Soft Heisenberg Hair

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

IPM Colloquium, February 2018

Two simple punchlines

1. Heisenberg algebra

$$
\left[X_{n}, P_{m}\right]=i \delta_{n, m}
$$

fundamental not only in quantum mechanics but also in near horizon physics of gravity theories

Two simple punchlines

1. Heisenberg algebra

$$
\left[X_{n}, P_{m}\right]=i \delta_{n, m}
$$

fundamental not only in quantum mechanics but also in near horizon physics of gravity theories
2. Black hole microstates identified as specific "soft hair" descendants at least in three spacetime dimensions, possibly also in higher dimensions

Two simple punchlines

1. Heisenberg algebra

$$
\left[X_{n}, P_{m}\right]=i \delta_{n, m}
$$

fundamental not only in quantum mechanics but also in near horizon physics of gravity theories
2. Black hole microstates identified as specific "soft hair" descendants at least in three spacetime dimensions, possibly also in higher dimensions based on work with

- Hamid Afshar, Shahin Sheikh-Jabbari [IPM Teheran]
- Martin Ammon [U. Jena]
- Stephane Detournay, Wout Merbis, Stefan Prohazka, Max Riegler [ULB]
- Hernán González, Philip Hacker, Raphaela Wutte [TU Wien]
- Alfredo Perez, David Tempo, Ricardo Troncoso [CECS Valdivia]
- Hossein Yavartanoo [ITP Beijing]

Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

Outlook

Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

Outlook

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

- General Relativity correct as classical approximation to QuGr

Numerous experimental evidence that General Relativity correct classical theory of gravity:

- Tests of equivalence principle
- Classical tests of Schwarzschild metric
- Solar system precision tests
- Gravitational lensing
- Frame dragging/Lense-Thirring
- Binary pulsars
- Existence of black holes
- Gravitational waves
- Cosmological evidence for FLRW

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

- General Relativity correct as classical approximation to QuGr
- Quantum mechanics correct as non-relativistic limit of QuGr
- Sometimes suggested: perhaps issues with QuGr absent if gravity not quantized
- New problematic issue then arises

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R \sim T_{\mu \nu}
$$

I.h.s.: classical; r.h.s.: quantum mechanical

- Logically possible, but modifies rules of quantum mechanics
- For more than a century no deviations of quantum mechanics found

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

- General Relativity correct as classical approximation to QuGr
- Quantum mechanics correct as non-relativistic limit of QuGr
- Special Relativity correct
- Sometimes suggested Lorentz violation at Planck scale
- Modified dispersion relations

$$
\omega^{2} \sim k^{2}(1+\omega / \alpha+\ldots)
$$

feature new parameters α, \ldots with dimension of energy

- Fermi collaboration: $\alpha>\mathcal{O}\left(10 m_{\text {Planck }}\right)$
- Logically possible, but again more than century of attempts found no deviations from Special Relativity

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

- General Relativity correct as classical approximation to QuGr
- Quantum mechanics correct as non-relativistic limit of QuGr
- Special Relativity correct
- QFT correct as semi-classical approximation to QuGr
- QFT $=$ synthesis of quantum mechanics and Special Relativity
- tested experimentally to high precision (e.g. $g-2$)

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

- General Relativity correct as classical approximation to QuGr
- Quantum mechanics correct as non-relativistic limit of QuGr
- Special Relativity correct
- QFT correct as semi-classical approximation to QuGr
- QFT $=$ synthesis of quantum mechanics and Special Relativity
- tested experimentally to high precision (e.g. $g-2$)
- generic QFT effect: particle production on external backgrounds Schwinger effect, particle production in cosmology, ...

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

- General Relativity correct as classical approximation to QuGr
- Quantum mechanics correct as non-relativistic limit of QuGr
- Special Relativity correct
- QFT correct as semi-classical approximation to QuGr
- QFT $=$ synthesis of quantum mechanics and Special Relativity
- tested experimentally to high precision (e.g. $g-2$)
- generic QFT effect: particle production on external backgrounds Schwinger effect, particle production in cosmology, ...
- QFT on black hole backgrounds: Hawking effect
- black holes radiate at Hawking-temperature and have entropy

Preamble: snapshot of quantum gravity

Conservative approach to quantum gravity based on following premises:

- General Relativity correct as classical approximation to QuGr
- Quantum mechanics correct as non-relativistic limit of QuGr
- Special Relativity correct
- QFT correct as semi-classical approximation to QuGr
- QFT $=$ synthesis of quantum mechanics and Special Relativity
- tested experimentally to high precision (e.g. $g-2$)
- generic QFT effect: particle production on external backgrounds Schwinger effect, particle production in cosmology, ...
- QFT on black hole backgrounds: Hawking effect
- black holes radiate at Hawking-temperature and have entropy

> Semi-classical predictions such as Hawking effect and Bekenstein-Hawking black hole entropy are trustworthy

Motivation 1: universality of black hole entropy

Bekenstein-Hawking

$$
S_{\mathrm{BH}}=\frac{A}{4 G}
$$

Motivation 1: universality of black hole entropy

Bekenstein-Hawking

$$
S_{\mathrm{BH}}=\frac{A}{4 G}
$$

plus semi-classical corrections

$$
S=S_{\mathrm{BH}}-q \ln S_{\mathrm{BH}}+\mathcal{O}(1) \quad q=\text { number depending on matter }
$$

currently "template for experimental results" in quantum gravity

Motivation 1: universality of black hole entropy

Bekenstein-Hawking

$$
S_{\mathrm{BH}}=\frac{A}{4 G}
$$

plus semi-classical corrections

$$
S=S_{\mathrm{BH}}-q \ln S_{\mathrm{BH}}+\mathcal{O}(1) \quad q=\text { number depending on matter }
$$

currently "template for experimental results" in quantum gravity

- Believing in (semi-)classical Einstein gravity result above universal

Motivation 1: universality of black hole entropy

Bekenstein-Hawking

$$
S_{\mathrm{BH}}=\frac{A}{4 G}
$$

plus semi-classical corrections

$$
S=S_{\mathrm{BH}}-q \ln S_{\mathrm{BH}}+\mathcal{O}(1) \quad q=\text { number depending on matter }
$$

currently "template for experimental results" in quantum gravity

- Believing in (semi-)classical Einstein gravity result above universal
- Any purported quantum theory of gravity must reproduce results for S
[at least any theory of quantum gravity claiming to reproduce (semi-)classical Einstein gravity in limit of small Newton constant]

Motivation 1: universality of black hole entropy

Bekenstein-Hawking

$$
S_{\mathrm{BH}}=\frac{A}{4 G}
$$

plus semi-classical corrections

$$
S=S_{\mathrm{BH}}-q \ln S_{\mathrm{BH}}+\mathcal{O}(1) \quad q=\text { number depending on matter }
$$

currently "template for experimental results" in quantum gravity

- Believing in (semi-)classical Einstein gravity result above universal
- Any purported quantum theory of gravity must reproduce results for S
- Examples collected e.g. in Sen '12

Motivation 1: universality of black hole entropy

Bekenstein-Hawking

$$
S_{\mathrm{BH}}=\frac{A}{4 G}
$$

plus semi-classical corrections

$$
S=S_{\mathrm{BH}}-q \ln S_{\mathrm{BH}}+\mathcal{O}(1) \quad q=\text { number depending on matter }
$$

currently "template for experimental results" in quantum gravity

- Believing in (semi-)classical Einstein gravity result above universal
- Any purported quantum theory of gravity must reproduce results for S
- Examples collected e.g. in Sen '12

Perhaps no need for full knowledge of quantum gravity to account microscopically for black hole entropy (of sufficiently large black holes)

Motivation 2: microscopic counting of generic black hole entropy
Idea: count microstates from symmetries of "dual field theory"

Motivation 2: microscopic counting of generic black hole entropy
Idea: count microstates from symmetries of "dual field theory"

- For black holes with AdS_{3} factor: microstate counting from CFT_{2} symmetries (Strominger, Carlip, ...) using Cardy formula

$$
S_{\text {Cardy }}=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)=\frac{A}{4 G}=S_{\mathrm{BH}}
$$

c : left/right central charges of CFT_{2}
$\Delta^{ \pm}$: left/right energies of state whose entropy is counted

Motivation 2: microscopic counting of generic black hole entropy
Idea: count microstates from symmetries of "dual field theory"

- For black holes with AdS_{3} factor: microstate counting from CFT_{2} symmetries (Strominger, Carlip, ...) using Cardy formula

$$
S_{\mathrm{Cardy}}=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)=\frac{A}{4 G}=S_{\mathrm{BH}}
$$

- Generalizations in $2+1$ gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
warped CFT: Detournay, Hartman, Hofman '12
Galilean CFT: Bagchi, Detournay, Fareghbal, Simon '13; Barnich '13

Motivation 2: microscopic counting of generic black hole entropy

Idea: count microstates from symmetries of "dual field theory"

- For black holes with AdS_{3} factor: microstate counting from CFT_{2} symmetries (Strominger, Carlip, ...) using Cardy formula

$$
S_{\text {Cardy }}=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)=\frac{A}{4 G}=S_{\mathrm{BH}}
$$

- Generalizations in $2+1$ gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
- Microstate countings so far: mostly for (near-)extremal black holes (infinite throat geometries), e.g. "Kerr/CFT"

Kerr/CFT: Guica, Hartman, Song, Strominger '09; Compere '12

Motivation 2: microscopic counting of generic black hole entropy

Idea: count microstates from symmetries of "dual field theory"

- For black holes with AdS_{3} factor: microstate counting from CFT_{2} symmetries (Strominger, Carlip, ...) using Cardy formula

$$
S_{\text {Cardy }}=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)=\frac{A}{4 G}=S_{\mathrm{BH}}
$$

- Generalizations in $2+1$ gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
- Microstate countings so far: mostly for (near-)extremal black holes (infinite throat geometries), e.g. "Kerr/CFT"
- Main idea of this research avenua: consider near horizon symmetries for non-extremal horizons

Motivation 2: microscopic counting of generic black hole entropy

Idea: count microstates from symmetries of "dual field theory"

- For black holes with AdS_{3} factor: microstate counting from CFT_{2} symmetries (Strominger, Carlip, ...) using Cardy formula

$$
S_{\mathrm{Cardy}}=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)=\frac{A}{4 G}=S_{\mathrm{BH}}
$$

- Generalizations in $2+1$ gravity/gravity-like theories (Galilean CFT, warped CFT, ...)
- Microstate countings so far: mostly for (near-)extremal black holes (infinite throat geometries), e.g. "Kerr/CFT"
- Main idea of this research avenua: consider near horizon symmetries for non-extremal horizons

Hope: near horizon symmetries allow for Cardyology

Motivation 3: semi-classical microstates for generic black holes additional motivation: information loss

Besides counting microstates one would like to construct them explicitly

Motivation 3: semi-classical microstates for generic black holes additional motivation: information loss

Besides counting microstates one would like to construct them explicitly

- if complete set of microstates known: may conclude that black holes behave just like any other thermodynamical system

Motivation 3: semi-classical microstates for generic black holes additional motivation: information loss

Besides counting microstates one would like to construct them explicitly

- if complete set of microstates known: may conclude that black holes behave just like any other thermodynamical system
- information loss: for all practical purposes, but not in principle

Motivation 3: semi-classical microstates for generic black holes

 additional motivation: information lossBesides counting microstates one would like to construct them explicitly

- if complete set of microstates known: may conclude that black holes behave just like any other thermodynamical system
- information loss: for all practical purposes, but not in principle
- explicit constructions in string theory for (near-)extremal black holes

Motivation 3: semi-classical microstates for generic black holes

 additional motivation: information lossBesides counting microstates one would like to construct them explicitly

- if complete set of microstates known: may conclude that black holes behave just like any other thermodynamical system
- information loss: for all practical purposes, but not in principle
- explicit constructions in string theory for (near-)extremal black holes
- in constructions so far need lot of input of UV completion

Motivation 3: semi-classical microstates for generic black holes

 additional motivation: information lossBesides counting microstates one would like to construct them explicitly

- if complete set of microstates known: may conclude that black holes behave just like any other thermodynamical system
- information loss: for all practical purposes, but not in principle
- explicit constructions in string theory for (near-)extremal black holes
- in constructions so far need lot of input of UV completion
- string theory constructions so far agree with semi-classical result for entropy but fail to address its universality

Motivation 3: semi-classical microstates for generic black holes additional motivation: information loss

Besides counting microstates one would like to construct them explicitly

- if complete set of microstates known: may conclude that black holes behave just like any other thermodynamical system
- information loss: for all practical purposes, but not in principle
- explicit constructions in string theory for (near-)extremal black holes
- in constructions so far need lot of input of UV completion
- string theory constructions so far agree with semi-classical result for entropy but fail to address its universality

> Perhaps no need for full knowledge of quantum gravity to construct microstates (of sufficiently large non-extremal black holes)
> [at least for some observer, not necessarily an asymptotic one]

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

- Notion/name "soft hair": Hawking, Perry, Strominger '16

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

- Notion/name "soft hair": Hawking, Perry, Strominger '16
- Name motivated by Wheeler's folklore "black holes have no hair"

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

- Notion/name "soft hair": Hawking, Perry, Strominger '16
- Name motivated by Wheeler's folklore "black holes have no hair"
- General relativity with (asymptotic) boundaries: (locally) diffeomorphic geometries may be physically inequivalent

Famous example: BTZ black hole is locally AdS_{3}, but canonical boundary charges (e.g. mass, angular momentum) differ Bañados, Henneaux, Teitelboim, Zanelli '93

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

- Notion/name "soft hair": Hawking, Perry, Strominger '16
- Name motivated by Wheeler's folklore "black holes have no hair"
- General relativity with (asymptotic) boundaries:
(locally) diffeomorphic geometries may be physically inequivalent
- Near horizon symmetry algebras (see below) realize soft hair idea

Donnay, Giribet, Gonzalez, Pino '16
Afshar, Detournay, Grumiller, Merbis, Perez, Tempo, Troncoso '16

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

- Notion/name "soft hair": Hawking, Perry, Strominger '16
- Name motivated by Wheeler's folklore "black holes have no hair"
- General relativity with (asymptotic) boundaries:
(locally) diffeomorphic geometries may be physically inequivalent
- Near horizon symmetry algebras (see below) realize soft hair idea
- Soft hair is semi-classical concept

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

- Notion/name "soft hair": Hawking, Perry, Strominger '16
- Name motivated by Wheeler's folklore "black holes have no hair"
- General relativity with (asymptotic) boundaries: (locally) diffeomorphic geometries may be physically inequivalent
- Near horizon symmetry algebras (see below) realize soft hair idea
- Soft hair is semi-classical concept
- Soft hairy black holes: same energy as black holes but distinguished through their soft hairy charges

Synthesis of the three motivations: soft hair

Soft hair := zero energy excitations with non-trivial boundary charges

- Notion/name "soft hair": Hawking, Perry, Strominger '16
- Name motivated by Wheeler's folklore "black holes have no hair"
- General relativity with (asymptotic) boundaries: (locally) diffeomorphic geometries may be physically inequivalent
- Near horizon symmetry algebras (see below) realize soft hair idea
- Soft hair is semi-classical concept
- Soft hairy black holes: same energy as black holes but distinguished through their soft hairy charges

Hope: soft hair could address black hole entropy puzzles and microstates in a semi-classical framework

Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

Outlook

Problem 1: TMI

Note: this problem may be obvious even to laypersons

- Suppose we buy suggestion by Hawking '15 that soft hair may resolve information loss problem

Problem 1: TMI

Note: this problem may be obvious even to laypersons

- Suppose we buy suggestion by Hawking '15 that soft hair may resolve information loss problem
- In particular, assume soft hair responsible for different microstates

Problem 1: TMI

Note: this problem may be obvious even to laypersons

- Suppose we buy suggestion by Hawking '15 that soft hair may resolve information loss problem
- In particular, assume soft hair responsible for different microstates

Problem: naively get infinite soft hair degeneracy, thus infinite entropy Too Much Information!

Problem 1: TMI

Note: this problem may be obvious even to laypersons

- Suppose we buy suggestion by Hawking '15 that soft hair may resolve information loss problem
- In particular, assume soft hair responsible for different microstates

> Problem: naively get infinite soft hair degeneracy, thus infinite entropy Too Much Information!

- Possible resolution: provide cut-off on soft hair spectrum

Problem 1: TMI

Note: this problem may be obvious even to laypersons

- Suppose we buy suggestion by Hawking '15 that soft hair may resolve information loss problem
- In particular, assume soft hair responsible for different microstates

Problem: naively get infinite soft hair degeneracy, thus infinite entropy Too Much Information!

- Possible resolution: provide cut-off on soft hair spectrum

Problem: if cut-off imposed in ad-hoc way can get any result for entropy

Problem 1: TMI

Note: this problem may be obvious even to laypersons

- Suppose we buy suggestion by Hawking '15 that soft hair may resolve information loss problem
- In particular, assume soft hair responsible for different microstates

Problem: naively get infinite soft hair degeneracy, thus infinite entropy Too Much Information!

- Possible resolution: provide cut-off on soft hair spectrum

Problem: if cut-off imposed in ad-hoc way can get any result for entropy

- Possible resolution: provide cut-off on soft hair spectrum in a controlled and unique way

Problem 1: TMI

Note: this problem may be obvious even to laypersons

- Suppose we buy suggestion by Hawking '15 that soft hair may resolve information loss problem
- In particular, assume soft hair responsible for different microstates

Problem: naively get infinite soft hair degeneracy, thus infinite entropy Too Much Information!

- Possible resolution: provide cut-off on soft hair spectrum

Problem: if cut-off imposed in ad-hoc way can get any result for entropy

- Possible resolution: provide cut-off on soft hair spectrum in a controlled and unique way

> Problem: how?

```
Problem 2: TLI
Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17
```

- Factorization theorems of S-matrix for infrared divergences

```
Problem 2: TLI
Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17
```

- Factorization theorems of S-matrix for infrared divergences
- Appropriately dress hard in- and out-states

Problem 2: TLI

Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17

- Factorization theorems of S-matrix for infrared divergences
- Appropriately dress hard in- and out-states
- Conclusion: soft-quanta part of S-matrix essentially trivial

Problem 2: TLI

Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17

- Factorization theorems of S-matrix for infrared divergences
- Appropriately dress hard in- and out-states
- Conclusion: soft-quanta part of S-matrix essentially trivial
- Information paradox formulated in terms of dressed hard states

Problem 2: TLI

```
Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17
```

- Factorization theorems of S-matrix for infrared divergences
- Appropriately dress hard in- and out-states
- Conclusion: soft-quanta part of S-matrix essentially trivial
- Information paradox formulated in terms of dressed hard states
- No dependence on soft quanta

Problem 2: TLI

Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17

- Factorization theorems of S-matrix for infrared divergences
- Appropriately dress hard in- and out-states
- Conclusion: soft-quanta part of S-matrix essentially trivial
- Information paradox formulated in terms of dressed hard states
- No dependence on soft quanta

Problem: for asymptotic observer Too Little Information (namely none) from soft hair states

Problem 2: TLI

Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17

- Factorization theorems of S-matrix for infrared divergences
- Appropriately dress hard in- and out-states
- Conclusion: soft-quanta part of S-matrix essentially trivial
- Information paradox formulated in terms of dressed hard states
- No dependence on soft quanta

Problem: for asymptotic observer Too Little Information (namely none) from soft hair states

- Possible resolution: do not consider asymptotic observer

Problem 2: TLI

Shaving off soft hair: Mirbabayi, Porrati '16; Bousso, Porrati '17; Donnelly, Giddings '17

- Factorization theorems of S-matrix for infrared divergences
- Appropriately dress hard in- and out-states
- Conclusion: soft-quanta part of S-matrix essentially trivial
- Information paradox formulated in terms of dressed hard states
- No dependence on soft quanta

Problem: for asymptotic observer Too Little Information (namely none) from soft hair states

- Possible resolution: do not consider asymptotic observer

> Problem: how?

Starting point

Resolving the 'how'-questions easier in simpler models

Starting point

Resolving the 'how'-questions easier in simpler models

Consider as toy model Einstein gravity in three dimensions with negative cc

Starting point

Resolving the 'how'-questions easier in simpler models

Consider as toy model Einstein gravity in three dimensions with negative cc

Same conceptual problems as in higher dimension, but technically more manageable

Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

Properties of Einstein gravity in $2+1$ dimensions with negative cc $\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

Properties of Einstein gravity in $2+1$ dimensions with negative cc $\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

- No local physical degrees of freedom (dof)

Properties of Einstein gravity in $2+1$ dimensions with negative $\mathrm{cc}\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

- No local physical degrees of freedom (dof)
- Depending on boundary conditions (bc's): boundary physical dof

Properties of Einstein gravity in $2+1$ dimensions with negative $\mathrm{cc}\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

- No local physical degrees of freedom (dof)
- Depending on boundary conditions (bc's): boundary physical dof
- Brown-Henneaux bc's: physical phase space of some CFT_{2}

Properties of Einstein gravity in $2+1$ dimensions with negative $\mathrm{cc}\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

- No local physical degrees of freedom (dof)
- Depending on boundary conditions (bc's): boundary physical dof
- Brown-Henneaux bc's: physical phase space of some CFT 2
- Brown-Henneaux central charge of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}: c=3 \ell /(2 G)$

Properties of Einstein gravity in $2+1$ dimensions with negative cc $\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

- No local physical degrees of freedom (dof)
- Depending on boundary conditions (bc's): boundary physical dof
- Brown-Henneaux bc's: physical phase space of some CFT_{2}
- Brown-Henneaux central charge of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}: c=3 \ell /(2 G)$
- Spectrum of physical states includes BTZ black holes

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

Properties of Einstein gravity in $2+1$ dimensions with negative $\mathrm{cc}\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

- No local physical degrees of freedom (dof)
- Depending on boundary conditions (bc's): boundary physical dof
- Brown-Henneaux bc's: physical phase space of some CFT_{2}
- Brown-Henneaux central charge of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}: c=3 \ell /(2 G)$
- Spectrum of physical states includes BTZ black holes

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- BTZ BH entropy given by Bekenstein-Hawking

$$
S_{\mathrm{BH}}=\frac{A}{4 G}=\frac{2 \pi r_{+}}{4 G}
$$

Properties of Einstein gravity in $2+1$ dimensions with negative $\mathrm{cc}\left(\mathrm{AdS}_{3}\right)$

- Second order bulk action:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left(R+\frac{2}{\ell^{2}}\right)
$$

G : Newton constant in $2+1$ dimensions; ℓ : AdS radius

- No local physical degrees of freedom (dof)
- Depending on boundary conditions (bc's): boundary physical dof
- Brown-Henneaux bc's: physical phase space of some CFT_{2}
- Brown-Henneaux central charge of $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}: c=3 \ell /(2 G)$
- Spectrum of physical states includes BTZ black holes

$$
\mathrm{d} s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2} \ell^{2}} \mathrm{~d} t^{2}+\frac{r^{2} \ell^{2} \mathrm{~d} r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}+r^{2}\left(\mathrm{~d} \varphi-\frac{r_{+} r_{-}}{\ell r^{2}} \mathrm{~d} t\right)^{2}
$$

- BTZ BH entropy given by Bekenstein-Hawking and Cardy formula

$$
\begin{gathered}
S_{\mathrm{BH}}=\frac{A}{4 G}=\frac{2 \pi r_{+}}{4 G}=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right) \\
\Delta^{ \pm}=\left(r_{+} \pm r_{-}\right)^{2} /(16 \ell G) \propto \ell M \pm J(M: \text { mass, } J: \text { angular momentum })
\end{gathered}
$$

Near horizon boundary conditions
See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16 for details

- Any non-extremal horizon is approximately Rindler near the horizon

Near horizon boundary conditions

See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16 for details

- Any non-extremal horizon is approximately Rindler near the horizon
- Near horizon line-element with Rindler acceleration a :

$$
\mathrm{d} s^{2}=-2 a \rho \mathrm{~d} v^{2}+2 \mathrm{~d} v \mathrm{~d} \rho+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

Near horizon boundary conditions

See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16 for details

- Any non-extremal horizon is approximately Rindler near the horizon
- Near horizon line-element with Rindler acceleration a :

$$
\mathrm{d} s^{2}=-2 a \rho \mathrm{~d} v^{2}+2 \mathrm{~d} v \mathrm{~d} \rho+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

Meaning of coordinates:

- ρ : radial direction ($\rho=0$ is horizon)
- $\varphi \sim \varphi+2 \pi$: angular direction (horizon has S^{1} topology)
- v: (advanced) time
- Rindler acceleration: vev $(\delta a \neq 0)$ or source $(\delta a=0)$?

Near horizon boundary conditions

See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16 for details

- Any non-extremal horizon is approximately Rindler near the horizon
- Near horizon line-element with Rindler acceleration a :

$$
\mathrm{d} s^{2}=-2 a \rho \mathrm{~d} v^{2}+2 \mathrm{~d} v \mathrm{~d} \rho+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

Meaning of coordinates:

- ρ : radial direction ($\rho=0$ is horizon)
- $\varphi \sim \varphi+2 \pi$: angular direction (horizon has S^{1} topology)
- v: (advanced) time
- Rindler acceleration: vev $(\delta a \neq 0)$ or source $(\delta a=0)$?
- Both options possible (see Afshar, Detournay, DG, Oblak '16)

Near horizon boundary conditions See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16 for details

- Any non-extremal horizon is approximately Rindler near the horizon
- Near horizon line-element with Rindler acceleration a :

$$
\mathrm{d} s^{2}=-2 a \rho \mathrm{~d} v^{2}+2 \mathrm{~d} v \mathrm{~d} \rho+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

Meaning of coordinates:

- ρ : radial direction ($\rho=0$ is horizon)
- $\varphi \sim \varphi+2 \pi$: angular direction (horizon has S^{1} topology)
- v: (advanced) time
- Rindler acceleration: vev $(\delta a \neq 0)$ or source $(\delta a=0)$?
- Both options possible (see Afshar, Detournay, DG, Oblak '16)
- Follow here suggestion by Donnay, Giribet, Gonzalez, Pino '15

$$
\delta a=0 \quad a=\text { source/state-inependent/chemical potential }
$$

Near horizon boundary conditions See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16 for details

- Any non-extremal horizon is approximately Rindler near the horizon
- Near horizon line-element with Rindler acceleration a :

$$
\mathrm{d} s^{2}=-2 a \rho \mathrm{~d} v^{2}+2 \mathrm{~d} v \mathrm{~d} \rho+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

Meaning of coordinates:

- ρ : radial direction ($\rho=0$ is horizon)
- $\varphi \sim \varphi+2 \pi$: angular direction (horizon has S^{1} topology)
- v: (advanced) time
- Rindler acceleration: vev $(\delta a \neq 0)$ or source $(\delta a=0)$?
- Both options possible (see Afshar, Detournay, DG, Oblak '16)
- Follow here suggestion by Donnay, Giribet, Gonzalez, Pino '15

$$
\delta a=0 \quad a=\text { source/state-inependent/chemical potential }
$$

- Consequence: all states in theory have same (Unruh-)temperature

$$
T_{U}=\frac{a}{2 \pi}
$$

Near horizon boundary conditions See Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso '16 for details

- Any non-extremal horizon is approximately Rindler near the horizon
- Near horizon line-element with Rindler acceleration a :

$$
\mathrm{d} s^{2}=-2 a \rho \mathrm{~d} v^{2}+2 \mathrm{~d} v \mathrm{~d} \rho+\gamma^{2} \mathrm{~d} \varphi^{2}+\ldots
$$

Meaning of coordinates:

- ρ : radial direction ($\rho=0$ is horizon)
- $\varphi \sim \varphi+2 \pi$: angular direction (horizon has S^{1} topology)
- v: (advanced) time
- Rindler acceleration: vev $(\delta a \neq 0)$ or source $(\delta a=0)$?
- Both options possible (see Afshar, Detournay, DG, Oblak '16)
- Follow here suggestion by Donnay, Giribet, Gonzalez, Pino '15

$$
\delta a=0 \quad a=\text { source/state-inependent/chemical potential }
$$

- Consequence: all states in theory have same (Unruh-)temperature

$$
T_{U}=\frac{a}{2 \pi}
$$

- This is somewhat unusual, but convenient for our purposes!

Explicit form of our boundary conditions in metric formulation Note: everything much simpler in Chern-Simons formulation!

Boundary conditions as near horizon expansion of metric

$$
\begin{aligned}
g_{t t} & =-a^{2} r^{2}+\mathcal{O}\left(r^{3}\right) \\
g_{\varphi \varphi} & =\gamma^{2}+\left(\gamma^{2}-\ell^{2} \omega^{2}\right) \frac{r^{2}}{\ell^{2}}+\mathcal{O}\left(r^{3}\right) \\
g_{t \varphi} & =a \omega r^{2}+\mathcal{O}\left(r^{3}\right) \\
g_{r r} & =1+\mathcal{O}\left(r^{2}\right) \quad g_{r t}=\mathcal{O}\left(r^{2}\right) \quad g_{r \varphi}=\mathcal{O}\left(r^{2}\right)
\end{aligned}
$$

Explicit form of our boundary conditions in metric formulation Note: everything much simpler in Chern-Simons formulation!

Boundary conditions as near horizon expansion of metric

$$
\begin{aligned}
g_{t t} & =-a^{2} r^{2}+\mathcal{O}\left(r^{3}\right) \\
g_{\varphi \varphi} & =\gamma^{2}+\left(\gamma^{2}-\ell^{2} \omega^{2}\right) \frac{r^{2}}{\ell^{2}}+\mathcal{O}\left(r^{3}\right) \\
g_{t \varphi} & =a \omega r^{2}+\mathcal{O}\left(r^{3}\right) \\
g_{r r} & =1+\mathcal{O}\left(r^{2}\right) \quad g_{r t}=\mathcal{O}\left(r^{2}\right) \quad g_{r \varphi}=\mathcal{O}\left(r^{2}\right)
\end{aligned}
$$

Boundary conditions as asymptotic expansion of metric

$$
\begin{aligned}
g_{t t} & =-\frac{1}{4} a^{2} r^{2}+\frac{1}{2} \ell^{2} a^{2}+\mathcal{O}\left(\frac{1}{r}\right) \\
g_{\varphi \varphi} & =\left(\gamma^{2}-\ell^{2} \omega^{2}\right) \frac{r^{2}}{4 \ell^{2}}+\frac{1}{2}\left(\gamma^{2}+\ell^{2} \omega^{2}\right)+\mathcal{O}\left(\frac{1}{r}\right) \\
g_{t \varphi} & =\frac{1}{4} a \omega r^{2}-\frac{1}{2} a \omega \ell^{2}+\mathcal{O}\left(\frac{1}{r}\right) \\
g_{r r} & =\frac{\ell^{2}}{r^{2}}+\mathcal{O}\left(\frac{1}{r^{3}}\right) \quad g_{r t}=\mathcal{O}\left(\frac{1}{r}\right) \quad g_{r \varphi}=\mathcal{O}\left(\frac{1}{r}\right) .
\end{aligned}
$$

Explicit form of our boundary conditions in metric formulation Note: everything much simpler in Chern-Simons formulation!

Boundary conditions as near horizon expansion of metric

$$
\begin{aligned}
g_{t t} & =-a^{2} r^{2}+\mathcal{O}\left(r^{3}\right) \\
g_{\varphi \varphi} & =\gamma^{2}+\left(\gamma^{2}-\ell^{2} \omega^{2}\right) \frac{r^{2}}{\ell^{2}}+\mathcal{O}\left(r^{3}\right) \\
g_{t \varphi} & =a \omega r^{2}+\mathcal{O}\left(r^{3}\right) \\
g_{r r} & =1+\mathcal{O}\left(r^{2}\right) \quad g_{r t}=\mathcal{O}\left(r^{2}\right) \quad g_{r \varphi}=\mathcal{O}\left(r^{2}\right)
\end{aligned}
$$

Boundary conditions in Chern-Simons formulation

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm}
$$

with fixed $\mathfrak{s l}_{2}$ group element

$$
b_{ \pm}=\exp \left(\pm \frac{r}{2 \ell}\left(L_{1}-L_{-1}\right)\right)
$$

and 1-form $\left(\mathcal{J}^{ \pm}=\gamma / \ell \pm \omega\right)$

$$
\mathfrak{a}^{ \pm}=L_{0}\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi-a \mathrm{~d} t\right) \quad \delta \mathcal{J}^{ \pm} \neq 0 \quad \delta a=0
$$

Consequences of our near horizon boundary conditions

To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto i n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto i n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto i n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!
- ASA isomorphic to infinite copies of Heisenberg algebras

Map
$P_{0}=J_{0}^{+}+J_{0}^{-} \quad P_{n}=\frac{i}{k n}\left(J_{-n}^{+}+J_{-n}^{-}\right)$if $n \neq 0 \quad X_{n}=J_{n}^{+}-J_{n}^{-}$ yields Heisenberg algebra (with Casimirs X_{0}, P_{0})

$$
\begin{aligned}
{\left[X_{n}, X_{m}\right] } & =\left[P_{n}, P_{m}\right]=\left[X_{0}, P_{n}\right]=\left[P_{0}, X_{n}\right]=0 \\
{\left[X_{n}, P_{m}\right] } & =i \delta_{n, m} \quad \text { if } n \neq 0
\end{aligned}
$$

Map explains word "Heisenberg" in title and provides first punchline

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto i n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!
- ASA isomorphic to infinite copies of Heisenberg algebras
- For real J_{0} all states in theory regular and have horizon

Whole spectrum (subject to reality) compatible with regularity!
Could be used as defining property of our bc's

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto i n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!
- ASA isomorphic to infinite copies of Heisenberg algebras
- For real J_{0} all states in theory regular and have horizon
- Near horizon Hamiltonian $H \sim J_{0}^{+}+J_{0}^{-}$commutes with all $J_{n}^{ \pm}$

Near horizon Hamiltonian defined as diffeo charge generated by unit translations ∂_{v} in (advanced) time direction

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto \operatorname{in} \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!
- ASA isomorphic to infinite copies of Heisenberg algebras
- For real J_{0} all states in theory regular and have horizon
- Near horizon Hamiltonian $H \sim J_{0}^{+}+J_{0}^{-}$commutes with all $J_{n}^{ \pm}$
- Consequence: soft hair!

$$
H|\psi\rangle=E|\psi\rangle \quad \Rightarrow \quad H|\tilde{\psi}\rangle=E|\tilde{\psi}\rangle
$$

where state $\tilde{\psi}$ is state ψ dressed arbitrarily with soft hair

$$
|\tilde{\psi}\rangle=\prod_{n_{i}^{ \pm} \in \mathbb{Z}^{+}} J_{n_{i}^{+}}^{+} J_{n_{i}^{-}}^{-}|\psi\rangle
$$

Explains word "soft hair" in title

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto \operatorname{in} \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!
- ASA isomorphic to infinite copies of Heisenberg algebras
- For real J_{0} all states in theory regular and have horizon
- Near horizon Hamiltonian $H \sim J_{0}^{+}+J_{0}^{-}$commutes with all $J_{n}^{ \pm}$
- Consequence: soft hair!
- Entropy formula remarkably simple

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)=T^{-1} H
$$

also remarkably universal:
generalizes to flat space, higher spins, higher derivatives!

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto i n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!
- ASA isomorphic to infinite copies of Heisenberg algebras
- For real J_{0} all states in theory regular and have horizon
- Near horizon Hamiltonian $H \sim J_{0}^{+}+J_{0}^{-}$commutes with all $J_{n}^{ \pm}$
- Consequence: soft hair!
- Entropy formula remarkably simple

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)=T^{-1} H
$$

- Simple first law $\mathrm{d} H=T \mathrm{~d} S$ and trivial specific heat

Consequences of our near horizon boundary conditions
To reduce clutter consider henceforth constant Rindler acceleration, $a=$ const.

- Two towers of canonical boundary charges $J^{ \pm}(\varphi)$
- Asymptotic symmetry algebra (ASA) generated by those charges

$$
\left[J_{n}^{ \pm}, J_{m}^{ \pm}\right] \propto i n \delta_{n+m, 0} \quad\left[J_{n}^{+}, J_{m}^{-}\right]=0
$$

- Two $\mathfrak{u}(1)$ current algebras - like free boson in 2d!
- ASA isomorphic to infinite copies of Heisenberg algebras
- For real J_{0} all states in theory regular and have horizon
- Near horizon Hamiltonian $H \sim J_{0}^{+}+J_{0}^{-}$commutes with all $J_{n}^{ \pm}$
- Consequence: soft hair!
- Entropy formula remarkably simple

$$
S=2 \pi\left(J_{0}^{+}+J_{0}^{-}\right)=T^{-1} H
$$

- Simple first law $\mathrm{d} H=T \mathrm{~d} S$ and trivial specific heat
- Relations to asymptotic Virasoro charges $L^{ \pm}$and sources $\mu^{ \pm}$

$$
L \sim J^{2}+J^{\prime} \quad \mu^{\prime}-\mu J \sim a
$$

Twisted Sugawra construction emerges! (yields Brown-Henneaux c)

Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Note non-local relation

$$
\mathcal{W} \sim e^{-2 \int \mathcal{J}}
$$

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers

Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers

Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$
2. Conical deficit $\nu \in(0,1)$ quantized in integers over c

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$
2. Conical deficit $\nu \in(0,1)$ quantized in integers over c Needed due to relations like

$$
\mathcal{J}_{c(n+\nu)} \sim \mathcal{W}_{n}^{\nu}
$$

Note twisted periodicity conditions

$$
\mathcal{W}^{\nu}(\varphi+2 \pi)=e^{-2 \pi \nu i} \mathcal{W}^{\nu}(\varphi)
$$

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$
2. Conical deficit $\nu \in(0,1)$ quantized in integers over c Needed due to relations like

$$
\mathcal{J}_{c(n+\nu)} \sim \mathcal{W}_{n}^{\nu}
$$

Justifiable through explicit stringy construction in D1-D5 system
Maldacena, Maoz '00; Lunin, Maldacena, Maoz '02

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers

Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$
2. Conical deficit $\nu \in(0,1)$ quantized in integers over c Needed due to relations like

$$
\mathcal{J}_{c(n+\nu)} \sim \mathcal{W}_{n}^{\nu}
$$

Justifiable through explicit stringy construction in D1-D5 system
3. Black hole/particle correspondence

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$
2. Conical deficit $\nu \in(0,1)$ quantized in integers over c Needed due to relations like

$$
\mathcal{J}_{c(n+\nu)} \sim \mathcal{W}_{n}^{\nu}
$$

Justifiable through explicit stringy construction in D1-D5 system
3. Black hole/particle correspondence Identify states in Hilbert space $\mathcal{H}_{\mathrm{BTZ}}$ as (composite) states in $\mathcal{H}_{\mathrm{CG}}$

$$
\sum_{p} \mathcal{J}_{n c-p} \mathcal{J}_{p} \sim \sum_{p} J_{n-p} J_{p}+i n c J_{n}
$$

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers

Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$
2. Conical deficit $\nu \in(0,1)$ quantized in integers over c Needed due to relations like

$$
\mathcal{J}_{c(n+\nu)} \sim \mathcal{W}_{n}^{\nu}
$$

Justifiable through explicit stringy construction in D1-D5 system
3. Black hole/particle correspondence Identify states in Hilbert space $\mathcal{H}_{\mathrm{BTZ}}$ as (composite) states in $\mathcal{H}_{\mathrm{CG}}$ Justification 1: obtain Virasoro at central charge c in $\mathcal{H}_{\mathrm{BTZ}}$ and $\mathcal{H}_{\mathrm{CG}}$

Assumptions

For technical details see Afshar, DG, Sheikh-Jabbari, Yavartanoo '17

1. Central charges quantized in integers

Needed due to relations like

$$
\mathcal{J}_{c n} \sim \mathcal{W}_{n}^{0}
$$

Justifiable e.g. through Chern-Simons level quantization $c=6 k$
2. Conical deficit $\nu \in(0,1)$ quantized in integers over c Needed due to relations like

$$
\mathcal{J}_{c(n+\nu)} \sim \mathcal{W}_{n}^{\nu}
$$

Justifiable through explicit stringy construction in D1-D5 system
3. Black hole/particle correspondence Identify states in Hilbert space $\mathcal{H}_{\mathrm{BTZ}}$ as (composite) states in $\mathcal{H}_{\mathrm{CG}}$ Justification 1: obtain Virasoro at central charge c in $\mathcal{H}_{\mathrm{BTZ}}$ and $\mathcal{H}_{\mathrm{CG}}$ Justification 2: gives nice result

List of all semi-classical BTZ black hole microstates

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
\Delta_{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

List of all semi-classical BTZ black hole microstates

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
\Delta_{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

- Define sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm}
$$

List of all semi-classical BTZ black hole microstates

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
\Delta_{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

- Define sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm}
$$

- Label BTZ black hole microstates as

$$
\left|\mathcal{B}\left(\left\{n_{i}^{ \pm}\right\}\right) ; J_{0}^{ \pm}\right\rangle
$$

with sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying constraint above

List of all semi-classical BTZ black hole microstates

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
\Delta_{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

- Define sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm}
$$

- Label BTZ black hole microstates as

$$
\left|\mathcal{B}\left(\left\{n_{i}^{ \pm}\right\}\right) ; J_{0}^{ \pm}\right\rangle
$$

with sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying constraint above

- Define vacuum state $|0\rangle$ by highest weight conditions

$$
\mathcal{J}_{n}^{ \pm}|0\rangle=0 \quad \forall n \geq 0
$$

List of all semi-classical BTZ black hole microstates

- Given a BTZ black hole with mass M and angular momentum J (as measured by asymptotic observer) define parameters

$$
\Delta_{ \pm}=\frac{1}{2}(\ell M \pm J)=\frac{c}{6}\left(J_{0}^{ \pm}\right)^{2}
$$

- Define sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying

$$
\sum n_{i}^{ \pm}=c \Delta^{ \pm}
$$

- Label BTZ black hole microstates as

$$
\left|\mathcal{B}\left(\left\{n_{i}^{ \pm}\right\}\right) ; J_{0}^{ \pm}\right\rangle
$$

with sets of positive integers $\left\{n_{i}^{ \pm}\right\}$obeying constraint above

- Define vacuum state $|0\rangle$ by highest weight conditions

$$
\mathcal{J}_{n}^{ \pm}|0\rangle=0 \quad \forall n \geq 0
$$

- Full set of semi-classical BTZ black hole microstates given by

$$
\left|\mathcal{B}\left(\left\{n_{i}^{ \pm}\right\}\right) ; J_{0}^{ \pm}\right\rangle=\prod_{\left\{n_{i}^{ \pm}\right\}}\left(\mathcal{J}_{-n_{i}^{+}}^{+} \mathcal{J}_{-n_{i}^{-}}^{-}\right)|0\rangle
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

- Straightforward combinatorial problem: partition of integers $p\left(c \Delta^{ \pm}\right)$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates

- Straightforward combinatorial problem: partition of integers $p\left(c \Delta^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c \Delta^{+}\right)+\ln p\left(c \Delta^{-}\right)
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c \Delta^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c \Delta^{+}\right)+\ln p\left(c \Delta^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c \Delta^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c \Delta^{+}\right)+\ln p\left(c \Delta^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

- Our final result for semi-classical BTZ black hole entropy is

$$
S=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)-\ln \left(c \Delta^{+}\right)-\ln \left(c \Delta^{-}\right)+\mathcal{O}(1)
$$

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c \Delta^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c \Delta^{+}\right)+\ln p\left(c \Delta^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

- Our final result for semi-classical BTZ black hole entropy is

$$
S=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)-\ln \left(c \Delta^{+}\right)-\ln \left(c \Delta^{-}\right)+\mathcal{O}(1)
$$

- Leading order coincides with Bekenstein-Hawking/Cardy formula!

BTZ black hole entropy from counting all semi-classical microstates

We proposed (after some Bohr-type semi-classical quantization conditions) explicit set of BTZ black hole microstates

Now let us count these microstates (not "Cardyology" but "Hardyology")

- Straightforward combinatorial problem: partition of integers $p\left(c \Delta^{ \pm}\right)$
- Entropy given by Boltzmann's formula

$$
S=\ln N=\ln p\left(c \Delta^{+}\right)+\ln p\left(c \Delta^{-}\right)
$$

- Solved long ago by Hardy, Ramanujan; asymptotic formula (large N):

$$
\ln p(N)=2 \pi \sqrt{N / 6}-\ln N+\mathcal{O}(1)
$$

- Our final result for semi-classical BTZ black hole entropy is

$$
S=2 \pi\left(\sqrt{c \Delta^{+} / 6}+\sqrt{c \Delta^{-} / 6}\right)-\ln \left(c \Delta^{+}\right)-\ln \left(c \Delta^{-}\right)+\mathcal{O}(1)
$$

- Leading order coincides with Bekenstein-Hawking/Cardy formula!
- Subleading log corrections also turn out to be correct!

Outline

Motivation

Problems (and possible resolutions)

Near horizon boundary conditions and soft hair

Proposal for semi-classical BTZ microstates

Outlook

Summary, loose ends and generalizations
Summary:

- We proposed semi-classical set of BTZ black hole microstates
- Their counting reproduces Bekenstein-Hawking entropy
- Also subleading log corrections to entropy are correct

Summary, loose ends and generalizations
Summary:

- We proposed semi-classical set of BTZ black hole microstates
- Their counting reproduces Bekenstein-Hawking entropy
- Also subleading log corrections to entropy are correct

Loose ends:

- Derivation of Bohr-type quantization conditions of c and ν ?

Summary, loose ends and generalizations
Summary:

- We proposed semi-classical set of BTZ black hole microstates
- Their counting reproduces Bekenstein-Hawking entropy
- Also subleading log corrections to entropy are correct

Loose ends:

- Derivation of Bohr-type quantization conditions of c and ν ?
- Derivation of black hole/particle correspondence?

Summary, loose ends and generalizations

Summary:

- We proposed semi-classical set of BTZ black hole microstates
- Their counting reproduces Bekenstein-Hawking entropy
- Also subleading log corrections to entropy are correct

Loose ends:

- Derivation of Bohr-type quantization conditions of c and ν ?
- Derivation of black hole/particle correspondence?
- Near horizon field theory beyond semi-classical approximation?

Summary, loose ends and generalizations

Summary:

- We proposed semi-classical set of BTZ black hole microstates
- Their counting reproduces Bekenstein-Hawking entropy
- Also subleading log corrections to entropy are correct

Loose ends:

- Derivation of Bohr-type quantization conditions of c and ν ?
- Derivation of black hole/particle correspondence?
- Near horizon field theory beyond semi-classical approximation?

Generalizations:

- Semi-classical microstate construction for cosmological horizons?

Summary, loose ends and generalizations

Summary:

- We proposed semi-classical set of BTZ black hole microstates
- Their counting reproduces Bekenstein-Hawking entropy
- Also subleading log corrections to entropy are correct

Loose ends:

- Derivation of Bohr-type quantization conditions of c and ν ?
- Derivation of black hole/particle correspondence?
- Near horizon field theory beyond semi-classical approximation?

Generalizations:

- Semi-classical microstate construction for cosmological horizons?
- Soft resolution of information loss problem?

Neglecting soft gravitons generates information loss Carney, Chaurette, Neuenfeld, Semenoff '17
Conjectured resolution of information loss problem: include soft gravitons
Strominger '17

Summary, loose ends and generalizations

Summary:

- We proposed semi-classical set of BTZ black hole microstates
- Their counting reproduces Bekenstein-Hawking entropy
- Also subleading log corrections to entropy are correct

Loose ends:

- Derivation of Bohr-type quantization conditions of c and ν ?
- Derivation of black hole/particle correspondence?
- Near horizon field theory beyond semi-classical approximation?

Generalizations:

- Semi-classical microstate construction for cosmological horizons?
- Soft resolution of information loss problem?
- Kerr?

Thanks for your attention!

