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BTZ black hole entropy and Cardy formula

I BTZ: black holes in AdS3

I Einstein gravity: Bekenstein–Hawking entropy SBTZ = SBH = A/(4G)
I CFT2: Cardy formula reproduces SBH

SBH =
A

4G
= 2π

∑
±

√
c±L±0

6
= SCardy

where L±0 are expectations values (for state whose entropy is
calculated) of zero mode Virasoro generators

[L±n , L
±
m] = (n−m)L±n+m +

c±

12
n3 δn+m, 0

and c± the left- and right central charges

see work by Strominger, Carlip, . . .

Asymptotic Virasoro symmetries crucial
for holographic Cardy formula
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Non-universality of Cardy formula

I Cardy-formula universal for holographic CFTs — but what if
asymptotic symmetries are not two Virasoros?

I Example 1: flat space has BMS3 symmetries
I Cardy-like formula (Bagchi, Detournay, Fareghbal, Simon; Barnich ’12)

I Example 2: Virasoro ⊕u(1) current algebra
I Cardy-like formula (Detournay, Hartman, Hofman ’12)

I Example 3: Lifshitz-type symmetries with scaling exponent z

t→ tλz x→ xλ

I Cardy-like formula (González, Tempo, Troncoso ’11)

S = 2π (1 + z) ∆1/(1+z) exp
[
z/(1 + z) ln (∆0[1/z]/z)

]
∆: energy of state whose entropy is calculated
∆0 ground state energy for theory with 1/z scaling

Cardy formula not universal
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Generalizations to higher spins in AdS3

I 3d higher spin theories described by Chern–Simons action

Blencowe ’89; Bergshoeff, Blencowe, Stelle ’90

Note: higher spin holography (Sezgin, Sundell ’02; Klebanov,
Polyakov ’02; Gaberdiel, Gopakumar ’10) will not appear in this talk

I e.g. spin-3 gravity described by sl(3,R)⊕ sl(3,R) Chern–Simons
I black hole solutions exist
I Cardy-like (?) formula for their entropy

S = 2π
√

2πk

(√
L+ cos

[
1

3
arcsin

(
3

8

√
3k

2πL3
+

W+

)]

+
√
L− cos

[
1

3
arcsin

(
3

8

√
3k

2πL3
−
W−

)])
Ammon, Gutperle, Kraus, Perlmutter; Perez, Tempo, Troncoso ’12; de Boer, Jottar ’13

I not evident from asymptotic symmetries

[L±n , L
±
m] = (n−m)L±n+m+

c±

12
n3 δn+m, 0 [L±n , W

±
m ] = (2n−m)W±n+m

[W±
n , W

±
m ] =

96

c
(n−m)

(
L±)2

n+m
+(n−m)(2n2+2m2−nm−8)Ln+m+

c±

12
n5 δn+m, 0
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Flat space higher spins

I flat space HST: İnönü–Wigner contraction from HST in AdS3

(Afshar, Bagchi, Fareghbal, Grumiller, Rosseel; González, Matulich, Pino, Troncoso ’13)

I has flat space cosmological solutions with horizons and entropy
(Gary, Grumiller, Riegler, Rosseel ’14)

S = 2π L0

√
cM

2M0
· 2R− 3− 12P

√
R

(R− 3)
√

4− 3/R

P,R: spin-3 zero-mode charges

Why so many different entropy formulas?
How to obtain them from higher spin symmetries?

Perhaps near horizon physics more universal than asymptotic physics

Guideline
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Near horizon boundary conditions

I Near horizon line-element with Rindler acceleration κ:

ds2 = −κ2ρ2 dt2 + dρ2 + γ2 dϕ2 + . . .

I Assume κ is source (fixed) and γ is vev (fluctuating)

I e.g. implement these bc’s in CS formulation of AdS3 Einstein gravity

I choose (Afshar, Detournay, Grumiller, Merbis, Perez, Tempo, Troncoso ’16)

A± = b−1
± (d+a±)b± a± =

(
κdt± J ±(ϕ) dϕ

)
L0

technical note: diagonal gauge convenient, but not necessary

I canonical boundary charges (“near horizon charges”)

Q[η±] =
k

4π

∮
dϕ
(
η+(ϕ)J +(ϕ) + η−(ϕ)J −(ϕ)

)
I two towers of charges (like in Brown–Henneaux case)
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Near horizon symmetries

Near horizon symmetries := all near horizon boundary condition
preserving transformations, modulo small gauge transformations

Definition

I generated by trafos with non-trivial near horizon charges
I decompose charges in Fourier modes

J±n =
k

4π

∮
dϕeinϕJ ± (ϕ)

and determine their algebra
I Near horizon symmetry algebra u(1) current algebras[

J±n , J
±
m

]
= ±1

2 kn δn+m, 0

[
J+
n , J

−
m

]
= 0

I equivalently (Xn = J+
n − J−

n , Pn = i
kn

(J+
−n + J−

−n), P0 = J+
0 + J−

0 ):

Heisenberg algebras: [Xn, Pm] = i δn,m m 6= 0 [P0, •] = 0
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Soft Heisenberg hair
Notion of “soft hair” introduced by Hawking, Perry, Strominger ’16

I Vacuum descendants |ψ〉

|ψ〉 ∼
∏

(J+

−n+
i

)m
+
i

∏
(J−−n−

i

)m
−
i |0〉

I Hamiltonian
H := Q[ε±|∂t ] = κP0

commutes with all generators of near horizon algebra

I Energy of vacuum descendants

Eψ = 〈ψ|H|ψ〉 = Evac〈ψ|ψ〉 = Evac

same as energy of vacuum

I Same conclusion true for descendants of any state!

Soft hair = zero energy excitations on horizon
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Entropy in terms of near horizon charges

S = 2π P0 = 2π
(
J+

0 + J−0
)

I compatible with Bekenstein–Hawking
I compatible with Wald entropy (in higher derivative theories)
I compatible with near horizon first law T dS = dH
I much simpler than Cardy formula
I follows from Cardy formula from translation into highest weight gauge

How universal is this entropy formula?

I works in AdS for Einstein gravity and massive gravity theories
I works for flat space cosmologies in Einstein and massive gravity
I works for warped black holes in massive gravity
I also may work for higher spins

→ check this now!
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Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

Daniel Grumiller — Soft hair Soft Heisenberg hair for higher spins 14/31



Near horizon boundary conditions for spin-3 gravity in AdS3

see paper with Perez, Prohazka, Tempo and Troncoso

I use again CS (sl(2)→ sl(3) with principal embedding of sl(2))

I technical key step: diagonal gauge for connection, A ∼ L0,W0

I near horizon symmetries again Heisenberg algebras

[Xn, Pm] = [X(3)
n , P (3)

m ] = i δn,m for m 6= 0 .

equivalently: four u(1) current algebras generated by J±n and J
(3)±
n

I twice the number of commuting elements: P0, P
(3)
0 , X0, X

(3)
0

I same conclusions about soft hair

I same result for entropy

S = 2π P0 = 2π
(
J+

0 + J−0
)

I complicated looking Cardy-type higher spin result recovered through
twisted Sugawara construction induced by near horizon bc’s
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fineprint: result above holds for branch continuously connected to BTZ black holes; other branches have additionally

linear dependence on zero-mode charges J
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(
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I complicated looking Cardy-type higher spin result recovered through
twisted Sugawara construction induced by near horizon bc’s

zero modes: quadratic and cubic relations (solve for J0 and J
(3)
0 )

L0 ∼ J2
0 +

(
J

(3)
0

)2
W0 ∼

(
J

(3)
0

)3
+ J2

0J
(3)
0
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I complicated looking Cardy-type higher spin result recovered through
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insertion into entropy formula above recovers spin-3 entropy law

S = 2π
√

2πk
∑
±

√
L± cos

[
1
3 arcsin

(
3
8

√
3k

2πL3
±
W±

)]
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Near horizon boundary conditions for spin-3 gravity in flat space
see paper with Ammon, Prohazka, Riegler, Wutte

I works analogously to higher spin AdS3 (bc’s, ASA, soft hair, entropy)

I get again Heisenberg algebras (equivalently: u(1) current algebras)

I entropy of higher spin flat space cosmologies again given by same
formula

S = 2π P0 = 2π
(
J+

0 + J−0
)

I complication of Cardy-type formula again fully captured by twisted
Sugawara-like results for higher spin currents

L = JP + J (3)P(3) + P ′

M = J 2 + J (3) 2 + J ′

U = J 2P(3) + J (3) 2P(3) + JJ (3)P + J ′P(3) + J (3)P ′

+ JP(3) ′ + J (3) ′P + P(3) ′′

V = J 2J (3) + J (3) 3 + J ′J (3) + JJ (3) ′ + J (3) ′′
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Near horizon boundary conditions for spin-3 gravity in flat space
see paper with Ammon, Prohazka, Riegler, Wutte

I works analogously to higher spin AdS3 (bc’s, ASA, soft hair, entropy)

I get again Heisenberg algebras (equivalently: u(1) current algebras)

I entropy of higher spin flat space cosmologies again given by same
formula

S = 2π P0 = 2π
(
J+

0 + J−0
)

I complication of Cardy-type formula again fully captured by twisted
Sugawara-like results for higher spin currents

L = JP + J (3)P(3) + P ′

M = J 2 + J (3) 2 + J ′

U = J 2P(3) + J (3) 2P(3) + JJ (3)P + J ′P(3) + J (3)P ′

+ JP(3) ′ + J (3) ′P + P(3) ′′

V = J 2J (3) + J (3) 3 + J ′J (3) + JJ (3) ′ + J (3) ′′

Daniel Grumiller — Soft hair Soft Heisenberg hair for higher spins 16/31



Near horizon boundary conditions for spin-3 gravity in flat space
see paper with Ammon, Prohazka, Riegler, Wutte

I works analogously to higher spin AdS3 (bc’s, ASA, soft hair, entropy)

I get again Heisenberg algebras (equivalently: u(1) current algebras)

I entropy of higher spin flat space cosmologies again given by same
formula

S = 2π P0 = 2π
(
J+

0 + J−0
)

I complication of Cardy-type formula again fully captured by twisted
Sugawara-like results for higher spin currents

L = JP + J (3)P(3) + P ′

M = J 2 + J (3) 2 + J ′

U = J 2P(3) + J (3) 2P(3) + JJ (3)P + J ′P(3) + J (3)P ′

+ JP(3) ′ + J (3) ′P + P(3) ′′

V = J 2J (3) + J (3) 3 + J ′J (3) + JJ (3) ′ + J (3) ′′

Daniel Grumiller — Soft hair Soft Heisenberg hair for higher spins 16/31



Some open issues at this stage

I spins > 3?

I Vasiliev-type hs(λ)?
I non-principal embeddings?
I supersymmetry?
I higher dimensions?

Consider arbitrary D > 3 but restrict to spin-2 Einstein gravity
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Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook
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Near horizon boundary conditions in any dimensions

near horizon line-element:

ds2 = −κ2 ρ2 dt2 + dρ2 + Ωab dxa dxb + . . .

near horizon Killing vectors:

ξt = ρ εt +O(ρ3) ξρ = O(ρ2) ξa = εa +O(ρ2)

near horizon charges:

δQ[εt, εa] =

∫
dD−2x

[
εt δP + εa δJ a

]
with supertranslations

P :=

√
Ω

8πG
and superrotations

J a := Ωab

πρb(0)

8πG
πρb(0) are canonical momenta of metric
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Possibilities for near horizon charges

1. Assume εt, εa state-independent (Donnay, González, Giribet, Pino ’16)

2. Assume εtBMS = εtΦ−1/(D−2) where Ωab = Φ γab with fixed γab

3. Change from 1-form densities J a to 1-forms J H
a

εaH :=
√

Ω εa J H
a := J a/

√
Ω
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get BMS

3. Change from 1-form densities J a to 1-forms J H
a
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√

Ω εa J H
a := J a/

√
Ω

get following near horizon symmetries

δP =
1

8πG
∂aε

a
H

δJ H
a =

1

8πG

[
∂aε

t
H −

εbH
P
(
∂aJ H

b − ∂bJ H
a

)]
and associated charges

QH[εtH, ε
a
H] =

∫
dD−2x

[
εtH P + εaH J H

a

]
Daniel Grumiller — Soft hair Generalizations to arbitrary dimensions 20/31



Soft hair and entropy
Focus on third case

Reminder:

δP =
1

8πG
∂aε

a
H

δJ H
a =

1

8πG

[
∂aε

t
H −

εbH
P
(
∂aJ H

b − ∂bJ H
a

)]

Near horizon Hamiltonian:

H := QH[εtH = κ, εaH = 0] = κ

∫
dD−2xP ≡ κP0

Soft hair property: all near horizon generators commute with H!

Entropy:
S = 2πP0

Recover universal entropy result in any
spacetime dimension greater than two
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Heisenberg algebra?

Reminder:

δP =
1

8πG
∂aε

a
H

δJ H
a =

1

8πG

[
∂aε

t
H −

εbH
P
(
∂aJ H

b − ∂bJ H
a

)]

Assume for simplicity vanishing superrotation field strength:

∂aJ H
b − ∂bJ H

a = 0

thus, locally J H is exact:
J H
a = ∂aQ

near horizon symmetry algebra above simplifies to Heisenberg:

{Q(x), P(y)} =
1

8πG
δ(D−2)(x− y)

note: factor 1/(4G) playing role of Planck’s constant h
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Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook

Daniel Grumiller — Soft hair Semi-classical microstates and Hardyology 23/31



Microstate counting from near horizon symmetries

Works at least in three spacetime dimensions!

I start with Lifshitz scaling formula (t→ tλz, ϕ→ ϕλ)

S = 2π (1 + z)
∑
±

∆
1/(1+z)
± exp

[
z/(1 + z) ln (∆±0 [1/z]/z)

]

I take limit z → 0+

lim
z→0+

S = 2π
(
∆+ + ∆−

)
= 2π P0

I can exploit Cardy-method also to get log-corrections to entropy

S = SBH −
1

2
lnSBH + . . .

(see paper with Perez, Tempo, Troncoso ’17)

Note: factor different from the −3
2 found for Brown–Henneaux bc’s
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Soft hair and semi-classical microstates?

I Generic descendant of vacuum:

|Ψ({n±i })〉 =
∏
{n±
i >0}

(
J +

−n+
i

J −−n−
i

)
|0〉

with set of positive integers {n±i > 0}

I Reminder 1: near horizon Hamiltonian H ∼ J +
0 + J −0 commutes

with near horizon symmetry algebra
I Reminder 2: descendants of vacuum have zero energy; dubbed “soft

hair” (same true for descendants of black holes)
I Immediate issue for entropy: infinite soft hair degeneracy!
I Note: descendants have positive eigenvalues of L±0 =

∑
p : Jn−pJp :

L±0 |Ψ({n±i )}〉 =
∑
i

n±i |Ψ({n±i })〉 ≡ E
±
Ψ |Ψ({n±i })〉

I Exploited this property to provide controlled cut-off on soft hair
spectrum! (Bohr-type quantization conditions)
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Explicit set of semi-classical microstates for large non-extremal BTZ

Input: large c; quantization of c in integers; quantization of conical defects
in integers over c; black hole/particle correspondence

I Given a BTZ black hole with mass M and angular momentum J (as
measured by asymptotic observer) define parameters

L±0 = 1
2

(
`M ± J

)
= c

6

(
J±0
)2

I Define sets of positive integers {n±i } obeying∑
n±i = cL±0

I Define vacuum state |0〉 by highest weight conditions

J ±n |0〉 = 0 ∀n ≥ 0

I Full set of semi-classical BTZ black hole microstates:

|B({n±i }); J
±
0 〉 =

∏
{n±
i }

(
J +

−n+
i

J −−n−
i

)
|0〉

Daniel Grumiller — Soft hair Semi-classical microstates and Hardyology 26/31



Explicit set of semi-classical microstates for large non-extremal BTZ

Input: large c; quantization of c in integers; quantization of conical defects
in integers over c; black hole/particle correspondence

I Given a BTZ black hole with mass M and angular momentum J (as
measured by asymptotic observer) define parameters

L±0 = 1
2

(
`M ± J

)
= c

6

(
J±0
)2

I Define sets of positive integers {n±i } obeying∑
n±i = cL±0

I Define vacuum state |0〉 by highest weight conditions

J ±n |0〉 = 0 ∀n ≥ 0

I Full set of semi-classical BTZ black hole microstates:

|B({n±i }); J
±
0 〉 =

∏
{n±
i }

(
J +

−n+
i

J −−n−
i

)
|0〉

Daniel Grumiller — Soft hair Semi-classical microstates and Hardyology 26/31



Explicit set of semi-classical microstates for large non-extremal BTZ

Input: large c; quantization of c in integers; quantization of conical defects
in integers over c; black hole/particle correspondence

I Given a BTZ black hole with mass M and angular momentum J (as
measured by asymptotic observer) define parameters

L±0 = 1
2

(
`M ± J

)
= c

6

(
J±0
)2

I Define sets of positive integers {n±i } obeying∑
n±i = cL±0

I Define vacuum state |0〉 by highest weight conditions

J ±n |0〉 = 0 ∀n ≥ 0

I Full set of semi-classical BTZ black hole microstates:

|B({n±i }); J
±
0 〉 =

∏
{n±
i }

(
J +

−n+
i

J −−n−
i

)
|0〉
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BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization
conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

I Straightforward combinatorial problem: partition of integers p(cL±0 )
I Entropy given by Boltzmann’s formula

S = lnN = ln p(cL+
0 ) + ln p(cL−0 )

I Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

ln p(N) = 2π
√
N/6− lnN +O(1)

I Our final result for semi-classical BTZ black hole entropy is

S = +O(1)

I Leading order coincides with Bekenstein–Hawking/Cardy formula!
I Subleading log corrections also correct! (reproduce factor −1

2)
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Outline

Entropy of (higher spin) black holes and Cardyology

Soft Heisenberg hair in spin-2 case

Soft Heisenberg hair for higher spins

Generalizations to arbitrary dimensions

Semi-classical microstates and Hardyology

Outlook
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Loose ends

I dynamical situations with non-constant κ?

I horizons with matter interactions?
I black rings?
I theories other than Einstein gravity?
I supersymmetric generalization?
I extremal limit?
I applications to cosmological horizons?
I higher spins in higher dimensions?
I better understanding of semi-classical microstates?
I microstates for non-extremal Kerr?
I how universal is entropy law?

S = 2π P0

Numerous further research avenues from soft Heisenberg hair
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Thanks for your attention!

... and thanks to my collaborators:

I spin-2 case: Hamid Afshar, Stephane Detournay, Hernán González,
Philip Hacker, Wout Merbis, Alfredo Perez, David Tempo, Ricardo
Troncosos

I higher spins: Martin Ammon, Alfredo Perez, Stefan Prohazka, Max
Riegler, David Tempo, Ricardo Troncoso, Raphaela Wutte

I semi-classical microstates: Hamid Afshar, Shahin Sheikh-Jabbari,
Hossein Yavartanoo

Papers (can be clicked in PDF):
spin-2 in three dimensions: 1603.04824, 1611.09783, 1705.10605,
1711.07975
higher spins: 1607.05360, 1703.02594
semi-classical microstates: 1607.00009, 1608.01293, 1705.06257,
1708.06378, 1805.11099
spin-2 in higher dimensions: 1709.09667, 180x.xxxxx
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Example: Kerr black hole

Near horizon metric for Kerr:

ds2 = −κ2ρ2 dt2 + dρ2 + 2ρ

r−
r+

sin θ cos θ

1 + r−
r+

cosθ
dρdθ

+ r2
+

[
(1 +

r−
r+

cos2 θ) dθ2 +
(1 + r−

r+
)2 sin2 θ

1 + r−
r+

cos2 θ
dϕ2

]
+ . . .

Near horizon charges for Kerr black holes:

P =
r+(r+ + r−)

8πG
sin θ

J H
a = δϕa r−

r−(r− − r+) cos2 θ − r+(3r+ + r−)

8πG
√
r+r− (r+ + r− cos2 θ)2

sin2 θ

superrotation field strength is not identically zero iff r− 6= 0:

∂θJ H
ϕ =

√
r−
r+

(1 + r−
r+

)2( r−r+ cos2 θ − 3) sin(2θ)(
1 + r−

r+
cos2 θ

)3
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