Black Holes II (136.029)

Daniel Grumiller

Institute for Theoretical Physics Vienna University of Technology

http://quark.itp.tuwien.ac.at/~grumil/teaching.shtml

grumil@hep.itp.tuwien.ac.at

Announcement on February 11, 2016

LIGO detection of gravitational waves from black hole merger; 1602.03837

initial BHs: $\approx 36 M_{\odot}$, $29 M_{\odot}$; final BH: $\approx 62 M_{\odot}$; radiated energy: $\approx 3 M_{\odot}$

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

Why Study Black Holes?

Depending whom you ask you'll hear:

- General Relativist: because they are unavoidable
- Mathematician: because they are interesting
- Science Fiction Writer: because they are cool
- Astrophysicist: because they explain the data
- String Theoretician: because they hold the key to quantum gravity
- Particle Physicist: because they might be produced at LHC
- Cosmologist: because they exist
- Numerical Relativist: because they present challenge for coding skills
- Nuclear Physicist: because they are dual to a strongly coupled plasma
- Condensed Matter Physicist: because we can produce them in the lab
- Gravitational Wave Experimentalist: because we need to understand black holes to provide templates for gravitational wave detection

Why Study Black Holes?

Depending whom you ask you'll hear:

- General Relativist: because they are unavoidable
- Mathematician: because they are interesting
- Science Fiction Writer: because they are cool
- Astrophysicist: because they explain the data
- String Theoretician: because they hold the key to quantum gravity
- Particle Physicist: because they might be produced at LHC
- Cosmologist: because they exist
- Numerical Relativist: because they present challenge for coding skills
- Nuclear Physicist: because they are dual to a strongly coupled plasma
- Condensed Matter Physicist: because we can produce them in the lab
- Gravitational Wave Experimentalist: because we need to understand black holes to provide templates for gravitational wave detection

Last semester

Why Study Black Holes?

Depending whom you ask you'll hear:

- General Relativist: because they are unavoidable
- Mathematician: because they are interesting
- Science Fiction Writer: because they are cool
- Astrophysicist: because they explain the data
- String Theoretician: because they hold the key to quantum gravity
- Particle Physicist: because they might be produced at LHC
- Cosmologist: because they exist
- Numerical Relativist: because they present challenge for coding skills
- Nuclear Physicist: because they are dual to a strongly coupled plasma
- Condensed Matter Physicist: because we can produce them in the lab
- Gravitational Wave Experimentalist: because we need to understand black holes to provide templates for gravitational wave detection

This semester

Last semester: understand the physics of this...

This semester: understand the physics of this...

Open Universe Looking from inside, boundary at infinity Limit Circle IV, by M. C. Escher

Prerequisites

Basic knowledge about black hole physics

Topics covered in Black Holes I of relevance for this semester:

- 1. History of black holes
- 2. Phenomenology of and experiments with black holes
- 3. Gravitational collapse and Chandrasekhar limit
- 4. Metric and geodesic equation
- 5. Geodesics for Schwarzschild black holes
- 6. Curvature and basics of differential geometry
- 7. Hilbert action and Einstein equations
- 8. Spherically symmetric black holes and Birkhoff theorem
- 9. Rotating black holes: the Kerr solution
- 10. Geodesics for Kerr black holes
- 11. Accretion disks and black hole observations
- 12. Black hole analogs in condensed matter physics

Main goal: Understanding of advanced/current research black hole topics

Topics covered in this course:

1. Black hole definition, causal structure and Penrose diagrams

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes
- 4. Black hole thermodynamics

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes
- 4. Black hole thermodynamics
- 5. Hawking effect

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes
- 4. Black hole thermodynamics
- 5. Hawking effect
- 6. Action principle and boundary issues

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes
- 4. Black hole thermodynamics
- 5. Hawking effect
- 6. Action principle and boundary issues
- 7. Holographic renormalization and Brown-York stress tensor

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes
- 4. Black hole thermodynamics
- 5. Hawking effect
- 6. Action principle and boundary issues
- 7. Holographic renormalization and Brown-York stress tensor
- 8. Asymptotic symmetries

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes
- 4. Black hole thermodynamics
- 5. Hawking effect
- 6. Action principle and boundary issues
- 7. Holographic renormalization and Brown-York stress tensor
- 8. Asymptotic symmetries
- 9. Black holes in AdS

Main goal: Understanding of advanced/current research black hole topics

- 1. Black hole definition, causal structure and Penrose diagrams
- 2. Gravitational waves and black hole mergers
- 3. Black hole perturbations and quasi-normal modes
- 4. Black hole thermodynamics
- 5. Hawking effect
- 6. Action principle and boundary issues
- 7. Holographic renormalization and Brown-York stress tensor
- 8. Asymptotic symmetries
- 9. Black holes in AdS
- 10. ... and possibly further selected recent research topics

Related lectures this semester (ordered alphabetically by lecturer)

- ▶ VO Geometrie und Gravitation I (136.002), Herbert Balasin
- ▶ PA Black Hole Physics (136.025), Daniel Grumiller
- ► VO Introduction to QED (135.045), Andreas Ipp
- ► VO Introduction to QFT II (136.041), Anton Rebhan
- SV Literaturseminar Mathematische Physik 2 (135.048), Anton Rebhan et al.
- PR Arbeitsgemeinschaft f
 ür fundamentale Wechselwirkungen 2 (132.074), Anton Rebhan et al.
- VO Geometrische Methoden der Theoretischen Physik (135.029), Harald Skarke
- ► VO Thermal field theory (136.006), Kirill Boguslavski
- ► UV: VO Relativity III (260049), David Fajman
- UV: VO Superstring theory and interactions (442642), Pascal Anastasopoulos
- ▶ UV: VO Quantum gravity (260024), Lisa Glaser/Stefan Fredenhagen

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

- EITHER Each Tuesday, 9:00*am-12:00*am, seminar room on 3rd floor
- OR Each Thursday, 8:00am-10:00am, seminar room on 10th floor

FIX THIS NOW!

- EITHER Each Tuesday, 9:00*am-12:00*am, seminar room on 3rd floor
- OR Each Thursday, 8:00am-10:00am, seminar room on 10th floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 sets of exercises in total

- ▶ EITHER Each Tuesday, 9:00*am-12:00*am, seminar room on 3rd floor
- OR Each Thursday, 8:00am-10:00am, seminar room on 10th floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 sets of exercises in total
- 3.0 ECTS, Wahlfachkataloge A (Theoretische und Mathematische Physik) & B (Atomare und Subatomare Physik)

- EITHER Each Tuesday, 9:00*am-12:00*am, seminar room on 3rd floor
- OR Each Thursday, 8:00am-10:00am, seminar room on 10th floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 sets of exercises in total
- 3.0 ECTS, Wahlfachkataloge A (Theoretische und Mathematische Physik) & B (Atomare und Subatomare Physik)
- Credits: by completing at least 66% of the exercises or by oral exam

- EITHER Each Tuesday, 9:00*am-12:00*am, seminar room on 3rd floor
- OR Each Thursday, 8:00am-10:00am, seminar room on 10th floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 sets of exercises in total
- 3.0 ECTS, Wahlfachkataloge A (Theoretische und Mathematische Physik) & B (Atomare und Subatomare Physik)
- Credits: by completing at least 66% of the exercises or by oral exam
- Optional: oral exam for better grade or if you have questions

- EITHER Each Tuesday, 9:00*am-12:00*am, seminar room on 3rd floor
- OR Each Thursday, 8:00am-10:00am, seminar room on 10th floor
- about 2 hours lecture + time for discussion of exercises + 5 minutes break — 10 sets of exercises in total
- 3.0 ECTS, Wahlfachkataloge A (Theoretische und Mathematische Physik) & B (Atomare und Subatomare Physik)
- Credits: by completing at least 66% of the exercises or by oral exam
- Optional: oral exam for better grade or if you have questions
- Outlook: Projektarbeit Black Hole Physics, Master, PhD

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

Textbooks and Lecture Notes

- Notes on Relativity and Cosmology, (D. Marolf, http://www.physics.ucsb.edu/~marolf/MasterNotes.pdf)
- ► General Relativity, (R. Wald, 1984, U. Chicago Press, Chicago)
- Gravitation, (C. Misner, K.S. Thorne and J.A. Wheeler, 1973, W.H. Freeman and Co., New York)
- Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (S. Weinberg, 1972, John Wiley)
- The large scale structure of space-time, (S.W. Hawking and G.F.R. Ellis, 1973, Cambridge University Press, Cambridge)
- Black Holes (P. Townsend), 1997, gr-qc/9707012
- Dilaton gravity in two dimensions (D. Grumiller, W. Kummer and D. Vassilevich), 2002, hep-th/0204253
- Black holes and thermodynamics The first half century (D. Grumiller, R. McNees and J. Salzer), 2014, arXiv:1402.5127

Increasingly relevant resource: arXiv.org

Outline

Overview and goal of lectures

Modus and organizational issues

Literature

Exercises

Get copies at the end of lecture (essentially now) or download PDF from http://quark.itp.tuwien.ac.at/~grumil/teaching.shtml

