Soft hair

on black holes and cosmological horizons in any dimension

Daniel Grumiller

Institute for Theoretical Physics
TU Wien
OIST, Japan, Neiman Unit Workshop, July 2018

Punchline

$$
S=2 \pi P_{0}
$$

Punchline

Universal and simple entropy law for (higher spin) black holes and cosmologies

$$
S=2 \pi P_{0}
$$

P_{0} : zero mode generator in near horizon symmetry algebra

$$
\left[X_{n}, P_{m}\right]=i \delta_{n, m} \quad m \neq 0 \quad\left[P_{0}, \bullet\right]=0
$$

or equivalently a number of $u(1)$ current algebras

Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

BTZ black hole entropy and Cardy formula

- BTZ: black holes in AdS_{3}

BTZ black hole entropy and Cardy formula

- BTZ: black holes in AdS_{3}
- Einstein gravity: Bekenstein-Hawking entropy $S_{\mathrm{BTZ}}=S_{\mathrm{BH}}=A /(4 G)$

BTZ black hole entropy and Cardy formula

- BTZ: black holes in AdS_{3}
- Einstein gravity: Bekenstein-Hawking entropy $S_{\mathrm{BTZ}}=S_{\mathrm{BH}}=A /(4 G)$
- CFT_{2} : Cardy formula reproduces S_{BH}

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=2 \pi \sum_{ \pm} \sqrt{\frac{c^{ \pm} L_{0}^{ \pm}}{6}}=S_{\text {Cardy }}
$$

where $L_{0}^{ \pm}$are expectations values (for state whose entropy is calculated) of zero mode Virasoro generators

$$
\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right]=(n-m) L_{n+m}^{ \pm}+\frac{c^{ \pm}}{12} n^{3} \delta_{n+m, 0}
$$

and $c^{ \pm}$the left- and right central charges
see work by Strominger, Carlip, ...

BTZ black hole entropy and Cardy formula

- BTZ: black holes in AdS_{3}
- Einstein gravity: Bekenstein-Hawking entropy $S_{\text {втZ }}=S_{\text {ВН }}=A /(4 G)$
- CFT_{2} : Cardy formula reproduces S_{BH}

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=2 \pi \sum_{ \pm} \sqrt{\frac{c^{ \pm} L_{0}^{ \pm}}{6}}=S_{\text {Cardy }}
$$

where $L_{0}^{ \pm}$are expectations values (for state whose entropy is calculated) of zero mode Virasoro generators

$$
\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right]=(n-m) L_{n+m}^{ \pm}+\frac{c^{ \pm}}{12} n^{3} \delta_{n+m, 0}
$$

and $c^{ \pm}$the left- and right central charges see work by Strominger, Carlip, ...

Asymptotic Virasoro symmetries crucial for holographic Cardy formula

Non-universality of Cardy formula

- Cardy-formula universal for holographic CFTs - but what if asymptotic symmetries are not two Virasoros?

Non-universality of Cardy formula

- Cardy-formula universal for holographic CFTs - but what if asymptotic symmetries are not two Virasoros?
- Example 1: flat space has BMS_{3} symmetries

$$
\begin{gathered}
{\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c_{L}}{12} n^{3} \delta_{n+m, 0}} \\
{\left[L_{n}, M_{m}\right]=(n-m) M_{n+m}+\frac{c_{M}}{12} n^{3} \delta_{n+m, 0}}
\end{gathered}
$$

Non-universality of Cardy formula

- Cardy-formula universal for holographic CFTs - but what if asymptotic symmetries are not two Virasoros?
- Example 1: flat space has BMS_{3} symmetries

$$
\begin{array}{r}
{\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c_{L}}{12} n^{3} \delta_{n+m, 0}} \\
{\left[L_{n}, M_{m}\right]=(n-m) M_{n+m}+\frac{c_{M}}{12} n^{3} \delta_{n+m, 0}}
\end{array}
$$

- Cardy-like formula (Bagchi, Detournay, Fareghbal, Simon; Barnich '12)

$$
S=2 \pi \sqrt{\frac{c_{L} L_{0}}{6}}+2 \pi L_{0} \sqrt{\frac{c_{M}}{2 M_{0}}}
$$

Non-universality of Cardy formula

- Cardy-formula universal for holographic CFTs - but what if asymptotic symmetries are not two Virasoros?
- Example 1: flat space has BMS_{3} symmetries

$$
\begin{gathered}
{\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c_{L}}{12} n^{3} \delta_{n+m, 0}} \\
{\left[L_{n}, M_{m}\right]=(n-m) M_{n+m}+\frac{c_{M}}{12} n^{3} \delta_{n+m, 0}}
\end{gathered}
$$

- Cardy-like formula (Bagchi, Detournay, Fareghbal, Simon; Barnich '12)

$$
S=2 \pi \sqrt{\frac{c_{L} L_{0}}{6}}+2 \pi L_{0} \sqrt{\frac{c_{M}}{2 M_{0}}}
$$

- Example 2: Virasoro $\oplus u(1)$ current algebra
- Cardy-like formula (Detournay, Hartman, Hofman '12)

$$
S=2 \pi \sqrt{\frac{c L_{0}^{S}}{6}}+\alpha P_{0}
$$

Non-universality of Cardy formula

- Cardy-formula universal for holographic CFTs - but what if asymptotic symmetries are not two Virasoros?
- Example 1: flat space has BMS_{3} symmetries
- Cardy-like formula (Bagchi, Detournay, Fareghbal, Simon; Barnich '12)
- Example 2: Virasoro $\oplus u(1)$ current algebra
- Cardy-like formula (Detournay, Hartman, Hofman '12)
- Example 3: Lifshitz-type symmetries with scaling exponent z

$$
t \rightarrow t \lambda^{z} \quad x \rightarrow x \lambda
$$

- Cardy-like formula (González, Tempo, Troncoso '11)

$$
S=2 \pi(1+z) \Delta^{1 /(1+z)} \exp \left[z /(1+z) \ln \left(\Delta_{0}[1 / z] / z\right)\right]
$$

Δ : energy of state whose entropy is calculated
Δ_{0} ground state energy for theory with $1 / z$ scaling

Non-universality of Cardy formula

- Cardy-formula universal for holographic CFTs - but what if asymptotic symmetries are not two Virasoros?
- Example 1: flat space has BMS_{3} symmetries
- Cardy-like formula (Bagchi, Detournay, Fareghbal, Simon; Barnich '12)
- Example 2: Virasoro $\oplus u(1)$ current algebra
- Cardy-like formula (Detournay, Hartman, Hofman '12)
- Example 3: Lifshitz-type symmetries with scaling exponent z

$$
t \rightarrow t \lambda^{z} \quad x \rightarrow x \lambda
$$

- Cardy-like formula (González, Tempo, Troncoso '11)

$$
S=2 \pi(1+z) \Delta^{1 /(1+z)} \exp \left[z /(1+z) \ln \left(\Delta_{0}[1 / z] / z\right)\right]
$$

Δ : energy of state whose entropy is calculated Δ_{0} ground state energy for theory with $1 / z$ scaling

Cardy formula not universal

Generalizations to higher spins in AdS_{3}

- 3d higher spin theories described by Chern-Simons action

Blencowe '89; Bergshoeff, Blencowe, Stelle '90

Note: higher spin holography (Sezgin, Sundell '02; Klebanov, Polyakov '02; Gaberdiel, Gopakumar '10) will not appear in this talk

Generalizations to higher spins in AdS_{3}

- 3d higher spin theories described by Chern-Simons action
- e.g. spin-3 gravity described by $\operatorname{sl}(3, \mathbb{R}) \oplus \operatorname{sl}(3, \mathbb{R})$ Chern-Simons

Henneaux, Rey; Campoleoni, Fredenhagen, Pfenninger, Theisen '10

Generalizations to higher spins in AdS_{3}

- 3d higher spin theories described by Chern-Simons action
- e.g. spin-3 gravity described by $\operatorname{sl}(3, \mathbb{R}) \oplus \operatorname{sl}(3, \mathbb{R})$ Chern-Simons
- black hole solutions exist

Gutperle, Kraus '11

Generalizations to higher spins in AdS_{3}

- 3d higher spin theories described by Chern-Simons action
- e.g. spin-3 gravity described by $\operatorname{sl}(3, \mathbb{R}) \oplus \operatorname{sl}(3, \mathbb{R})$ Chern-Simons
- black hole solutions exist
- Cardy-like (?) formula for their entropy

$$
\begin{aligned}
S= & 2 \pi \sqrt{2 \pi k}\left(\sqrt{\mathcal{L}_{+}} \cos \left[\frac{1}{3} \arcsin \left(\frac{3}{8} \sqrt{\frac{3 k}{2 \pi \mathcal{L}_{+}^{3}}} \mathcal{W}_{+}\right)\right]\right. \\
& \left.+\sqrt{\mathcal{L}_{-}} \cos \left[\frac{1}{3} \arcsin \left(\frac{3}{8} \sqrt{\frac{3 k}{2 \pi \mathcal{L}_{-}^{3}}} \mathcal{W}_{-}\right)\right]\right)
\end{aligned}
$$

Ammon, Gutperle, Kraus, Perlmutter; Perez, Tempo, Troncoso '12; de Boer, Jottar '13

Generalizations to higher spins in AdS_{3}

- 3d higher spin theories described by Chern-Simons action
- e.g. spin-3 gravity described by $\operatorname{sl}(3, \mathbb{R}) \oplus \operatorname{sl}(3, \mathbb{R})$ Chern-Simons
- black hole solutions exist
- Cardy-like (?) formula for their entropy

$$
\begin{aligned}
S= & 2 \pi \sqrt{2 \pi k}\left(\sqrt{\mathcal{L}_{+}} \cos \left[\frac{1}{3} \arcsin \left(\frac{3}{8} \sqrt{\frac{3 k}{2 \pi \mathcal{L}_{+}^{3}}} \mathcal{W}_{+}\right)\right]\right. \\
& \left.+\sqrt{\mathcal{L}_{-}} \cos \left[\frac{1}{3} \arcsin \left(\frac{3}{8} \sqrt{\frac{3 k}{2 \pi \mathcal{L}_{-}^{3}}} \mathcal{W}_{-}\right)\right]\right)
\end{aligned}
$$

Ammon, Gutperle, Kraus, Perlmutter; Perez, Tempo, Troncoso '12; de Boer, Jottar '13

- not evident from asymptotic symmetries

$$
\begin{aligned}
& {\left[L_{n}^{ \pm}, L_{m}^{ \pm}\right]=(n-m) L_{n+m}^{ \pm}+\frac{c^{ \pm}}{12} n^{3} \delta_{n+m, 0} \quad\left[L_{n}^{ \pm}, W_{m}^{ \pm}\right]=(2 n-m) W_{n+m}^{ \pm}} \\
& {\left[W_{n}^{ \pm}, W_{m}^{ \pm}\right]=\frac{96}{c}(n-m)\left(L^{ \pm}\right)_{n+m}^{2}+(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{c^{ \pm}}{12} n^{5} \delta_{n+m, 0}}
\end{aligned}
$$

Flat space higher spins

- flat space HST: İnönü-Wigner contraction from HST in AdS_{3} (Afshar, Bagchi, Fareghbal, Grumiller, Rosseel; González, Matulich, Pino, Troncoso '13)

Flat space higher spins

- flat space HST: İnönü-Wigner contraction from HST in AdS_{3}
(Afshar, Bagchi, Fareghbal, Grumiller, Rosseel; González, Matulich, Pino, Troncoso '13)
- has flat space cosmological solutions with horizons and entropy
(Gary, Grumiller, Riegler, Rosseel '14)

$$
S=2 \pi L_{0} \sqrt{\frac{c_{M}}{2 M_{0}}} \cdot \frac{2 R-3-12 P \sqrt{R}}{(R-3) \sqrt{4-3 / R}}
$$

P, R : spin-3 zero-mode charges

Flat space higher spins

- flat space HST: İnönü-Wigner contraction from HST in AdS_{3} (Afshar, Bagchi, Fareghbal, Grumiller, Rosseel; González, Matulich, Pino, Troncoso '13)
- has flat space cosmological solutions with horizons and entropy
(Gary, Grumiller, Riegler, Rosseel '14)

$$
S=2 \pi L_{0} \sqrt{\frac{c_{M}}{2 M_{0}}} \cdot \frac{2 R-3-12 P \sqrt{R}}{(R-3) \sqrt{4-3 / R}}
$$

P, R : spin-3 zero-mode charges

> Why so many different entropy formulas?

How to obtain them from higher spin symmetries?

Flat space higher spins

- flat space HST: İnönü-Wigner contraction from HST in AdS_{3} (Afshar, Bagchi, Fareghbal, Grumiller, Rosseel; González, Matulich, Pino, Troncoso '13)
- has flat space cosmological solutions with horizons and entropy
(Gary, Grumiller, Riegler, Rosseel '14)

$$
S=2 \pi L_{0} \sqrt{\frac{c_{M}}{2 M_{0}}} \cdot \frac{2 R-3-12 P \sqrt{R}}{(R-3) \sqrt{4-3 / R}}
$$

P, R : spin-3 zero-mode charges
Why so many different entropy formulas?
How to obtain them from higher spin symmetries?

Guideline
Perhaps near horizon physics more universal than asymptotic physics

Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

Near horizon boundary conditions

- Near horizon line-element with Rindler acceleration κ :

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

Near horizon boundary conditions

- Near horizon line-element with Rindler acceleration κ :

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

- Assume κ is source (fixed) and γ is vev (fluctuating)

Near horizon boundary conditions

- Near horizon line-element with Rindler acceleration κ :

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

- Assume κ is source (fixed) and γ is vev (fluctuating)
- e.g. implement these bc's in CS formulation of AdS_{3} Einstein gravity

$$
I_{\mathrm{CS}}= \pm \sum_{ \pm} \frac{k}{4 \pi} \int\left\langle A^{ \pm} \wedge \mathrm{d} A^{ \pm}+\frac{2}{3} A^{ \pm} \wedge A^{ \pm} \wedge A^{ \pm}\right\rangle
$$

with $s l(2)$ connections $A^{ \pm}$and $k=\ell /(4 G)$ with AdS radius $\ell=1$

Near horizon boundary conditions

- Near horizon line-element with Rindler acceleration κ :

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

- Assume κ is source (fixed) and γ is vev (fluctuating)
- e.g. implement these bc's in CS formulation of AdS_{3} Einstein gravity
- choose (Afshar, Detournay, Grumiller, Merbis, Perez, Tempo, Troncoso '16)

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+a^{ \pm}\right) b_{ \pm} \quad a^{ \pm}=\left(\kappa \mathrm{d} t \pm \mathcal{J}^{ \pm}(\varphi) \mathrm{d} \varphi\right) L_{0}
$$

technical note: diagonal gauge convenient, but not necessary

Near horizon boundary conditions

- Near horizon line-element with Rindler acceleration κ :

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

- Assume κ is source (fixed) and γ is vev (fluctuating)
- e.g. implement these bc's in CS formulation of AdS_{3} Einstein gravity
- choose (Afshar, Detournay, Grumiller, Merbis, Perez, Tempo, Troncoso '16)

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+a^{ \pm}\right) b_{ \pm} \quad a^{ \pm}=\left(\kappa \mathrm{d} t \pm \mathcal{J}^{ \pm}(\varphi) \mathrm{d} \varphi\right) L_{0}
$$

technical note: diagonal gauge convenient, but not necessary

- canonical boundary charges ("near horizon charges")

$$
Q\left[\eta^{ \pm}\right]=\frac{k}{4 \pi} \oint \mathrm{~d} \varphi\left(\eta^{+}(\varphi) \mathcal{J}^{+}(\varphi)+\eta^{-}(\varphi) \mathcal{J}^{-}(\varphi)\right)
$$

Near horizon boundary conditions

- Near horizon line-element with Rindler acceleration κ :

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

- Assume κ is source (fixed) and γ is vev (fluctuating)
- e.g. implement these bc's in CS formulation of AdS_{3} Einstein gravity
- choose (Afshar, Detournay, Grumiller, Merbis, Perez, Tempo, Troncoso '16)

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+a^{ \pm}\right) b_{ \pm} \quad a^{ \pm}=\left(\kappa \mathrm{d} t \pm \mathcal{J}^{ \pm}(\varphi) \mathrm{d} \varphi\right) L_{0}
$$

technical note: diagonal gauge convenient, but not necessary

- canonical boundary charges ("near horizon charges")

$$
Q\left[\eta^{ \pm}\right]=\frac{k}{4 \pi} \oint \mathrm{~d} \varphi\left(\eta^{+}(\varphi) \mathcal{J}^{+}(\varphi)+\eta^{-}(\varphi) \mathcal{J}^{-}(\varphi)\right)
$$

- two towers of charges (like in Brown-Henneaux case)

Near horizon symmetries

Definition

Near horizon symmetries $:=$ all near horizon boundary condition preserving transformations, modulo small gauge transformations

Near horizon symmetries

Definition

Near horizon symmetries $:=$ all near horizon boundary condition preserving transformations, modulo small gauge transformations

- generated by trafos with non-trivial near horizon charges

Near horizon symmetries

Definition

Near horizon symmetries $:=$ all near horizon boundary condition preserving transformations, modulo small gauge transformations

- generated by trafos with non-trivial near horizon charges
- decompose charges in Fourier modes

$$
J_{n}^{ \pm}=\frac{k}{4 \pi} \oint \mathrm{~d} \varphi e^{i n \varphi} \mathcal{J}^{ \pm}(\varphi)
$$

and determine their algebra

Near horizon symmetries

Definition

Near horizon symmetries $:=$ all near horizon boundary condition preserving transformations, modulo small gauge transformations

- generated by trafos with non-trivial near horizon charges
- decompose charges in Fourier modes

$$
J_{n}^{ \pm}=\frac{k}{4 \pi} \oint \mathrm{~d} \varphi e^{i n \varphi} \mathcal{J}^{ \pm}(\varphi)
$$

and determine their algebra

- Near horizon symmetry algebra $u(1)$ current algebras

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right]= \pm \frac{1}{2} k n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

Near horizon symmetries

Definition

Near horizon symmetries $:=$ all near horizon boundary condition preserving transformations, modulo small gauge transformations

- generated by trafos with non-trivial near horizon charges
- decompose charges in Fourier modes

$$
J_{n}^{ \pm}=\frac{k}{4 \pi} \oint \mathrm{~d} \varphi e^{i n \varphi} \mathcal{J}^{ \pm}(\varphi)
$$

and determine their algebra

- Near horizon symmetry algebra $u(1)$ current algebras

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right]= \pm \frac{1}{2} k n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- equivalently $\left(X_{n}=J_{n}^{+}-J_{n}^{-}, P_{n}=\frac{i}{k n}\left(J_{-n}^{+}+J_{-n}^{-}\right), P_{0}=J_{0}^{+}+J_{0}^{-}\right)$:

Heisenberg algebras: $\left[X_{n}, P_{m}\right]=i \delta_{n, m} \quad m \neq 0 \quad\left[P_{0}, \bullet\right]=0$

Soft Heisenberg hair

Notion of "soft hair" introduced by Hawking, Perry, Strominger '16

- Vacuum descendants $|\psi\rangle$

$$
|\psi\rangle \sim \prod\left(J_{-n_{i}^{+}}^{+}\right)^{m_{i}^{+}} \prod\left(J_{-n_{i}^{-}}^{-}\right)^{m_{i}^{-}}|0\rangle
$$

Soft Heisenberg hair

Notion of "soft hair" introduced by Hawking, Perry, Strominger '16

- Vacuum descendants $|\psi\rangle$

$$
|\psi\rangle \sim \prod\left(J_{-n_{i}^{+}}^{+}\right)^{m_{i}^{+}} \prod\left(J_{-n_{i}^{-}}^{-}\right)^{m_{i}^{-}}|0\rangle
$$

- Hamiltonian

$$
H:=Q\left[\left.\epsilon^{ \pm}\right|_{\partial_{t}}\right]=\kappa P_{0}
$$

commutes with all generators of near horizon algebra

Soft Heisenberg hair

Notion of "soft hair" introduced by Hawking, Perry, Strominger '16

- Vacuum descendants $|\psi\rangle$

$$
|\psi\rangle \sim \prod\left(J_{-n_{i}^{+}}^{+}\right)^{m_{i}^{+}} \prod\left(J_{-n_{i}^{-}}^{-}\right)^{m_{i}^{-}}|0\rangle
$$

- Hamiltonian

$$
H:=Q\left[\left.\epsilon^{ \pm}\right|_{\partial_{t}}\right]=\kappa P_{0}
$$

commutes with all generators of near horizon algebra

- Energy of vacuum descendants

$$
E_{\psi}=\langle\psi| H|\psi\rangle=E_{\mathrm{vac}}\langle\psi \mid \psi\rangle=E_{\mathrm{vac}}
$$

same as energy of vacuum

Soft Heisenberg hair

Notion of "soft hair" introduced by Hawking, Perry, Strominger '16

- Vacuum descendants $|\psi\rangle$

$$
|\psi\rangle \sim \prod\left(J_{-n_{i}^{+}}^{+}\right)^{m_{i}^{+}} \prod\left(J_{-n_{i}^{-}}^{-}\right)^{m_{i}^{-}}|0\rangle
$$

- Hamiltonian

$$
H:=Q\left[\left.\epsilon^{ \pm}\right|_{\partial_{t}}\right]=\kappa P_{0}
$$

commutes with all generators of near horizon algebra

- Energy of vacuum descendants

$$
E_{\psi}=\langle\psi| H|\psi\rangle=E_{\mathrm{vac}}\langle\psi \mid \psi\rangle=E_{\mathrm{vac}}
$$

same as energy of vacuum

- Same conclusion true for descendants of any state!

Soft Heisenberg hair

Notion of "soft hair" introduced by Hawking, Perry, Strominger '16

- Vacuum descendants $|\psi\rangle$

$$
|\psi\rangle \sim \prod\left(J_{-n_{i}^{+}}^{+}\right)^{m_{i}^{+}} \prod\left(J_{-n_{i}^{-}}^{-}\right)^{m_{i}^{-}}|0\rangle
$$

- Hamiltonian

$$
H:=Q\left[\left.\epsilon^{ \pm}\right|_{\partial_{t}}\right]=\kappa P_{0}
$$

commutes with all generators of near horizon algebra

- Energy of vacuum descendants

$$
E_{\psi}=\langle\psi| H|\psi\rangle=E_{\mathrm{vac}}\langle\psi \mid \psi\rangle=E_{\mathrm{vac}}
$$

same as energy of vacuum

- Same conclusion true for descendants of any state!

> Soft hair = zero energy excitations on horizon

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula
- follows from Cardy formula from translation into highest weight gauge

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula
- follows from Cardy formula from translation into highest weight gauge

How universal is this entropy formula?

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula
- follows from Cardy formula from translation into highest weight gauge

How universal is this entropy formula?

- works in AdS for Einstein gravity and massive gravity theories

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula
- follows from Cardy formula from translation into highest weight gauge

How universal is this entropy formula?

- works in AdS for Einstein gravity and massive gravity theories
- works for flat space cosmologies in Einstein and massive gravity

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula
- follows from Cardy formula from translation into highest weight gauge

How universal is this entropy formula?

- works in AdS for Einstein gravity and massive gravity theories
- works for flat space cosmologies in Einstein and massive gravity
- works for warped black holes in massive gravity

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula
- follows from Cardy formula from translation into highest weight gauge

How universal is this entropy formula?

- works in AdS for Einstein gravity and massive gravity theories
- works for flat space cosmologies in Einstein and massive gravity
- works for warped black holes in massive gravity
- also may work for higher spins

Entropy in terms of near horizon charges

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- compatible with Bekenstein-Hawking
- compatible with Wald entropy (in higher derivative theories)
- compatible with near horizon first law $T \mathrm{~d} S=\mathrm{d} H$
- much simpler than Cardy formula
- follows from Cardy formula from translation into highest weight gauge

How universal is this entropy formula?

- works in AdS for Einstein gravity and massive gravity theories
- works for flat space cosmologies in Einstein and massive gravity
- works for warped black holes in massive gravity
- also may work for higher spins $\quad \rightarrow$ check this now!

Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

- twice the number of commuting elements: $P_{0}, P_{0}^{(3)}, X_{0}, X_{0}^{(3)}$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

- twice the number of commuting elements: $P_{0}, P_{0}^{(3)}, X_{0}, X_{0}^{(3)}$
- same conclusions about soft hair

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

- twice the number of commuting elements: $P_{0}, P_{0}^{(3)}, X_{0}, X_{0}^{(3)}$
- same conclusions about soft hair
- same result for entropy!!!

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

fineprint: result above holds for branch continuously connected to BTZ black holes; other branches have additionally linear dependence on zero-mode charges $J_{0}^{(3)} \pm$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

- twice the number of commuting elements: $P_{0}, P_{0}^{(3)}, X_{0}, X_{0}^{(3)}$
- same conclusions about soft hair
- same result for entropy

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- complicated looking Cardy-type higher spin result recovered through twisted Sugawara construction induced by near horizon bc's twisted Sugawara for spin-2 currents

$$
\mathcal{L} \sim \mathcal{J}^{2}+\mathcal{J}^{\prime}+\left(\mathcal{J}^{(3)}\right)^{2}
$$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

- twice the number of commuting elements: $P_{0}, P_{0}^{(3)}, X_{0}, X_{0}^{(3)}$
- same conclusions about soft hair
- same result for entropy

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- complicated looking Cardy-type higher spin result recovered through twisted Sugawara construction induced by near horizon bc's twisted Sugawara for spin-3 currents

$$
\mathcal{W} \sim \mathcal{J}^{2} \mathcal{J}^{(3)}+\left(\mathcal{J}^{(3)}\right)^{3}+\mathcal{J}^{\prime} \mathcal{J}^{(3)}+\mathcal{J} \mathcal{J}^{(3) \prime}+\mathcal{J}^{(3) \prime \prime}
$$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

- twice the number of commuting elements: $P_{0}, P_{0}^{(3)}, X_{0}, X_{0}^{(3)}$
- same conclusions about soft hair
- same result for entropy

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- complicated looking Cardy-type higher spin result recovered through twisted Sugawara construction induced by near horizon bc's zero modes: quadratic and cubic relations (solve for J_{0} and $J_{0}^{(3)}$)

$$
L_{0} \sim J_{0}^{2}+\left(J_{0}^{(3)}\right)^{2} \quad W_{0} \sim\left(J_{0}^{(3)}\right)^{3}+J_{0}^{2} J_{0}^{(3)}
$$

Near horizon boundary conditions for spin-3 gravity in AdS_{3} see paper with Perez, Prohazka, Tempo and Troncoso

- use again CS $(s l(2) \rightarrow s l(3)$ with principal embedding of $s l(2))$
- technical key step: diagonal gauge for connection, $A \sim L_{0}, W_{0}$
- near horizon symmetries again Heisenberg algebras

$$
\left[X_{n}, P_{m}\right]=\left[X_{n}^{(3)}, P_{m}^{(3)}\right]=i \delta_{n, m} \text { for } m \neq 0
$$

equivalently: four $u(1)$ current algebras generated by $J_{n}^{ \pm}$and $J_{n}^{(3) \pm}$

- twice the number of commuting elements: $P_{0}, P_{0}^{(3)}, X_{0}, X_{0}^{(3)}$
- same conclusions about soft hair
- same result for entropy

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- complicated looking Cardy-type higher spin result recovered through twisted Sugawara construction induced by near horizon bc's insertion into entropy formula above recovers spin-3 entropy law

$$
S=2 \pi \sqrt{2 \pi k} \sum_{ \pm} \sqrt{\mathcal{L}_{ \pm}} \cos \left[\frac{1}{3} \arcsin \left(\frac{3}{8} \sqrt{\frac{3 k}{2 \pi \mathcal{L}_{ \pm}^{3}}} \mathcal{W}_{ \pm}\right)\right]
$$

Near horizon boundary conditions for spin-3 gravity in flat space see paper with Ammon, Prohazka, Riegler, Wutte

- works analogously to higher spin AdS_{3} (bc's, ASA, soft hair, entropy)

Near horizon boundary conditions for spin-3 gravity in flat space see paper with Ammon, Prohazka, Riegler, Wutte

- works analogously to higher spin AdS_{3} (bc's, ASA, soft hair, entropy)
- get again Heisenberg algebras (equivalently: $u(1)$ current algebras)

Near horizon boundary conditions for spin-3 gravity in flat space see paper with Ammon, Prohazka, Riegler, Wutte

- works analogously to higher spin AdS_{3} (bc's, ASA, soft hair, entropy)
- get again Heisenberg algebras (equivalently: $u(1)$ current algebras)
- entropy of higher spin flat space cosmologies again given by same formula

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

Near horizon boundary conditions for spin-3 gravity in flat space see paper with Ammon, Prohazka, Riegler, Wutte

- works analogously to higher spin AdS_{3} (bc's, ASA, soft hair, entropy)
- get again Heisenberg algebras (equivalently: $u(1)$ current algebras)
- entropy of higher spin flat space cosmologies again given by same formula

$$
S=2 \pi P_{0}=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)
$$

- complication of Cardy-type formula again fully captured by twisted Sugawara-like results for higher spin currents

$$
\begin{aligned}
\mathcal{L}= & \mathcal{J} \mathcal{P}+\mathcal{J}^{(3)} \mathcal{P}^{(3)}+\mathcal{P}^{\prime} \\
\mathcal{M}= & \mathcal{J}^{2}+\mathcal{J}^{(3) 2}+\mathcal{J}^{\prime} \\
\mathcal{U}= & \mathcal{J}^{2} \mathcal{P}^{(3)}+\mathcal{J}^{(3) 2} \mathcal{P}^{(3)}+\mathcal{J} \mathcal{J}^{(3)} \mathcal{P}+\mathcal{J}^{\prime} \mathcal{P}^{(3)}+\mathcal{J}^{(3)} \mathcal{P}^{\prime} \\
& +\mathcal{J}^{(3) \prime}+\mathcal{J}^{(3) \prime} \mathcal{P}+\mathcal{P}^{(3) \prime \prime} \\
\mathcal{V}= & \mathcal{J}^{2} \mathcal{J}^{(3)}+\mathcal{J}^{(3) 3}+\mathcal{J}^{\prime} \mathcal{J}^{(3)}+\mathcal{J} \mathcal{J}^{(3) \prime}+\mathcal{J}^{(3) \prime \prime}
\end{aligned}
$$

Some open issues at this stage

- spins >3 ?

Some open issues at this stage

- spins >3 ?
- Vasiliev-type hs (λ) ?

Some open issues at this stage

- spins >3 ?
- Vasiliev-type hs (λ) ?
- non-principal embeddings?

Some open issues at this stage

- spins >3 ?
- Vasiliev-type hs (λ) ?
- non-principal embeddings?
- supersymmetry?

Some open issues at this stage

- spins >3 ?
- Vasiliev-type hs (λ) ?
- non-principal embeddings?
- supersymmetry?
- higher dimensions?

Some open issues at this stage

- spins >3 ? works just the same way!
- Vasiliev-type hs (λ) ?
- non-principal embeddings?
- supersymmetry? (even usual supergravity: unclear how it works)
- higher dimensions? see remainder of talk!

Some open issues at this stage

- spins >3 ? works just the same way!
- Vasiliev-type hs (λ) ?
- non-principal embeddings?
- supersymmetry? (even usual supergravity: unclear how it works)
- higher dimensions? see remainder of talk!

Consider arbitrary $D>3$ but restrict to spin-2 Einstein gravity

Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Near horizon boundary conditions in any dimensions
near horizon line-element:

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\Omega_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}+\ldots
$$

Near horizon boundary conditions in any dimensions
near horizon line-element:

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\Omega_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}+\ldots
$$

near horizon Killing vectors:

$$
\xi^{t}=\rho \epsilon^{t}+\mathcal{O}\left(\rho^{3}\right) \quad \xi^{\rho}=\mathcal{O}\left(\rho^{2}\right) \quad \xi^{a}=\epsilon^{a}+\mathcal{O}\left(\rho^{2}\right)
$$

Near horizon boundary conditions in any dimensions near horizon line-element:

$$
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\Omega_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}+\ldots
$$

near horizon Killing vectors:

$$
\xi^{t}=\rho \epsilon^{t}+\mathcal{O}\left(\rho^{3}\right) \quad \xi^{\rho}=\mathcal{O}\left(\rho^{2}\right) \quad \xi^{a}=\epsilon^{a}+\mathcal{O}\left(\rho^{2}\right)
$$

near horizon charges:

$$
\delta Q\left[\epsilon^{t}, \epsilon^{a}\right]=\int \mathrm{d}^{D-2} x\left[\epsilon^{t} \delta \mathcal{P}+\epsilon^{a} \delta \mathcal{J}_{a}\right]
$$

with supertranslations

$$
\mathcal{P}:=\frac{\sqrt{\Omega}}{8 \pi G}
$$

and superrotations

$$
\mathcal{J}_{a}:=\Omega_{a b} \frac{\pi_{(0)}^{\rho b}}{8 \pi G}
$$

$\pi_{(0)}^{\rho b}$ are canonical momenta of metric

Possibilities for near horizon charges

1. Assume $\epsilon^{t}, \epsilon^{a}$ state-independent (Donnay, González, Giribet, Pino '16)

Possibilities for near horizon charges

1. Assume $\epsilon^{t}, \epsilon^{a}$ state-independent (Donnay, González, Giribet, Pino '16) get BMS-like algebra (but not BMS)

Possibilities for near horizon charges

1. Assume $\epsilon^{t}, \epsilon^{a}$ state-independent (Donnay, González, Giribet, Pino '16) get BMS-like algebra (but not BMS)
2. Assume $\epsilon_{\mathrm{BMS}}^{t}=\epsilon^{t} \Phi^{-1 /(D-2)}$ where $\Omega_{a b}=\Phi \gamma_{a b}$ with fixed $\gamma_{a b}$

Possibilities for near horizon charges

1. Assume $\epsilon^{t}, \epsilon^{a}$ state-independent (Donnay, González, Giribet, Pino '16) get BMS-like algebra (but not BMS)
2. Assume $\epsilon_{\text {BMS }}^{t}=\epsilon^{t} \Phi^{-1 /(D-2)}$ where $\Omega_{a b}=\Phi \gamma_{a b}$ with fixed $\gamma_{a b}$ get BMS

Possibilities for near horizon charges

1. Assume $\epsilon^{t}, \epsilon^{a}$ state-independent (Donnay, González, Giribet, Pino '16) get BMS-like algebra (but not BMS)
2. Assume $\epsilon_{\mathrm{BMS}}^{t}=\epsilon^{t} \Phi^{-1 /(D-2)}$ where $\Omega_{a b}=\Phi \gamma_{a b}$ with fixed $\gamma_{a b}$ get BMS
3. Change from 1-form densities \mathcal{J}_{a} to 1 -forms $\mathcal{J}_{a}^{\mathrm{H}}$

$$
\epsilon_{\mathrm{H}}^{a}:=\sqrt{\Omega} \epsilon^{a} \quad \mathcal{J}_{a}^{\mathrm{H}}:=\mathcal{J}_{a} / \sqrt{\Omega}
$$

Possibilities for near horizon charges

1. Assume $\epsilon^{t}, \epsilon^{a}$ state-independent (Donnay, González, Giribet, Pino '16) get BMS-like algebra (but not BMS)
2. Assume $\epsilon_{\mathrm{BMS}}^{t}=\epsilon^{t} \Phi^{-1 /(D-2)}$ where $\Omega_{a b}=\Phi \gamma_{a b}$ with fixed $\gamma_{a b}$ get BMS
3. Change from 1-form densities \mathcal{J}_{a} to 1 -forms $\mathcal{J}_{a}^{\mathrm{H}}$

$$
\epsilon_{\mathrm{H}}^{a}:=\sqrt{\Omega} \epsilon^{a} \quad \mathcal{J}_{a}^{\mathrm{H}}:=\mathcal{J}_{a} / \sqrt{\Omega}
$$

get following near horizon symmetries

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

and associated charges

$$
Q_{\mathrm{H}}\left[\epsilon_{\mathrm{H}}^{t}, \epsilon_{\mathrm{H}}^{a}\right]=\int \mathrm{d}^{D-2} x\left[\epsilon_{\mathrm{H}}^{t} \mathcal{P}+\epsilon_{\mathrm{H}}^{a} \mathcal{J}_{a}^{\mathrm{H}}\right]
$$

Soft hair and entropy

Focus on third case

Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Soft hair and entropy

Focus on third case
Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Near horizon Hamiltonian:

$$
H:=Q_{\mathrm{H}}\left[\epsilon_{\mathrm{H}}^{t}=\kappa, \epsilon_{\mathrm{H}}^{a}=0\right]=\kappa \int \mathrm{d}^{D-2} x \mathcal{P} \equiv \kappa \mathcal{P}_{0}
$$

Soft hair and entropy

Focus on third case
Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Near horizon Hamiltonian:

$$
H:=Q_{\mathrm{H}}\left[\epsilon_{\mathrm{H}}^{t}=\kappa, \epsilon_{\mathrm{H}}^{a}=0\right]=\kappa \int \mathrm{d}^{D-2} x \mathcal{P} \equiv \kappa \mathcal{P}_{0}
$$

Soft hair property: all near horizon generators commute with H !

Soft hair and entropy

Focus on third case
Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Near horizon Hamiltonian:

$$
H:=Q_{\mathrm{H}}\left[\epsilon_{\mathrm{H}}^{t}=\kappa, \epsilon_{\mathrm{H}}^{a}=0\right]=\kappa \int \mathrm{d}^{D-2} x \mathcal{P} \equiv \kappa \mathcal{P}_{0}
$$

Soft hair property: all near horizon generators commute with H ! Entropy:

$$
S=2 \pi \mathcal{P}_{0}
$$

Soft hair and entropy

Focus on third case
Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Near horizon Hamiltonian:

$$
H:=Q_{\mathrm{H}}\left[\epsilon_{\mathrm{H}}^{t}=\kappa, \epsilon_{\mathrm{H}}^{a}=0\right]=\kappa \int \mathrm{d}^{D-2} x \mathcal{P} \equiv \kappa \mathcal{P}_{0}
$$

Soft hair property: all near horizon generators commute with H !
Entropy:

$$
S=2 \pi \mathcal{P}_{0}
$$

Recover universal entropy result in any spacetime dimension greater than two

Heisenberg algebra?

Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Heisenberg algebra?

Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Assume for simplicity vanishing superrotation field strength:

$$
\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}=0
$$

thus, locally \mathcal{J}^{H} is exact:

$$
\mathcal{J}_{a}^{\mathrm{H}}=\partial_{a} \mathcal{Q}
$$

Heisenberg algebra?

Reminder:

$$
\begin{aligned}
\delta \mathcal{P} & =\frac{1}{8 \pi G} \partial_{a} \epsilon_{\mathrm{H}}^{a} \\
\delta \mathcal{J}_{a}^{\mathrm{H}} & =\frac{1}{8 \pi G}\left[\partial_{a} \epsilon_{\mathrm{H}}^{t}-\frac{\epsilon_{\mathrm{H}}^{b}}{\mathcal{P}}\left(\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}\right)\right]
\end{aligned}
$$

Assume for simplicity vanishing superrotation field strength:

$$
\partial_{a} \mathcal{J}_{b}^{\mathrm{H}}-\partial_{b} \mathcal{J}_{a}^{\mathrm{H}}=0
$$

thus, locally \mathcal{J}^{H} is exact:

$$
\mathcal{J}_{a}^{\mathrm{H}}=\partial_{a} \mathcal{Q}
$$

near horizon symmetry algebra above simplifies to Heisenberg:

$$
\{\mathcal{Q}(x), \mathcal{P}(y)\}=\frac{1}{8 \pi G} \delta^{(D-2)}(x-y)
$$

note: factor $1 /(4 G)$ playing role of Planck's constant h

Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

Microstate counting from near horizon symmetries
Works at least in three spacetime dimensions!

- start with Lifshitz scaling formula $\left(t \rightarrow t \lambda^{z}, \varphi \rightarrow \varphi \lambda\right)$

$$
S=2 \pi(1+z) \sum_{ \pm} \Delta_{ \pm}^{1 /(1+z)} \exp \left[z /(1+z) \ln \left(\Delta_{0}^{ \pm}[1 / z] / z\right)\right]
$$

Microstate counting from near horizon symmetries
Works at least in three spacetime dimensions!

- start with Lifshitz scaling formula $\left(t \rightarrow t \lambda^{z}, \varphi \rightarrow \varphi \lambda\right)$

$$
S=2 \pi(1+z) \sum_{ \pm} \Delta_{ \pm}^{1 /(1+z)} \exp \left[z /(1+z) \ln \left(\Delta_{0}^{ \pm}[1 / z] / z\right)\right]
$$

- take limit $z \rightarrow 0^{+}$

$$
\lim _{z \rightarrow 0^{+}} S=2 \pi\left(\Delta_{+}+\Delta_{-}\right)=2 \pi P_{0}
$$

$\Delta_{ \pm}=J_{0}^{ \pm}$

Microstate counting from near horizon symmetries

Works at least in three spacetime dimensions!

- start with Lifshitz scaling formula $\left(t \rightarrow t \lambda^{z}, \varphi \rightarrow \varphi \lambda\right)$

$$
S=2 \pi(1+z) \sum_{ \pm} \Delta_{ \pm}^{1 /(1+z)} \exp \left[z /(1+z) \ln \left(\Delta_{0}^{ \pm}[1 / z] / z\right)\right]
$$

- take limit $z \rightarrow 0^{+}$

$$
\lim _{z \rightarrow 0^{+}} S=2 \pi\left(\Delta_{+}+\Delta_{-}\right)=2 \pi P_{0}
$$

- can exploit Cardy-method also to get log-corrections to entropy

$$
S=S_{\mathrm{BH}}-\frac{1}{2} \ln S_{\mathrm{BH}}+\ldots
$$

(see paper with Perez, Tempo, Troncoso '17)
Note: factor different from the $-\frac{3}{2}$ found for Brown-Henneaux bc's

Soft hair and semi-classical microstates?

- Generic descendant of vacuum:

$$
\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod_{\left\{n_{i}^{ \pm}>0\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

with set of positive integers $\left\{n_{i}^{ \pm}>0\right\}$

Soft hair and semi-classical microstates?

- Generic descendant of vacuum:

$$
\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod_{\left\{n_{i}^{ \pm}>0\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

with set of positive integers $\left\{n_{i}^{ \pm}>0\right\}$

- Reminder 1: near horizon Hamiltonian $H \sim \mathcal{J}_{0}^{+}+\mathcal{J}_{0}^{-}$commutes with near horizon symmetry algebra

Soft hair and semi-classical microstates?

- Generic descendant of vacuum:

$$
\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod_{\left\{n_{i}^{ \pm}>0\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

with set of positive integers $\left\{n_{i}^{ \pm}>0\right\}$

- Reminder 1: near horizon Hamiltonian $H \sim \mathcal{J}_{0}^{+}+\mathcal{J}_{0}^{-}$commutes with near horizon symmetry algebra
- Reminder 2: descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)

Soft hair and semi-classical microstates?

- Generic descendant of vacuum:

$$
\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod_{\left\{n_{i}^{ \pm}>0\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

with set of positive integers $\left\{n_{i}^{ \pm}>0\right\}$

- Reminder 1: near horizon Hamiltonian $H \sim \mathcal{J}_{0}^{+}+\mathcal{J}_{0}^{-}$commutes with near horizon symmetry algebra
- Reminder 2: descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)
- Immediate issue for entropy: infinite soft hair degeneracy!

Soft hair and semi-classical microstates?

- Generic descendant of vacuum:

$$
\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod_{\left\{n_{i}^{ \pm}>0\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

with set of positive integers $\left\{n_{i}^{ \pm}>0\right\}$

- Reminder 1: near horizon Hamiltonian $H \sim \mathcal{J}_{0}^{+}+\mathcal{J}_{0}^{-}$commutes with near horizon symmetry algebra
- Reminder 2: descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)
- Immediate issue for entropy: infinite soft hair degeneracy!
- Note: descendants have positive eigenvalues of $\mathcal{L}_{0}^{ \pm}=\sum_{p}: \mathcal{J}_{n-p} \mathcal{J}_{p}$:

$$
\mathcal{L}_{0}^{ \pm}\left|\Psi\left(\left\{n_{i}^{ \pm}\right)\right\}\right\rangle=\sum_{i} n_{i}^{ \pm}\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle \equiv \mathcal{E}_{\Psi}^{ \pm}\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle
$$

Soft hair and semi-classical microstates?

- Generic descendant of vacuum:

$$
\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle=\prod_{\left\{n_{i}^{ \pm}>0\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

with set of positive integers $\left\{n_{i}^{ \pm}>0\right\}$

- Reminder 1: near horizon Hamiltonian $H \sim \mathcal{J}_{0}^{+}+\mathcal{J}_{0}^{-}$commutes with near horizon symmetry algebra
- Reminder 2: descendants of vacuum have zero energy; dubbed "soft hair" (same true for descendants of black holes)
- Immediate issue for entropy: infinite soft hair degeneracy!
- Note: descendants have positive eigenvalues of $\mathcal{L}_{0}^{ \pm}=\sum_{p}: \mathcal{J}_{n-p} \mathcal{J}_{p}$:

$$
\mathcal{L}_{0}^{ \pm}\left|\Psi\left(\left\{n_{i}^{ \pm}\right)\right\}\right\rangle=\sum_{i} n_{i}^{ \pm}\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle \equiv \mathcal{E}_{\Psi}^{ \pm}\left|\Psi\left(\left\{n_{i}^{ \pm}\right\}\right)\right\rangle
$$

- Exploited this property to provide controlled cut-off on soft hair spectrum! (Bohr-type quantization conditions)

Explicit set of semi-classical microstates for large non-extremal BTZ
Input: large c; quantization of c in integers; quantization of conical defects in integers over c; black hole/particle correspondence

Explicit set of semi-classical microstates for large non-extremal BTZ
Input: large c; quantization of c in integers; quantization of conical defects in integers over c; black hole/particle correspondence

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
L_{0}^{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

Explicit set of semi-classical microstates for large non-extremal BTZ
Input: large c; quantization of c in integers; quantization of conical defects in integers over c; black hole/particle correspondence

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
L_{0}^{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

- Define sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying

$$
\sum n_{i}^{ \pm}=c L_{0}^{ \pm}
$$

Explicit set of semi-classical microstates for large non-extremal BTZ
Input: large c; quantization of c in integers; quantization of conical defects in integers over c; black hole/particle correspondence

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
L_{0}^{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

- Define sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying

$$
\sum n_{i}^{ \pm}=c L_{0}^{ \pm}
$$

- Define vacuum state $|0\rangle$ by highest weight conditions

$$
\mathcal{J}_{n}^{ \pm}|0\rangle=0 \quad \forall n \geq 0
$$

Explicit set of semi-classical microstates for large non-extremal BTZ Input: large c; quantization of c in integers; quantization of conical defects in integers over c; black hole/particle correspondence

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
L_{0}^{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

- Define sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying

$$
\sum n_{i}^{ \pm}=c L_{0}^{ \pm}
$$

- Define vacuum state $|0\rangle$ by highest weight conditions

$$
\mathcal{J}_{n}^{ \pm}|0\rangle=0 \quad \forall n \geq 0
$$

- Full set of semi-classical BTZ black hole microstates:

$$
\left|\mathcal{B}\left(\left\{n_{i}^{ \pm}\right\}\right) ; J_{0}^{ \pm}\right\rangle=\prod_{\left\{n_{i}^{ \pm}\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

- Straightforward combinatorial problem: partition of integers $p\left(c L_{0}^{ \pm}\right)$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

- Straightforward combinatorial problem: partition of integers $p\left(c L_{0}^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c L_{0}^{+}\right)+\ln p\left(c L_{0}^{-}\right)
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c L_{0}^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c L_{0}^{+}\right)+\ln p\left(c L_{0}^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c L_{0}^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c L_{0}^{+}\right)+\ln p\left(c L_{0}^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

- Our final result for semi-classical BTZ black hole entropy is

$$
S=2 \pi\left(\sqrt{c L_{0}^{+} / 6}+\sqrt{c L_{0}^{-} / 6}\right)-\ln \left(c L_{0}^{+}\right)-\ln \left(c L_{0}^{-}\right)+\mathcal{O}(1)
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c L_{0}^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c L_{0}^{+}\right)+\ln p\left(c L_{0}^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

- Our final result for semi-classical BTZ black hole entropy is

$$
S=2 \pi\left(\sqrt{c L_{0}^{+} / 6}+\sqrt{c L_{0}^{-} / 6}\right)-\ln \left(c L_{0}^{+}\right)-\ln \left(c L_{0}^{-}\right)+\mathcal{O}(1)
$$

- Leading order coincides with Bekenstein-Hawking/Cardy formula!

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c L_{0}^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c L_{0}^{+}\right)+\ln p\left(c L_{0}^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

- Our final result for semi-classical BTZ black hole entropy is

$$
S=2 \pi\left(\sqrt{c L_{0}^{+} / 6}+\sqrt{c L_{0}^{-} / 6}\right)-\ln \left(c L_{0}^{+}\right)-\ln \left(c L_{0}^{-}\right)+\mathcal{O}(1)
$$

- Leading order coincides with Bekenstein-Hawking/Cardy formula!
- Subleading log corrections also correct! (reproduce factor $-\frac{1}{2}$)

Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

Loose ends

- dynamical situations with non-constant κ ?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?
- extremal limit?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?
- extremal limit?
- applications to cosmological horizons?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?
- extremal limit?
- applications to cosmological horizons?
- higher spins in higher dimensions?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?
- extremal limit?
- applications to cosmological horizons?
- higher spins in higher dimensions?
- better understanding of semi-classical microstates?
- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?
- extremal limit?
- applications to cosmological horizons?
- higher spins in higher dimensions?
- better understanding of semi-classical microstates?
- microstates for non-extremal Kerr?

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?
- extremal limit?
- applications to cosmological horizons?
- higher spins in higher dimensions?
- better understanding of semi-classical microstates?
- microstates for non-extremal Kerr?
- how universal is entropy law?

$$
S=2 \pi P_{0}
$$

Loose ends

- dynamical situations with non-constant κ ?
- horizons with matter interactions?
- black rings?
- theories other than Einstein gravity?
- supersymmetric generalization?
- extremal limit?
- applications to cosmological horizons?
- higher spins in higher dimensions?
- better understanding of semi-classical microstates?
- microstates for non-extremal Kerr?
- how universal is entropy law?

$$
S=2 \pi P_{0}
$$

Numerous further research avenues from soft Heisenberg hair

Thanks for your attention!

... and thanks to my collaborators:

- spin-2 case: Hamid Afshar, Stephane Detournay, Hernán González, Philip Hacker, Wout Merbis, Alfredo Perez, David Tempo, Ricardo Troncosos
- higher spins: Martin Ammon, Alfredo Perez, Stefan Prohazka, Max Riegler, David Tempo, Ricardo Troncoso, Raphaela Wutte
- semi-classical microstates: Hamid Afshar, Shahin Sheikh-Jabbari, Hossein Yavartanoo

Papers (can be clicked in PDF):
spin-2 in three dimensions: 1603.04824, 1611.09783, 1705.10605, 1711.07975
higher spins: 1607.05360, 1703.02594
semi-classical microstates: 1607.00009, 1608.01293, 1705.06257, 1708.06378, 1805.11099
spin-2 in higher dimensions: 1709.09667, 180x.xxxxx

Example: Kerr black hole
Near horizon metric for Kerr:

$$
\begin{array}{rl}
\mathrm{d} s^{2}=-\kappa^{2} \rho^{2} & \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+2 \rho \frac{\frac{r_{-}}{r_{+}} \sin \theta \cos \theta}{1+\frac{r_{-}}{r_{+}} \cos ^{\theta}} \mathrm{d} \rho \mathrm{~d} \theta \\
& +r_{+}^{2}\left[\left(1+\frac{r_{-}}{r_{+}} \cos ^{2} \theta\right) \mathrm{d} \theta^{2}+\frac{\left(1+\frac{r_{-}}{r_{+}}\right)^{2} \sin ^{2} \theta}{1+\frac{r_{-}}{r_{+}} \cos ^{2} \theta} \mathrm{~d} \varphi^{2}\right]+\ldots
\end{array}
$$

Near horizon charges for Kerr black holes:

$$
\begin{aligned}
\mathcal{P} & =\frac{r_{+}\left(r_{+}+r_{-}\right)}{8 \pi G} \sin \theta \\
\mathcal{J}_{a}^{\mathrm{H}} & =\delta_{a}^{\varphi} r_{-} \frac{r_{-}\left(r_{-}-r_{+}\right) \cos ^{2} \theta-r_{+}\left(3 r_{+}+r_{-}\right)}{8 \pi G \sqrt{r_{+} r_{-}}\left(r_{+}+r_{-} \cos ^{2} \theta\right)^{2}} \sin ^{2} \theta
\end{aligned}
$$

superrotation field strength is not identically zero iff $r_{-} \neq 0$:

$$
\partial_{\theta} \mathcal{J}_{\varphi}^{\mathrm{H}}=\frac{\sqrt{\frac{r_{-}}{r_{+}}}\left(1+\frac{r_{-}}{r_{+}}\right)^{2}\left(\frac{r_{-}}{r_{+}} \cos ^{2} \theta-3\right) \sin (2 \theta)}{\left(1+\frac{r_{-}}{r_{+}} \cos ^{2} \theta\right)^{3}}
$$

