
10 Action principle and boundary issues

The first variation of the action should vanish on all solutions to the equations of
motion allowed by the boundary conditions. Interestingly, this does not happen
automatically. In particular, it does not happen for the Einstein–Hilbert action
with the most common boundary conditions (asymptotically flat, asymptotically
(A)dS). To resolve this issue we need to first understand what the issue is and how
it arises. This, in turn necessitates to take a closer look at the variational principle
of Einstein gravity in the presence of (actual or asymptotic) boundaries. In order
to be able to do so we need to introduce such boundaries, which in turn requires
techniques to decompose “bulk quantities” (such as the metric or the Riemann
tensor) into “boundary quantities” plus extra stuff. In this section we give these
words a precise mathematical meaning, starting with a canonical decomposition of
the metric and related quantities.

10.1 Canonical decomposition of the metric

The canonical decomposition of a D-dimensional metric into a (D− 1)-dimensional
metric and a normal vector was already used in our derivation of the Raychaudhuri
equations. Such a decomposition is useful in initial value formulations/Hamiltonian
formulations of gravity. For our purposes we need a slightly different decomposition,
where the normal vector is not time-like (as it would be for Raychaudhuri’s equation
or the initial value formulation) but rather spacelike. Thus, our primary data
are some D-dimensional metric gµν (often referred to as “bulk metric”) and some
spacelike normal vector nµ, normalized to unity, nµnµ = +1.

With these data we can define a (D − 1)-dimensional metric (often referred to
as “boundary metric”, “induced metric” or “first fundamental form”),

hµν := gµν − nµnν (1)

which is still a D-dimensional symmetric tensor, but projects out the normal com-
ponent,

hµνn
ν = 0 hµµ = D − 1 . (2)

It is also useful to define the projected velocity with which the normal vector changes
(often referred to as “extrinsic curvature” or “second fundamental form”),

Kµν := hαµh
β
ν ∇αnβ =

1

2

(
Lnh

)
µν

(3)

which can be recast as (one half of) the Lie-variation of the boundary metric along
the normal vector. Note that also extrinsic curvature is a symmetric tensor and has
vanishing contraction with the normal vector,

Kµν = Kνµ Kµνn
µ = 0 (4)

We shall also need the contraction (or trace) of extrinsic curvature,

K := Kµ
µ = ∇µnµ . (5)

Projection with the boundary metric yields a boundary-covariant derivative

Dµ := hνµ∇ν (6)

that leads to standard (pseudo-)Riemann tensor calculus at the boundary when
acting on tensors projected to the boundary.

Note that in a canonical context extrinsic curvature also can be interpreted as
velocity of the boundary metric, since in that case Lnh ∼ ḣ, where dot denotes
derivative with respect to time, so that derivative of the Lagrange density with
respect to extrinsic curvature yields the canonical momentum density. Beware: in
such a context there are also various sign changes as compared to these lecture notes
since the normal vector in that case would be normalized to −1 instead of +1.
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10.2 Boundary action for Dirichlet boundary value problem

Often a Dirichlet boundary value problem is desired where the metric is fixed at
the boundary ∂M, while its normal derivative is free to fluctuate,

δgµν
∣∣
∂M = 0 nα∇αδgµν

∣∣
∂M 6= 0 . (7)

We show now that the Einstein–Hilbert action is incompatible with such a boundary
value problem.

As we have shown previously [see section 4.3, Eq. (14)], first variation of the
Einstein–Hilbert action leads to the Einstein equations in the bulk plus total deriva-
tive terms,

δIEH

∣∣
EOM

=
1

16πG

∫
M

dDx
√
−g∇µ

(
∇νδgµν − gαβ∇µδgαβ

)
(8)

where the subscript ‘EOM’ indicates that we drop terms that vanish when the bulk
equations of motion hold. Using Stokes theorem the total derivative terms in (8)
are converted into boundary terms,

δIEH

∣∣
EOM

=
1

16πG

∫
∂M

dD−1x
√
−hnµ

(
∇νδgµν − gαβ∇µδgαβ

)
. (9)

Using nµ∇ν δgµν = nµ(hνα + nνnα)∇α δgµν and nµhνα∇α δgµν = nµhνα∇α[(hγµ +

nµn
γ)(hβν + nνn

β) δgβγ ] = −Kµν δgµβ + Knµnνδgµν + total boundary derivative,
the result (10) can be reformulated as1

δIEH

∣∣
EOM

= − 1

16πG

∫
∂M

dD−1x
√
−h
(
hµνnα∇αδgµν+(Kµν−Knµnν) δgµν

)
. (10)

The first term in (9) generically is non-zero for the Dirichlet boundary value problem
(7). Thus, the Einstein–Hilbert action is inconsistent with (7).

To resolve this issue we add suitable boundary terms to the bulk action, since
they do not affect the bulk equations of motion, but may convert the result for
the variation (9) into something compatible with the boundary value problem (7).
Specifically, we need a boundary term that preserves diffeomorphisms along the
boundary and that is capable of canceling the normal derivative of the fluctuations
of the metric in (9). Like in the bulk, we can do a derivative expansion of the
boundary action,

I∂M =
1

16πG

∫
∂M

dD−1x
√
−h
(
b0 + b1R+ b2K + . . .

)
(11)

where the ellipsis refers to terms with higher derivatives (e.g. KµνKµν or KR) and
R is the boundary Ricci scalar (constructed from the boundary metric hµν and the
boundary covariant derivative (6)). It is now easy to see that terms intrinsic to the
boundary (like the boundary cosmological constant b0 or the boundary Einstein–
Hilbert term b1R) will not help us, since they cannot produce normal derivatives
nµ∇µ. Thus, we set b0 = b1 = 0, focus on the term b2K and vary it. Using the
definition (5) as well as δnµ = 1

2 nµn
αnβ δgαβ yields

δK =
1

2
hµνnα∇αδgµν −

1

2
Knµnν δgµν + total boundary derivative (12)

Comparing with the variation (10) we deduce that we should choose b2 = 2 to get
consistency with the Dirichlet conditions (7).

1We assume here that the boundary ∂M has no boundary; if this assumption is relaxed the total
derivative term is converted into a ‘corner’ contribution 1/(16πG)

∫
∂2M dD−2x

√
|σ|nµσnν δgµν ,

where nµσ is the outward pointing unit normal of the corner.
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The full action for Einstein gravity (at this stage of our discussion) compatible
with a Dirichlet boundary value problem (7) thus consists of the bulk action IEH

plus a boundary action IGHY, known as Gibbons–Hawking–York boundary term.

I = IEH + IGHY =
1

16πG

∫
M

dDx
√
−g
(
R− 2Λ

)
+

1

8πG

∫
∂M

dD−1x
√
−hK (13)

Its first variation (assuming a smooth boundary) is given by

δI = − 1

16πG

∫
M

dDx
√
−g
(
Rµν − 1

2
gµνR+ Λgµν

)
δgµν

− 1

16πG

∫
∂M

dD−1x
√
−h
(
Kµν − hµνK

)
δgµν (14)

The tensor multiplying the variation δgµν at the boundary is known as Brown–
York stress tensor,

TµνBY :=
1

8πG

(
Kµν − hµνK

)
. (15)

It is important to realize that further boundary terms can be added to the
action (13) without spoiling the Dirichlet boundary value problem (7), for instance
by choosing b0 6= 0 or b1 6= 0 in (11). As we shall see later in these lecture notes
these terms are actually necessary in many applications. The reason for this is that
even though we have a well-defined Dirichlet boundary value problem we still may
not have a well-defined action principle, in the sense that there could be allowed
variations of the metric that do not lead to a vanishing first variation (14) on some
solutions of the equations of motion. We show now an example for this.

10.3 Action principle in mechanics

Before dealing in the next section with Einstein gravity we consider a much simpler
example where the same boundary issues can arise, namely a classical field theory
in 0+1 dimensions, also known as mechanics.

Consider specifically the conformal mechanics Hamiltonian

H(q, p) =
p2

2
+

1

q2
(16)

in the bulk action (chosen on purpose with a −qṗ-term to make it more similar to
Einstein–Hilbert)

Ibulk =

tc∫
0

dt
(
− qṗ−H(q, p)

)
(17)

and a Dirichlet boundary problem, q(0) = q0, q(tc) = qc. The first variation of the
action (17) leads to a boundary term −qδp, so we introduce a mechanics version of
the Gibbons–Hawking–York boundary term

IGHY = qp
∣∣tc
0
. (18)

The variation of the full action I = Ibulk + IGHY yields

δI =

tc∫
0

dt
[(
− ṗ− H(q, p)

∂q

)
δq +

(
q̇ − H(q, p)

∂p

)
δp
]

+ p δq
∣∣
t=tc
− p δq

∣∣
t=0

. (19)

Assuming the initial value q0 is finite we have δq
∣∣
t=0

= 0 and the last term drops.
The bulk terms yield the (Hamilton) equations of motion. Thus, the first variation
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of the action (19) vanishes on-shell if it were true that p δq
∣∣
t=tc

= 0. For finite tc and
vanishing δq this is obviously the case, but we are interested in the limit tc →∞ to
mimic typical gravity systems where the range of the coordinates is non-compact.

Now comes the key observation: if we consider tc → ∞ the correct boundary
value is qc → ∞ (if you look at the form of the potential in (16) you can see this
— a ball in that potential just rolls all the way to infinity given infinite amount of
time). Thus, finite variations,

lim
tc→∞

δq|t=tx = O(1) (20)

preserve the asymptotic boundary condition that qc tends to infinity. But if we allow
such variations then the action I does not have a well-defined variational
principle since (19) does not vanish for all variations that preserve our
boundary conditions.

The resolution of this profound problem is to add another boundary term to
the action (or to “holographically renormalize it”) that does not spoil our Dirichlet
boundary value problem. The most general such action is given by

Γ = lim
tc→∞

(
Ibulk + IGHY − S(q, t)

∣∣tc) (21)

where the counterterm S(q, t) needs to be chosen such that the problem above goes
away, i.e., the first variation of the full action Γ,

δΓ
∣∣
EOM

= lim
tc→∞

(
p− ∂S

∂q

)
δq
∣∣∣tc (22)

has to vanish on-shell for all variations preserving our boundary conditions, includ-
ing finite variations δq.

Thus, we are looking for some function depending on the boundary values that
is on-shell equivalent to the momentum, so that the term in parenthesis vanishes
in (22). Actually, classical mechanics provides us with a natural candidate, namely
Hamilton’s principal function which is a solution to the Hamilton–Jacobi equation,

H
(
q,
∂S

∂q

)
+
∂S

∂t
= 0 . (23)

For the potential (16) the solution is given by the expansion (if you want to see the
exact solution look at (11) in 0711.4115)

S(q, t) =
q2

2t
+O(1/t) . (24)

Solving the equations of motion for large time yields

p =
q

t
+O(1/t2) . (25)

Plugging these asymptotic expansions into the variation (22) establishes

δΓ
∣∣
EOM

= lim
tc→∞

(qc
tc

+O(1/t2c)−
qc
tc

+O(1/tc)
)
δq
∣∣∣tc = lim

tc→∞
O(1/tc) δq

∣∣∣tc = 0 . (26)

Thus, the action (21) with (17) and (18) has a well-defined variational principle.
Let us finally address another issue with the unrenormalized action. Evaluating I

on-shell yields a result that diverges in the limit tc →∞. This is problematic insofar
as the on-shell action provides the leading order contribution to the semi-classical
partition function, which should not be singular. Fortunately, this problem is solved
here automatically once we use the action Γ that has a well-defined variational
principle. Indeed, evaluating Γ on-shell shows that the result is always finite, even
when the upper boundary tends to infinity, tc →∞.

Black Holes II, Daniel Grumiller, May 2018
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