Lower-dimensional holography

Daniel Grumiller

Institute for Theoretical Physics TU Wien

Recent Progress on Field and String Theory, Kyoto-NTU 2019

December 2019

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

Flat space holography and complex SYK

Black holes hide key secrets to Nature

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

Flat space holography and complex SYK

► IR (classical gravity)

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries

Take-away slogan

Equivalence principle needs modification

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- ► UV (quantum gravity)

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- ► UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates

Take-away homework

Find 'hydrogen-atom' of quantum gravity

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- ► UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates
- UV/IR (holography)

- IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- ► UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates
- UV/IR (holography)
 - AdS/CFT and applications
 - precision holography
 - generality of holography

Take-away question(s)

(When) is quantum gravity in D+1 dimensions equivalent to (which) quantum field theory in D dimensions?

- ► IR (classical gravity)
 - asymptotic symmetries
 - soft physics
 - near horizon symmetries
- UV (quantum gravity)
 - numerous conceptual issues
 - black hole evaporation and unitarity
 - black hole microstates
- UV/IR (holography)
 - AdS/CFT and applications
 - precision holography
 - generality of holography
 - ▶ all issues above can be addressed in lower dimensions
 - lower dimensions technically simpler
 - hope to resolve conceptual problems

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

▶ 11D: 1210 (1144 Weyl and 66 Ricci)

10D: 825 (770 Weyl and 55 Ricci)

5D: 50 (35 Weyl and 15 Ricci)

▶ 4D: 20 (10 Weyl and 10 Ricci)

Caveat: just counting tensor components can be misleading as measure of complexity

Example: large D limit actually simple for some problems (Emparan et al.)

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- ▶ 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- ▶ 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- ▶ 1D: 0 (space or time but not both ⇒ no lightcones)

Apply as mantra the slogan "as simple as possible, but not simpler"

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- ▶ 11D: 1210 (1144 Weyl and 66 Ricci)
- ▶ 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- ▶ 4D: 20 (10 Weyl and 10 Ricci)
- ▶ 3D: 6 (Ricci)
- ▶ 2D: 1 (Ricci scalar)
 - 2D: lowest dimension exhibiting black holes (BHs)
 - Simplest gravitational theories with BHs in 2D
 - No Einstein gravity

Riemann-tensor $\frac{D^2(D^2-1)}{12}$ components in D dimensions:

- ▶ 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- ▶ 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- ▶ 2D: 1 (Ricci scalar)
 - ▶ 2D: lowest dimension exhibiting black holes (BHs)
 - Simplest gravitational theories with BHs in 2D
 - No Einstein gravity
 - ▶ 3D: lowest dimension exhibiting **BHs** and gravitons
 - ► Simplest gravitational theories with **BHs** and gravitons in 3D
 - Lowest dimension for Einstein gravity (BHs but no gravitons)

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

Flat space holography and complex SYK

Spectrum of BTZ **black holes** and related physical states Could this **black hole** be the 'hydrogen atom' for quantum gravity?

Choice of bulk action

Pick Einstein-Hilbert action with negative cc ($\Lambda = -1/\ell^2$)

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of \mathcal{M} , e.g. cylinder

Choice of bulk action

Pick Einstein-Hilbert action with negative cc ($\Lambda = -1/\ell^2$)

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of \mathcal{M} , e.g. cylinder Main features:

no local physical degrees of freedom

Choice of bulk action

Pick Einstein-Hilbert action with negative cc $(\Lambda = -1/\ell^2)$

$$I_{\rm EH}[g] = -\frac{1}{16\pi G} \int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right)$$

Usually choose also topology of \mathcal{M} , e.g. cylinder Main features:

- no local physical degrees of freedom
- ▶ all solutions locally and asymptotically AdS₃

Choice of bulk action

Pick Einstein-Hilbert action with negative cc $(\Lambda=-1/\ell^2)$

Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS₃
- rotating (BTZ) black hole solutions analogous to Kerr

$$\mathrm{d}s^2 = -\frac{(r^2 - r_+^2)(r^2 - r_-^2)}{\ell^2 r^2} \ \mathrm{d}t^2 + \frac{\ell^2 r^2 \, \mathrm{d}r^2}{(r^2 - r_+^2)(r^2 - r_-^2)} + r^2 \left(\mathrm{d}\varphi - \frac{r_+ r_-}{\ell r^2} \ \mathrm{d}t \right)^2$$

t: time, $\varphi \sim \varphi + 2\pi$: angular coordinate, r: radial coordinate

 $r \to \infty$: asymptotic region

 $r \rightarrow r_{+} \geq r_{-}$: black hole horizon

 $r \rightarrow r_{-} \geq 0$: inner horizon

 $r_+ \rightarrow r_- > 0$: extremal BTZ

 $r_- \rightarrow 0$: non-rotating BTZ

Choice of bulk action

Pick Einstein–Hilbert action with negative cc $(\Lambda=-1/\ell^2)$

Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS₃
- rotating (BTZ) black hole solutions analogous to Kerr

$$ds^{2} = -\frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}} dt^{2} + \frac{\ell^{2}r^{2} dr^{2}}{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})} + r^{2} \left(d\varphi - \frac{r_{+}r_{-}}{\ell r^{2}} dt\right)^{2}$$

 \blacktriangleright conserved mass $M=(r_+^2+r_-^2)/\ell^2$ and angular mom. $J=2r_+r_-/\ell$

Choice of bulk action

Pick Einstein–Hilbert action with negative cc $(\Lambda=-1/\ell^2)$

Main features:

- no local physical degrees of freedom
- all solutions locally and asymptotically AdS₃
- rotating (BTZ) black hole solutions analogous to Kerr

$$\mathrm{d}s^2 = -\frac{(r^2 - r_+^2)(r^2 - r_-^2)}{\ell^2 r^2} \, \mathrm{d}t^2 + \frac{\ell^2 r^2 \, \mathrm{d}r^2}{(r^2 - r_+^2)(r^2 - r_-^2)} + r^2 \left(\mathrm{d}\varphi - \frac{r_+ r_-}{\ell r^2} \, \mathrm{d}t \right)^2$$

- \blacktriangleright conserved mass $M=(r_+^2+r_-^2)/\ell^2$ and angular mom. $J=2r_+r_-/\ell$
- Bekenstein–Hawking entropy

$$S_{\rm BH} = \frac{A}{4G} = \frac{\pi r_+}{2G}$$

Hawking-Unruh temperature: $T=(r_+^2-r_-^2)/(2\pi r_+\ell^2)$

- ► Choice of bulk action Pick Einstein–Hilbert action with negative cc $(\Lambda = -1/\ell^2)$
- Choice of boundary conditions
 Crucial to define theory yields spectrum of 'edge states'
 Pick whatever suits best to describe relevant physics

- ► Choice of bulk action Pick Einstein–Hilbert action with negative cc $(\Lambda = -1/\ell^2)$
- Choice of boundary conditions
 Crucial to define theory yields spectrum of 'edge states'
 Pick whatever suits best to describe relevant physics

- ► Goal: understand micoscopic structure of BTZ black holes
- ► Tool: near horizon symmetries and edge states
- ► Task: recall first in general how edge states emerge

Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

- Many QFT applications employ "natural boundary conditions": fields and fluctuations tend to zero asymptotically
- Notable exceptions exist in gauge theories with boundaries: e.g. in Quantum Hall effect
- Natural boundary conditions not applicable in gravity: metric must not vanish asymptotically
- Gauge or gravity theories in presence of (asymptotic) boundaries: asymptotic symmetries
- Choice of boundary conditions determines asymptotic symmetries

Definition of asymptotic symmetries

All boundary condition preserving gauge transformations (bcpgt's) modulo trivial gauge transformations

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{\mathbf{r} \to r_b} g_{\mu\nu}(\mathbf{r}, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

▶ Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \rightarrow \textcolor{red}{r_b}} g_{\mu\nu}(r,\,x^i) = \bar{g}_{\mu\nu}(\textcolor{red}{r_b},\,x^i) + \delta g_{\mu\nu}(\textcolor{red}{r_b},\,x^i)$$

r: some convenient ("radial") coordinate r_b : value of r at boundary (could be ∞)

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, \mathbf{x}^i) = \bar{g}_{\mu\nu}(r_b, \mathbf{x}^i) + \delta g_{\mu\nu}(r_b, \mathbf{x}^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates ("boundary" coordinates)

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} \frac{g_{\mu\nu}(r, x^i)}{g_{\mu\nu}(r_b, x^i)} = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

▶ Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

Asymptotic symmetries in gravity

▶ Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu\nu}$: (asymptotic) background metric

 $\delta g_{\mu
u}$: fluctuations permitted by bc's

Asymptotic symmetries in gravity

▶ Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $\bar{g}_{\mu
u}$: (asymptotic) background metric

 $\delta g_{\mu\nu}$: fluctuations permitted by bc's

▶ bcpgt's generated by asymptotic Killing vectors \(\xi\$:

$$\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

Asymptotic symmetries in gravity — modification of equivalence principle

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

r: some convenient ("radial") coordinate

 r_b : value of r at boundary (could be ∞)

 x^i : remaining coordinates

 $g_{\mu\nu}$: metric compatible with bc's

 $ar{g}_{\mu
u}$: (asymptotic) background metric

 $\delta g_{\mu\nu}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

$$\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

typically, asymptotic Killing vectors can be expanded radially

$$\xi^{\mu}(r_b, x^i) = \xi^{\mu}_{(0)}(r_b, x^i) + \text{subleading terms}$$

 $\xi_{(0)}^{\mu}(r_b, x^i)$: generates asymptotic symmetries/changes physical state subleading terms: generate trivial diffeos

Asymptotic symmetries in gravity — modification of equivalence principle

Impose some bc's at (asymptotic or actual) boundary:

$$\lim_{r \to r_b} g_{\mu\nu}(r, x^i) = \bar{g}_{\mu\nu}(r_b, x^i) + \delta g_{\mu\nu}(r_b, x^i)$$

 $g_{\mu\nu}$: metric compatible with bc's $\bar{g}_{\mu\nu}$: (asymptotic) background metric $\delta g_{\mu\nu}$: fluctuations permitted by bc's

bcpgt's generated by asymptotic Killing vectors ξ:

$$\mathcal{L}_{\xi}g_{\mu\nu} \stackrel{!}{=} \mathcal{O}(\delta g_{\mu\nu})$$

typically, asymptotic Killing vectors can be expanded radially

$$\xi^{\mu}(r_b, x^i) = \xi^{\mu}_{(0)}(r_b, x^i) + \text{trivial diffeos}$$

Definition of asymptotic symmetry algebra

Lie bracket quotient algebra of asymptotic Killing vectors modulo trivial diffeos

Canonical boundary charges God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

Canonical boundary charges God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

lacktriangle changing boundary conditions can change physical spectrum simple example: quantum mechanics of free particle on half-line $x\geq 0$

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line $x \geq 0$ time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- ▶ Dirichlet bc's: no bound states
- Neumann bc's: no bound states

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

changing boundary conditions can change physical spectrum

simple example: quantum mechanics of free particle on half-line $x \geq 0$ time-independent Schrödinger equation:

$$-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = E\psi(x)$$

look for (normalizable) bound state solutions, E < 0

- Dirichlet bc's: no bound states
- ► Neumann bc's: no bound states
- Robin bc's

$$(\psi + \alpha \psi')\big|_{x=0^+} = 0 \qquad \alpha \in \mathbb{R}^+$$

lead to one bound state ("edge state")

$$\psi(x)\big|_{x\geq 0} = \sqrt{\frac{2}{\alpha}} e^{-x/\alpha}$$

with energy $E=-1/\alpha^2$, localized exponentially near x=0

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: either use Noether's second theorem and covariant phase space analysis or perform Hamiltonian analysis in presence of boundaries

Some references:

- covariant phase space: Lee, Wald '90, Iyer, Wald '94 and Barnich, Brandt '02
- review: see Compère, Fiorucci '18 and refs. therein
- canonical analysis: Arnowitt, Deser, Misner '59, Regge, Teitelboim '74 and Brown, Henneaux '86
- review: see Bañados, Reyes '16 and refs. therein

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- \blacktriangleright in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

 Φ : shorthand for phase space variables

 ϵ : smearing function/parameter of gauge trafos

 δ : arbitrary field variation

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- lacktriangle in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta\Phi$$

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- changing boundary conditions can change physical spectrum
- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- lacktriangle in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta\Phi$$

yields (variation of) canonical boundary charges

$$\delta Q[\epsilon] = \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

God made the bulk; surfaces were invented by the devil — Wolfgang Pauli

- to distinguish asymptotic symmetries from trivial gauge trafos: perform Hamiltonian analysis in presence of boundaries
- lacktriangle in Hamiltonian language: gauge generator $G[\epsilon]$ varies as

$$\delta G[\epsilon] = \int_{\Sigma} (\text{bulk term}) \, \epsilon \, \delta \Phi - \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

not functionally differentiable in general (Σ : constant time slice)

add boundary term to restore functional differentiability

$$\delta\Gamma[\epsilon] = \delta G[\epsilon] + \delta Q[\epsilon] \stackrel{!}{=} \int_{\Sigma} (\text{bulk term}) \,\epsilon \,\delta\Phi$$

yields (variation of) canonical boundary charges

$$\delta Q[\epsilon] = \int_{\partial \Sigma} (\text{boundary term}) \, \epsilon \, \delta \Phi$$

Trivial gauge transformations generated by some ϵ with $Q[\epsilon]=0$

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

Flat space holography and complex SYK

Motivation for near horizon boundary conditions Old idea by Strominger '97 and Carlip '98

Main idea

Impose existence of non-extremal horizon as boundary condition on state space

Motivations:

Motivation for near horizon boundary conditions Old idea by Strominger '97 and Carlip '98

Main idea

Impose existence of non-extremal horizon as boundary condition on state space

Motivations:

Want to ask conditional questions "given a black hole, what are the probabilities for some scattering process"

Motivation for near horizon boundary conditions Old idea by Strominger '97 and Carlip '98

Main idea

Impose existence of non-extremal horizon as boundary condition on state space

Motivations:

- Want to ask conditional questions "given a black hole, what are the probabilities for some scattering process"
- Want to understand Bekenstein–Hawking entropy

$$S_{\rm BH} = \frac{A}{4G} + \mathcal{O}(\ln(A/G))$$

Motivation for near horizon boundary conditions Old idea by Strominger '97 and Carlip '98

Main idea

Impose existence of non-extremal horizon as boundary condition on state space

Motivations:

- Want to ask conditional questions "given a black hole, what are the probabilities for some scattering process"
- Want to understand Bekenstein-Hawking entropy

$$S_{\rm BH} = \frac{A}{4G} + \mathcal{O}(\ln(A/G))$$

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce $S_{\rm BH}$?

Explicit form of near horizon boundary conditions See Donnay, Giribet, Gonzalez, Pino '15 and Afshar et al '16

Postulates of near horizon boundary conditions:

Explicit form of near horizon boundary conditions See Donnay, Giribet, Gonzalez, Pino '15 and Afshar et al '16

Postulates of near horizon boundary conditions:

1. Rindler approximation

$$ds^2 = -\kappa^2 r^2 dt^2 + dr^2 + \Omega_{ab}(t, x^c) dx^a dx^b + \dots$$

 $r \to 0$: Rindler horizon

 κ : surface gravity

 Ω_{ab} : metric transversal to horizon

 \dots : terms of higher order in r or rotation terms

Explicit form of near horizon boundary conditions

See Donnay, Giribet, Gonzalez, Pino '15 and Afshar et al '16

Postulates of near horizon boundary conditions:

1. Rindler approximation

$$ds^2 = -\kappa^2 r^2 dt^2 + dr^2 + \Omega_{ab}(t, x^c) dx^a dx^b + \dots$$

 $r \to 0$: Rindler horizon

 κ : surface gravity

 Ω_{ab} : metric transversal to horizon

 \dots : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

$$\delta \kappa = 0$$

Explicit form of near horizon boundary conditions

See Donnay, Giribet, Gonzalez, Pino '15 and Afshar et al '16

Postulates of near horizon boundary conditions:

1. Rindler approximation

$$ds^2 = -\kappa^2 r^2 dt^2 + dr^2 + \Omega_{ab}(t, x^c) dx^a dx^b + \dots$$

 $r \to 0$: Rindler horizon

 κ : surface gravity

 Ω_{ab} : metric transversal to horizon

 \dots : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

$$\delta \kappa = 0$$

3. Metric transversal to horizon is state-dependent

$$\delta\Omega_{ab} = \mathcal{O}(1)$$

Explicit form of near horizon boundary conditions

See Donnay, Giribet, Gonzalez, Pino '15 and Afshar et al '16

Postulates of near horizon boundary conditions:

1. Rindler approximation

$$ds^2 = -\kappa^2 r^2 dt^2 + dr^2 + \Omega_{ab}(t, x^c) dx^a dx^b + \dots$$

 $r \rightarrow 0$: Rindler horizon

 κ : surface gravity

 Ω_{ab} : metric transversal to horizon

 \dots : terms of higher order in r or rotation terms

2. Surface gravity is state-independent

$$\delta \kappa = 0$$

3. Metric transversal to horizon is state-dependent

$$\delta\Omega_{ab} = \mathcal{O}(1)$$

4. Remaining terms fixed by consistency of canonical boundary charges

Black holes can be deformed into black flowers Afshar et al. 16

Horizon can get excited by area preserving shear-deformations

Simplification in 3d:

$$ds^{2} = \left[-\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left(1 + \mathcal{O}(r^{2}) \right)$$

▶ Map from round S^1 to Fourier-excited S^1 : diffeo $\gamma(\varphi) d\varphi = d\tilde{\varphi}$

Simplification in 3d:

$$ds^{2} = \left[-\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left(1 + \mathcal{O}(r^{2}) \right)$$

- ▶ Map from round S^1 to Fourier-excited S^1 : diffeo $\gamma(\varphi) d\varphi = d\tilde{\varphi}$
- Trivial or non-trivial? Answer provided by boundary charges!

Simplification in 3d:

$$ds^{2} = \left[-\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left(1 + \mathcal{O}(r^{2}) \right)$$

- ▶ Map from round S^1 to Fourier-excited S^1 : diffeo $\gamma(\varphi) d\varphi = d\tilde{\varphi}$
- ▶ Non-trivial diffeo!
- Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint d\varphi \, \epsilon^{\pm}(\varphi) \left(\gamma(\varphi) \pm \omega(\varphi) \right)$$

where ϵ^\pm are functions appearing in asymptotic Killing vectors charge conservation follows from on-shell relations $\partial_t \gamma = 0 = \partial_t \omega$ hairy black holes: γ and ω are hair of black hole

Simplification in 3d:

$$ds^{2} = \left[-\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left(1 + \mathcal{O}(r^{2}) \right)$$

- ▶ Map from round S^1 to Fourier-excited S^1 : diffeo $\gamma(\varphi) d\varphi = d\tilde{\varphi}$
- ► Non-trivial diffeo!
- Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint \mathrm{d}\varphi \, \epsilon^{\pm}(\varphi) \left(\gamma(\varphi) \pm \omega(\varphi) \right)$$

lacktriangle Near horizon symmetry algebra Fourier modes $\mathcal{J}_n^\pm=Q^\pm[\epsilon^\pm=e^{in\varphi}]$

$$[\mathcal{J}_n^{\pm}, \, \mathcal{J}_m^{\pm}] = \frac{1}{2} \, n \, \delta_{n+m, \, 0}$$

Two u(1) current algebras! Afshar et al. 16

Simplification in 3d:

$$ds^{2} = \left[-\kappa^{2} r^{2} dt^{2} + dr^{2} + \gamma^{2}(\varphi) d\varphi^{2} + 2\kappa \omega(\varphi) r^{2} dt d\varphi \right] \left(1 + \mathcal{O}(r^{2}) \right)$$

- ▶ Map from round S^1 to Fourier-excited S^1 : diffeo $\gamma(\varphi) d\varphi = d\tilde{\varphi}$
- ▶ Non-trivial diffeo!
- ► Canonical analysis yields

$$Q^{\pm}[\epsilon^{\pm}] \sim \oint d\varphi \, \epsilon^{\pm}(\varphi) \left(\gamma(\varphi) \pm \omega(\varphi) \right)$$

lacktriangle Near horizon symmetry algebra Fourier modes $\mathcal{J}_n^\pm = Q^\pm [\epsilon^\pm = e^{in\varphi}]$

$$[\mathcal{J}_n^{\pm}, \, \mathcal{J}_m^{\pm}] = \frac{1}{2} \, n \, \delta_{n+m, \, 0}$$

▶ Isomorphic to Heisenberg algebras plus center

$$[X_n, P_m] = i \, \delta_{n,m} \qquad [P_0, X_n] = 0 = [X_0, P_n]$$

$$P_0 = \mathcal{J}_0^+ + \mathcal{J}_0^-, X_n = \mathcal{J}_n^+ - \mathcal{J}_{-n}^-, P_n = 2i/n(\mathcal{J}_{-n}^+ + \mathcal{J}_n^-) \text{ for } n \neq 0$$

1. All states allowed by bc's have same temperature

By contrast: asymptotically AdS or flat space bc's allow for black hole states at different masses and hence different temperatures

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)

By contrast: for given temperature not all states in theories with asymptotically AdS or flat space bc's are free from conical singularities; usually a unique black hole state is picked

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
- 3. There is a non-trivial reducibility parameter (= Killing vector)

By contrast: for any other known (non-trivial) bc's there is no vector field that is Killing for all geometries allowed by bc's

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
- 3. There is a non-trivial reducibility parameter (= Killing vector)
- 4. Technical feature: in Chern–Simons formulation of 3d gravity simple expressions in diagonal gauge

$$A^{\pm} = b^{\mp 1} (d+a^{\pm}) b^{\pm 1}$$

$$a^{\pm} = L_0 ((\gamma(\varphi) \pm \omega(\varphi)) d\varphi + \kappa dt)$$

$$b = \exp [(L_+ - L_-) r/2]$$

 L_{\pm} are $sl(2,\mathbb{R})$ raising/lowering generators L_0 is $sl(2,\mathbb{R})$ Cartan subalgebra generator

- 1. All states allowed by bc's have same temperature
- All states allowed by bc's are regular (in particular, they have no conical singularities at the horizon in the Euclidean formulation)
- 3. There is a non-trivial reducibility parameter (= Killing vector)
- 4. Technical feature: in Chern–Simons formulation of 3d gravity simple expressions in diagonal gauge

$$A^{\pm} = b^{\mp 1} (d+a^{\pm}) b^{\pm 1}$$

$$a^{\pm} = L_0 ((\gamma(\varphi) \pm \omega(\varphi)) d\varphi + \kappa dt)$$

$$b = \exp [(L_+ - L_-) r/2]$$

 L_{\pm} are $sl(2,\mathbb{R})$ raising/lowering generators L_0 is $sl(2,\mathbb{R})$ Cartan subalgebra generator

5. Leads to soft Heisenberg hair (see next slides!)

Soft Heisenberg hair for BTZ

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm}>0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

Soft Heisenberg hair for BTZ

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

|black flower
$$\rangle \sim \prod_{n_i^{\pm} > 0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

What is energy of such excitations?

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm}>0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations*

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

^{*} units defined by specifying κ

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm}>0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

ightharpoonup H-eigenvalue of black flower = H-eigenvalue of black hole

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm}>0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^\pm

- ightharpoonup H-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm}>0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^{\pm}

- ightharpoonup H-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of Hawking, Perry and Strominger '16

Black flower excitations = hair of black holes
 Algebraically, excitations from descendants

$$|\text{black flower}\rangle \sim \prod_{n_i^{\pm}>0} \mathcal{J}_{-n_i^{+}}^{+} \mathcal{J}_{-n_i^{-}}^{-} |\text{black hole}\rangle$$

- What is energy of such excitations?
- Near horizon Hamiltonian = boundary charge associated with unit time-translations

$$H = Q[\partial_t] = \kappa P_0$$

commutes with all generators \mathcal{J}_n^{\pm}

- ightharpoonup H-eigenvalue of black hole
- Black flower excitations do not change energy of black hole!

Black flower excitations = soft hair in sense of Hawking, Perry and Strominger '16 Call it "soft Heisenberg hair"

Express entropy in terms of near horizon charges:

Express entropy in terms of near horizon charges:

$$S=2\pi P_0$$

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

► Entropy = parity inv. combination of near horizon charge zero modes

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

- Entropy = parity inv. combination of near horizon charge zero modes
- Obeys simple near horizon first law

$$\delta S = \frac{2\pi}{\kappa} \delta(\kappa P_0) \qquad \Rightarrow \qquad T \delta S = \delta H$$

with Hawking-Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

 δ refers to any variation of phase space variables allowed by the boundary conditions

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

- Entropy = parity inv. combination of near horizon charge zero modes
- Obeys simple near horizon first law

$$\delta S = \frac{2\pi}{\kappa} \delta(\kappa P_0) \qquad \Rightarrow \qquad T \delta S = \delta H$$

with Hawking-Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

► Formula is universal (even when Bekenstein–Hawking does not apply) higher derivative theories, higher spin theories, higher-dimensional theories, (A)dS, flat space, warped AdS, ...

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

- Entropy = parity inv. combination of near horizon charge zero modes
- Obeys simple near horizon first law

$$\delta S = \frac{2\pi}{\kappa} \delta(\kappa P_0) \qquad \Rightarrow \qquad T \delta S = \delta H$$

with Hawking-Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

- ► Formula is universal (even when Bekenstein–Hawking does not apply) higher derivative theories, higher spin theories, higher-dimensional theories, (A)dS, flat space, warped AdS, ...
- entropy in Cardy-like form (but linear in charges!)

Express entropy in terms of near horizon charges:

$$S = 2\pi P_0$$

- Entropy = parity inv. combination of near horizon charge zero modes
- Obeys simple near horizon first law

$$\delta S = \frac{2\pi}{\kappa} \delta(\kappa P_0) \qquad \Rightarrow \qquad T \delta S = \delta H$$

with Hawking-Unruh-temperature

$$T = \frac{\kappa}{2\pi}$$

- ► Formula is universal (even when Bekenstein–Hawking does not apply) higher derivative theories, higher spin theories, higher-dimensional theories, (A)dS, flat space, warped AdS, ...
- entropy in Cardy-like form (but linear in charges!)

Can we understand entropy law microscopically?

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce S_{BH} ?

Regarding 1. and 3.: may expect decoupling of scales so that description of microstates does not need info about UV completion, but rather only some semi-classical "Bohr-like" input

Evidence for this: universality of BH entropy for large black holes

$$S_{\mathrm{BH}} = rac{A}{4G} + \dots$$

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce S_{BH} ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce S_{BH} ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

Possible obstacles:

► TMI: no upper bound on soft hair excitations

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce S_{BH} ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

- TMI: no upper bound on soft hair excitations
- possible resolution: cut-off on soft hair spectrum!

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce S_{BH} ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

- ► TMI: no upper bound on soft hair excitations
- possible resolution: cut-off on soft hair spectrum!
- ► TLI Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17; Carney, Chaurette, Neuenfeld, Semenoff '18: for asymptotic observer no information from soft hair states

Given our soft Heisenberg hair, attack now entropy questions

- 1. Why only semi-classical input for entropy?
- 2. What are microstates?
- 3. Semi-classical construction of microstates?
- 4. Does counting of microstates reproduce S_{BH} ?

Assume it is possible to construct microstates for large black holes semi-classically using soft-hair excitations

- ► TMI: no upper bound on soft hair excitations
- possible resolution: cut-off on soft hair spectrum!
- ► TLI Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17; Carney, Chaurette, Neuenfeld, Semenoff '18: for asymptotic observer no information from soft hair states
- possible resolution: do not consider asymptotic but near horizon observer (i.e., employ near horizon bc's and symmetry algebra)

Highest weight vacuum $|0\rangle$

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Highest weight vacuum $|0\rangle$

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to spectral constraint depending on black hole mass M and angular momentum J (measured by asymptotic observer)

Highest weight vacuum $|0\rangle$

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to spectral constraint depending on black hole mass M and angular momentum J (measured by asymptotic observer)

$$\sum_{i} n_i^{\pm} = \frac{c}{2} \left(M \pm J \right)$$

Highest weight vacuum $|0\rangle$

$$\mathcal{J}_n^{\pm}|0\rangle = 0 \quad \forall n \ge 0$$

Black hole microstates:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle$$

subject to spectral constraint depending on black hole mass ${\cal M}$ and angular momentum ${\cal J}$ (measured by asymptotic observer)

$$\sum_{i} n_i^{\pm} = \frac{c}{2} \left(M \pm J \right)$$

derived from Bohr-type quantization conditions

- quantization of central charge $c=3\ell/(2G)$ in integers
- ightharpoonup quantization of conical deficit angles in integers over c
- black hole/particle correspondence
 (black hole = gas of coherent states of particles on AdS₃)

Microstates for BTZ black hole with mass M and angular momentum J:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \tfrac{c}{2} \left(M \pm J\right)$$

Microstates for BTZ black hole with mass M and angular momentum J:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \frac{c}{2} \left(M \pm J\right)$$

count number of BTZ black hole microstates

Microstates for BTZ black hole with mass M and angular momentum J:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \tfrac{c}{2} \left(M \pm J\right)$$

- count number of BTZ black hole microstates
- \blacktriangleright combinatorial problem: how many ways to decompose large positive integer $\frac{c}{2}\,(M\pm J)$ into sum of positive integers

Microstates for BTZ black hole with mass M and angular momentum J:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \tfrac{c}{2} \left(M \pm J\right)$$

- count number of BTZ black hole microstates
- ▶ combinatorial problem: how many ways to decompose large positive integer $\frac{c}{2}(M \pm J)$ into sum of positive integers
- solved by Hardy, Ramanujan 1918

$$p(N)\big|_{N\gg 1} \sim \frac{1}{4N\sqrt{3}} \exp\left(2\pi\sqrt{N/6}\right)$$

Microstates for BTZ black hole with mass M and angular momentum J:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \tfrac{c}{2} \left(M \pm J\right)$$

- count number of BTZ black hole microstates
- lacktriangle combinatorial problem: how many ways to decompose large positive integer $rac{c}{2} \, (M \pm J)$ into sum of positive integers
- solved by Hardy, Ramanujan 1918

$$p(N)\big|_{N\gg 1}\sim \frac{1}{4N\sqrt{3}}\exp\left(2\pi\sqrt{N/6}\right)$$

to get entropy use Boltzmann's formula

$$S = \ln p\left(\frac{c}{2}\left(M+J\right)\right) + \ln p\left(\frac{c}{2}\left(M-J\right)\right)$$

(we set k = 1 and W = p)

Microstates for BTZ black hole with mass M and angular momentum J:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \tfrac{c}{2} \left(M \pm J\right)$$

- count number of BTZ black hole microstates
- lacktriangle combinatorial problem: how many ways to decompose large positive integer $rac{c}{2}\,(M\pm J)$ into sum of positive integers
- solved by Hardy, Ramanujan 1918

$$p(N)\big|_{N\gg 1} \sim \frac{1}{4N\sqrt{3}} \exp\left(2\pi\sqrt{N/6}\right)$$

to get entropy use Boltzmann's formula

$$S = \ln p\left(\frac{c}{2}\left(M+J\right)\right) + \ln p\left(\frac{c}{2}\left(M-J\right)\right)$$

▶ leading order yields Cardy formula and hence the BH entropy

$$S = 2\pi \sqrt{\frac{c}{6}(M+J)} + 2\pi \sqrt{\frac{c}{6}(M-J)} = 2\pi P_0 = \frac{A}{4G} + \dots$$

Microstates for BTZ black hole with mass M and angular momentum J:

$$|\mathcal{B}(\{n_i^{\pm}\})\rangle = \prod_{\{n_i^{\pm}>0\}} \left(\mathcal{J}_{-n_i^+}^+ \cdot \mathcal{J}_{-n_i^-}^-\right) |0\rangle \qquad \sum_i n_i^{\pm} = \tfrac{c}{2} \left(M \pm J\right)$$

- count number of BTZ black hole microstates
- lacktriangle combinatorial problem: how many ways to decompose large positive integer $rac{c}{2}\,(M\pm J)$ into sum of positive integers
- solved by Hardy, Ramanujan 1918

$$p(N)\big|_{N\gg 1} \sim \frac{1}{4N\sqrt{3}} \exp\left(2\pi\sqrt{N/6}\right)$$

to get entropy use Boltzmann's formula

$$S = \ln p\left(\frac{c}{2}\left(M+J\right)\right) + \ln p\left(\frac{c}{2}\left(M-J\right)\right)$$

▶ leading + subleading order yields BH entropy plus log corrections

$$S = \frac{A}{4G} - 2\ln\left(A/(4G)\right) + \dots$$

► Near horizon boundary conditions

Near horizon boundary conditions works in any dimension, for any local geometry, for any reasonable theory* (with metric) and for any type of non-extremal horizon

^{*} theories checked so far: Einstein gravity with negative cosmological constant $(d \ge 3)$ Einstein gravity with vanishing cosmological constant $(d \ge 3)$ higher spin gravity (d = 3), principal embedding of sl(2)) various massive gravity theories (d = 3)

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable
 theory (with metric) and for any type of non-extremal horizon
- Soft Heisenberg hair

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable theory (with metric) and for any type of non-extremal horizon
- ➤ Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable theory (with metric) and for any type of non-extremal horizon
- ➤ Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Entropy formula

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable
 theory (with metric) and for any type of non-extremal horizon
- Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Entropy formula works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions*

$$\{Q_{lm},\,P_{l'm'}\}=\frac{1}{8\pi G}\,\delta_{ll'}\,\delta_{mm'}\qquad l>0\qquad \qquad \{P_{00},\,\bullet\}=0$$

 Q_{lm} : spherical harmonics of area preserving shear deformations P_{lm} : spherical harmonics of near horizon supertranslations Entropy given by $S=2\pi\,P_{00}$

Kerr has additional generators: area preserving twist deformations

^{*} for instance, for Schwarzschild

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable
 theory (with metric) and for any type of non-extremal horizon
- ➤ Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Entropy formula
 works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Microstate counting

Generalizations

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable
 theory (with metric) and for any type of non-extremal horizon
- ➤ Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Entropy formula
 works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Microstate counting may work generally, based on near horizon symmetries

Generalizations

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable
 theory (with metric) and for any type of non-extremal horizon
- ➤ Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Entropy formula works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Microstate counting may work generally, based on near horizon symmetries
- Semi-classical microstates (fluff)

Generalizations

- Near horizon boundary conditions
 works in any dimension, for any local geometry, for any reasonable theory (with metric) and for any type of non-extremal horizon
- ➤ Soft Heisenberg hair works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Entropy formula
 works for Einstein gravity, higher derivative gravity and higher spin gravity in three dimensions and Einstein gravity in higher dimensions
- Microstate counting may work generally, based on near horizon symmetries
- Semi-classical microstates (fluff)
 might work more generally, but so far only checked BTZ black hole;
 needed Bohr-type rules to succeed

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

Flat space holography and complex SYK

What about non-AdS holography?

Key question

(When) is quantum gravity in D+1 dimensions equivalent to (which) quantum field theory in D dimensions?

What about flat space holography?

Let us be modest and refine this question:

```
More modest question

(How) does holography work in flat space?
```

What about flat space holography?

Let us be modest and refine this question:

```
More modest question

(How) does holography work in flat space?
```

See work by Bagchi et al.

What about flat space holography?

Let us be modest and refine this question:

```
More modest question

(How) does holography work in flat space?
```

See work by Bagchi et al.

Would like concrete model for flat space holography

Selected list of models (see review hep-th/0604049 with Meyer)

Black holes in (A)dS₂, asymptotically flat or arbitrary spaces (Wheeler property)

Model	U(X)	V(X)
1. Schwarzschild (1916)	$-\frac{1}{2X}$	$-\lambda^2$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2b^2X$
4. CGHS (1992)	0	-2Λ
5. $(A)dS_2$ ground state (1994)	$-\frac{a}{X}$	BX
6. Rindler ground state (1996)	$-\frac{a}{X} \\ -\frac{a}{X}$	BX^a
7. Black Hole attractor (2003)	0	BX^{-1}
8. Spherically reduced gravity ($N>3$)	$-\frac{N-3}{(N-2)X}$	$-\lambda^2 X^{(N-4)/(N-2)}$
9. All above: ab -family (1997)	$-\frac{a}{X}$	BX^{a+b}
10. Liouville gravity	a	$be^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2X}$	$-\lambda^2 + \frac{Q^2}{X}$
12. Schwarzschild- $(A)dS$	$-\frac{1}{2X} \\ -\frac{1}{2X}$	$-\lambda^2 - \ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^2 - \Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^2}{X} - \frac{J}{4X^3} - \Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2}X(c-X^2)$
16. KK red. conf. flat (2006)	$-\frac{1}{2}\tanh\left(X/2\right)$	$A \sinh X$
17. 2D type 0A string Black Hole	$-\frac{1}{X}$	$-2b^2X + \frac{b^2q^2}{8\pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Choice of bulk action
 Einstein-Hilbert action not useful

Choice of bulk action

Einstein-Hilbert action not useful

Dilaton gravity in two dimensions (X = dilaton):

$$I[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} \left[XR - U(X)(\nabla X)^2 - 2V(X) \right]$$

- lacktriangle kinetic potential U(X) and dilaton potential V(X)
- constant dilaton and linear dilaton solutions
- ▶ all solutions known in closed form globally for all choices of potentials
- gauge theoretic reformulation as (deformed) BF-theory with non-linear gauge symmetries (Ikeda '93; Schaller, Strobl '94)
- simple choice (Jackiw–Teitelboim):

$$U(X) = 0$$
 $V(X) = \Lambda X$

Choice of bulk action JT model:

$$I_{\text{JT}}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - 2\Lambda X]$$

Leads to (A)dS₂ solutions

$$R = 2\Lambda$$

(classically) equivalent to sl(2) BF theory

Choice of bulk action JT model:

$$I_{\text{JT}}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - 2\Lambda X]$$

Leads to (A)dS₂ solutions

$$R = 2\Lambda$$

(classically) equivalent to sl(2) BF theory

 Flat space choice of bulk action CGHS model

$$I_{\text{CGHS}}[X, g_{\mu\nu}] = \frac{1}{16\pi G_2} \int_{\mathcal{M}} d^2x \sqrt{|g|} [XR - 2\Lambda]$$

Leads to flat solutions

$$R = 0$$

Flat space holography proposal: Afshar, González, DG, Vassilevich '19

Outline

Motivation

Gravity in three dimensions

Near horizon soft hair

Gravity in two dimensions

Flat space holography and complex SYK

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N ($\!N$ is number of Majorana fermions $\psi^a)$

► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$

- Hamiltonian $H_{\rm SYK}=j_{abcd}\psi^a\psi^b\psi^c\psi^d$ with $a,b,c,d=1\dots N$ Gaussian random interaction $\langle j_{abcd}^2\rangle=J^2/N^3$

- lacksquare Hamiltonian $H_{ ext{SYK}}=j_{abcd}\psi^a\psi^b\psi^c\psi^d$ with $a,b,c,d=1\dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$

- lacksquare Hamiltonian $H_{ ext{SYK}}=j_{abcd}\psi^a\psi^b\psi^c\psi^d$ with $a,b,c,d=1\dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- \blacktriangleright sum melonic diagrams $G(\omega)=1/(-i\omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^2G^3(\tau)$

- ► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- \blacktriangleright sum melonic diagrams $G(\omega)=1/(-i\omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^2G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

$$G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N ($\!N$ is number of Majorana fermions $\psi^a)$

- ► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- \blacktriangleright sum melonic diagrams $G(\omega)=1/(-i\omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^2G^3(\tau)$
- ▶ in IR limit $\tau J\gg 1$ exactly soluble, e.g. on circle $(au\sim au+eta)$

$$G(\tau) \sim \text{sign}(\tau)/\sin^{2\Delta}(\pi\tau/\beta)$$
 conformal weight $\Delta = 1/4$

► $SL(2,\mathbb{R})$ covariant $x \to (ax+b)/(cx+d)$ with $x = \tan(\pi\tau/\beta)$

- ► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau) \psi^a(0) \rangle$
- \blacktriangleright sum melonic diagrams $G(\omega)=1/(-i\omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^2G^3(\tau)$
- ▶ in IR limit $\tau J \gg 1$ exactly soluble, e.g. on circle $(\tau \sim \tau + \beta)$

$$G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$$

- ► $SL(2, \mathbb{R})$ covariant $x \to (ax+b)/(cx+d)$ with $x = \tan(\pi\tau/\beta)$
- lacktriangle effective action at large N and large J: Schwarzian action

$$\Gamma[h] \sim -\frac{N}{J} \int^{\beta} d\tau \left[\dot{h}^2 + \frac{1}{2} \{h; \tau\} \right] \qquad \{h; \tau\} = \frac{\ddot{h}}{\dot{h}} - \frac{3}{2} \frac{\ddot{h}^2}{\dot{h}^2}$$

Sachdev–Ye–Kitaev model = strongly interacting quantum system solvable at large N ($\!N$ is number of Majorana fermions $\psi^a)$

- ► Hamiltonian $H_{\text{SYK}} = j_{abcd} \psi^a \psi^b \psi^c \psi^d$ with $a, b, c, d = 1 \dots N$
- Gaussian random interaction $\langle j_{abcd}^2 \rangle = J^2/N^3$
- 2-point function $G(\tau) = \langle \psi^a(\tau)\psi^a(0)\rangle$
- \blacktriangleright sum melonic diagrams $G(\omega)=1/(-i\omega-\Sigma(\omega))$ with $\Sigma(\tau)=J^2G^3(\tau)$
- lacktriangle in IR limit $au J\gg 1$ exactly soluble, e.g. on circle $(au\sim au+eta)$

$$G(\tau) \sim \operatorname{sign}(\tau) / \sin^{1/2}(\pi \tau / \beta)$$

- ► $SL(2, \mathbb{R})$ covariant $x \to (ax+b)/(cx+d)$ with $x = \tan(\pi\tau/\beta)$
- lacktriangle effective action at large N and large J: Schwarzian action

$$\Gamma[h] \sim -\frac{N}{J} \int^{\beta} d\tau \left[\dot{h}^2 + \frac{1}{2} \{h; \tau\} \right] \qquad \{h; \tau\} = \frac{\ddot{h}}{\dot{h}} - \frac{3}{2} \frac{\ddot{h}^2}{\dot{h}^2}$$

Schwarzian action also follows from JT gravity

Q&A's:

Q1: What is the flat space analogue of JT?

- Q1: What is the flat space analogue of JT?
- ► A1: Essentially the CGHS model

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- ► A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} d\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

Q&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- ► A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} d\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

▶ Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?

Q&A's:

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- ► A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} d\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- ▶ Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- ► A3: The twisted warped symmetries

$$[L_n, L_m] = (n - m) L_{n+m}$$

$$[L_n, J_m] = -m J_{n+m} - i\kappa (n^2 - n) \delta_{n+m, 0}$$

$$[J_n, J_m] = 0$$

and the two-dimensional Maxwell symmetries (L_1, L_0, J_{-1}, J_0)

- Q1: What is the flat space analogue of JT?
- A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- ► A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} d\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- ▶ Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- ▶ A3: The twisted warped and two-dimensional Maxwell symmetries
- ▶ Q4: What is the flat space analogue of SYK?

- ▶ Q1: What is the flat space analogue of JT?
- ► A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- ► A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} d\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- ▶ Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- A3: The twisted warped and two-dimensional Maxwell symmetries
- ▶ Q4: What is the flat space analogue of SYK?
- ▶ A4: Complex SYK for large specific heat and zero compressibility

Q&A's:

- Q1: What is the flat space analogue of JT?
- ► A1: Essentially the CGHS model
- Q2: What is the flat space analogue of the Schwarzian action?
- ► A2: The twisted warped action

$$\Gamma[h, g] = \kappa \int_{0}^{\beta} d\tau \left(\dot{h}^{2} - \dot{g} \left(\frac{2\pi i}{\beta} \dot{h} + \frac{\ddot{h}}{\dot{h}} \right) + \ddot{g} \right)$$

- ▶ Q3: What is the twisted warped analogue of the Virasoro and sl(2) symmetries governing the Schwarzian?
- ▶ A3: The twisted warped and two-dimensional Maxwell symmetries
- Q4: What is the flat space analogue of SYK?
- ▶ A4: Complex SYK for large specific heat and zero compressibility

Concrete model for flat space holography

- General lessons
 - Boundary conditions crucial
 - Physical states in form of edge states can exist
 - Asymptotic symmetries give clues about dual QFT

- General lessons
 - Boundary conditions crucial
 - Physical states in form of edge states can exist
 - Asymptotic symmetries give clues about dual QFT
- Specific recent topics
 - near horizon soft hair
 - flat space holography and complex SYK
 - most general boundary conditions in AdS₃ (not mentioned in this talk)

- General lessons
 - Boundary conditions crucial
 - Physical states in form of edge states can exist
 - Asymptotic symmetries give clues about dual QFT
- Specific recent topics
 - near horizon soft hair
 - flat space holography and complex SYK
 - most general boundary conditions in AdS₃ (not mentioned in this talk)
- Selected challenges for the future
 - Checks, generalizations and applications of flat space holography?
 - Complete model of evaporating black hole?
 - ► How general is holography?

- General lessons
 - Boundary conditions crucial
 - Physical states in form of edge states can exist
 - Asymptotic symmetries give clues about dual QFT
- Specific recent topics
 - near horizon soft hair
 - flat space holography and complex SYK
 - most general boundary conditions in AdS₃ (not mentioned in this talk)
- Selected challenges for the future
 - Checks, generalizations and applications of flat space holography?
 - Complete model of evaporating black hole?
 - ► How general is holography?
 - Numerous open questions in gravity and holography
 - Many can be addressed in lower dimensions
 - ▶ If you are stuck in higher D try D=3 or D=2

Thank you for your attention!

