newton + Centrifugal + Einstein + Cosmological + Rindler

$$F/m = -M/r^2 + \ell^2/r^3 - 3M\ell^2/r^4 + \Lambda r - \frac{a}{a} \left(1 - \ell^2/r^2\right)$$

New force arises in this model!

Write down most general line-element compatible with spherical symmetry

$$\mathrm{d}s^2 = g_{\alpha\beta} \, \mathrm{d}x^\alpha \, \mathrm{d}x^\beta + \Phi^2 \, \mathrm{d}\Omega_{S^2}^2$$

Described by 2d metric g and scalar field Φ . Use 2d theory to describe these fields!

Write down most general line-element compatible with spherical symmetry

$$\mathrm{d}s^2 = g_{\alpha\beta} \, \mathrm{d}x^\alpha \, \mathrm{d}x^\beta + \Phi^2 \, \mathrm{d}\Omega_{S^2}^2$$

Described by 2d metric g and scalar field Φ . Use 2d theory to describe these fields! Write down most general power counting renormalizable action

$$S = \int \mathrm{d}^2 x \sqrt{-g} \left[f(\Phi) R + 2(\partial \Phi)^2 - 2V(\Phi) \right]$$

Write down most general line-element compatible with spherical symmetry

$$\mathrm{d}s^2 = g_{\alpha\beta} \, \mathrm{d}x^\alpha \, \mathrm{d}x^\beta + \Phi^2 \, \mathrm{d}\Omega_{S^2}^2$$

Described by 2d metric g and scalar field Φ . Use 2d theory to describe these fields! Write down most general power counting renormalizable action

$$S = \int \mathrm{d}^2 x \sqrt{-g} \left[f(\Phi)R + 2(\partial \Phi)^2 - 2V(\Phi) \right]$$

Use data to determine $f = c\Phi^2$, with $|c-1| < 10^{-10}$. Set c = 1.

Write down most general line-element compatible with spherical symmetry

$$\mathrm{d}s^2 = g_{\alpha\beta} \; \mathrm{d}x^\alpha \, \mathrm{d}x^\beta + \Phi^2 \; \mathrm{d}\Omega_{S^2}^2$$

Described by 2d metric g and scalar field Φ . Use 2d theory to describe these fields!

Write down most general power counting renormalizable action

$$S = \int \mathrm{d}^2 x \sqrt{-g} \left[f(\Phi)R + 2(\partial \Phi)^2 - 2V(\Phi) \right]$$

Use data to determine $f = c\Phi^2$, with $|c - 1| < 10^{-10}$. Set c = 1. Assume analyticity of V for large Φ .

Require absence of curvature singularities for large Φ .

$$V = \Lambda \Phi^2 + \mathbf{a} \Phi + 1 + \mathcal{O}(1/\Phi)$$

Write down most general line-element compatible with spherical symmetry

$$\mathrm{d}s^2 = g_{\alpha\beta} \; \mathrm{d}x^\alpha \, \mathrm{d}x^\beta + \Phi^2 \; \mathrm{d}\Omega_{S^2}^2$$

Described by 2d metric g and scalar field Φ . Use 2d theory to describe these fields!

Write down most general power counting renormalizable action

$$S = \int \mathrm{d}^2 x \sqrt{-g} \left[f(\Phi)R + 2(\partial \Phi)^2 - 2V(\Phi) \right]$$

Use data to determine $f = c\Phi^2$, with $|c - 1| < 10^{-10}$. Set c = 1. Assume analyticity of V for large Φ . Require absence of curvature singularities for large Φ .

$$V = \Lambda \Phi^2 + \frac{\mathbf{a}}{\mathbf{a}} \Phi + 1 + \mathcal{O}(1/\Phi)$$

Solve equations of motion

Write down most general line-element compatible with spherical symmetry

$$\mathrm{d}s^2 = g_{\alpha\beta} \; \mathrm{d}x^\alpha \, \mathrm{d}x^\beta + \Phi^2 \; \mathrm{d}\Omega_{S^2}^2$$

Described by 2d metric g and scalar field Φ . Use 2d theory to describe these fields!

Write down most general power counting renormalizable action

$$S = \int \mathrm{d}^2 x \sqrt{-g} \left[f(\Phi)R + 2(\partial \Phi)^2 - 2V(\Phi) \right]$$

Use data to determine $f = c\Phi^2$, with $|c - 1| < 10^{-10}$. Set c = 1. Assume analyticity of V for large Φ . Require absence of curvature singularities for large Φ .

$$V = \Lambda \Phi^2 + \frac{\mathbf{a}}{\mathbf{a}} \Phi + 1 + \mathcal{O}(1/\Phi)$$

Solve equations of motion and get as most general solution $\Phi = r$,

$$g_{\alpha\beta} \, \mathrm{d}x^{\alpha} \, \mathrm{d}x^{\beta} = -K^2 \, \mathrm{d}t^2 + \frac{\mathrm{d}r^2}{K^2} \qquad K^2 = 1 - \frac{2M}{r} - \Lambda r^2 + 2ar$$

New force at large distances Test this for galaxies

Choose some value for Rindler force *a*:

$$F/m = -M/r^2 - a$$

Note: *a* is positive!

New force at large distances Test this for Pioneer anomaly

Choose some value for Rindler force *a*:

$$F/m = -M/r^2 - a$$

Matches the Pioneer trajectory!

Note: *a* is positive!

D. Grumiller - Model for gravity at large distances

Model for Gravity at Large Distances

Scrutinize solar system data to get bounds on Rindler acceleration

Bound from Pioneer data:

$$|a| < 9 \cdot 10^{-10} m/s^2$$

Scrutinize solar system data to get bounds on Rindler acceleration

Bound from Pioneer data:

$$|a| < 9 \cdot 10^{-10} m/s^2$$

Bounds from light-bending:

$$|a| < 6 \cdot 10^{-2} m/s^2$$

Scrutinize solar system data to get bounds on Rindler acceleration

Bound from Pioneer data:

$$|a| < 9 \cdot 10^{-10} m/s^2$$

Bounds from light-bending:

$$|a| < 6 \cdot 10^{-2} m/s^2$$

Bounds from gravitational redshift experiments:

 $|a| < 2 \cdot 10^{-6} m/s^2$

Scrutinize solar system data to get bounds on Rindler acceleration

Bound from Pioneer data:

$$|a| < 9 \cdot 10^{-10} m/s^2$$

Bounds from light-bending:

$$|a| < 6 \cdot 10^{-2} m/s^2$$

Bounds from gravitational redshift experiments:

 $|a|<2\cdot 10^{-6}m/s^2$

Bounds from radar echo delay:

 $|a| < 3 \cdot 10^{-9} m/s^2$

Scrutinize solar system data to get bounds on Rindler acceleration

Bound from Pioneer data:

$$|a| < 9 \cdot 10^{-10} m/s^2$$

Bounds from light-bending:

$$|a| < 6 \cdot 10^{-2} m/s^2$$

Bounds from gravitational redshift experiments:

$$|a|<2\cdot 10^{-6}m/s^2$$

Bounds from radar echo delay:

 $|a| < 3 \cdot 10^{-9} m/s^2$

Bounds from perihelion shifts:

$$|a| < 2 \cdot 10^{-14} m/s^2$$

Last bound comes with caveats, however!

Our two Standard Models describe well almost everything we observed

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances
- Constructed simple model for gravity at large distances

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances
- Constructed simple model for gravity at large distances
- New force at large distances predicted by this model

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances
- Constructed simple model for gravity at large distances
- New force at large distances predicted by this model
- Obtained recently first (solar system) constraints on this Rindler force

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances
- Constructed simple model for gravity at large distances
- New force at large distances predicted by this model
- Obtained recently first (solar system) constraints on this Rindler force

Some open issues:

Precision tests at galactic and cosmological scales

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances
- Constructed simple model for gravity at large distances
- New force at large distances predicted by this model
- Obtained recently first (solar system) constraints on this Rindler force

Some open issues:

- Precision tests at galactic and cosmological scales
- Non-spherical configurations?

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances
- Constructed simple model for gravity at large distances
- New force at large distances predicted by this model
- Obtained recently first (solar system) constraints on this Rindler force

Some open issues:

- Precision tests at galactic and cosmological scales
- Non-spherical configurations?
- What determines magnitude of Rindler acceleration?

- Our two Standard Models describe well almost everything we observed
- In each SM one particle is missing, Higgs and graviton, and both will be discovered this decade (if they exist)
- Energy budget of the Universe requires dark explanations
- Alternatively, perhaps we do not fully understand gravity at very large distances
- Constructed simple model for gravity at large distances
- New force at large distances predicted by this model
- Obtained recently first (solar system) constraints on this Rindler force

Some open issues:

- Precision tests at galactic and cosmological scales
- Non-spherical configurations?
- What determines magnitude of Rindler acceleration?
- Microscopic model predicting Rindler term? Where does it come from?

Thank you for your attention!

D. Grumiller — Model for gravity at large distances

Model for Gravity at Large Distances

24/24

... questions?