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Black Holes: A Brief History of Quotes

I J. Michell (1783): “... all light emitted from such a body would be
made to return towards it by its own proper gravity.”

I A. Eddington (1935): “I think there should be a law of Nature to
prevent a star from behaving in this absurd way!”

I S. Hawking (1975): “If Black Holes do exist Kip (Thorne) will get
one year of Penthouse.”

I M. Veltman (1994): “Black holes are probably nothing else but
commercially viable figments of the imagination.”

I G. ‘t Hooft (2004): “It is however easy to see that such a position is
untenable. (comment on Veltman)”

I S. Hughes (2008): “Unambiguous observational evidence for the
existence of black holes has not yet been established.”

I S. Hughes (2008): “Most physicists and astrophysicists accept the
hypothesis that the most massive, compact objects seen in many
astrophysical systems are described by the black hole solutions of
general relativity.”
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Why Study Black Holes?

Depending whom you ask you’ll hear:

I Mathematician: because they are interesting

I String Theoretician: because they hold the key to quantum gravity

I General Relativist: because they are unavoidable

I Particle Speculator: because they might be produced at LHC

I Nuclear Physicist: because they are dual to a strongly coupled plasma

I Astrophysicist: because they explain the data

I Cosmologist: because they exist

But...

Do they exist?

Let me answer this without getting philosophical, by appealing to data
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Some Black Hole Observational Data

OJ287, about 18 billion solar masses

Artistic impression (NASA Outreach), presented at the Annual

meeting of the American Astronomical Society, 2008

I Microscopic BHs: none

I Primordial BHs: none (upper bound)

I Stellar mass BHs in binary
systems: many (17 good candidates

(including Cygnus X-1), 37 other candidates)

I Isolated stellar mass BHs: some
(1 good candidate, 3 other candidates)

I Intermediate mass BHs: some
(11 candidates)

I Galactic core BHs: many
(Milky Way, 66 other candidates)

Data compiled in 2004 by R. Johnston

Black holes are the simplest expla-
nation of data! Thus, by Occam’s
razor they exist.
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Black Holes in Science Fiction

All I am going to say about this topic is:
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Condensed Matter Analogs
Deaf and Dumb holes (W. Unruh 1981), Part I: Picture

Hydraulic jump as a white hole analog

Picture by Piotr Pieranski, taken from a paper by G. Volovik

Some literature:
I C. Barcelo, S. Liberati,

M. Visser,

gr-qc/0505065

I G. Volovik,

gr-qc/0612134

I T. Philbin et al,

arXiv:0711.4796

I M. Visser,

S. Weinfurtner,

arXiv:0712.0427
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Condensed Matter Analogs
Deaf and Dumb holes (W. Unruh 1981), Part II: Formulas

Idea: Linearize perturbations in continuity equation

∂tρ+∇ · (ρv) = 0

and Euler equation
ρ
(
∂tv + (v · ∇)v

)
= −∇p

and assume no vorticity, v = −∇φ, and barotropic equation of state

∇h =
1
ρ
∇p

Then the velocity-potential φ obeys the relativistic (!) wave-equation

�φ =
1√
−g

∂µ
(√
−ggµν∂νφ

)
= 0

with the acoustic metric

gµν(t, x) =
ρ

c

(
−(c2 − v2) −vT
−v I

)
where the speed of sound is given by c−2 = ∂ρ/∂p.
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Condensed Matter Analogs
Deaf and Dumb holes (W. Unruh 1981), Part III: Reality Check

Black hole analogs are nice, but...

...they do not necessarily teach us
anything new.

Summary

I Black hole analogs are very useful for
pedagogic demonstrations

I Workers in the field frequently express
the hope to experimentally establish
the Hawking effect

I Even if this works it is not clear what
it would teach us

I But it would be a cool experiment!

Q: Are there other unexpected
applications of black holes?
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AdS/CFT Correspondence!

Relates strings on AdS to specific gauge theories at the boundary of AdS

Applications

I RHIC physics

I Black hole physics

I Scattering at strong coupling

I Cold atoms

I Superconductors

I Quantum gravity

I ... to be discovered!

Note: J. Maldacena’s paper hep-th/9711200 sec-

ond most cited paper ever (SPIRES). First is Steven

Weinberg’s “A Model of Leptons”.
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AdS2

... the simplest gravity model where the need for holographic renormalization arises!

Bulk action:

IB = −1
2

∫
M
d2x
√
g
[
X
(
R+

2
`2
)]

Variation with respect to scalar field X yields

R = − 2
`2

This means curvature is constant and negative, i.e., AdS2.
Variation with respect to metric g yields

∇µ∇νX − gµν�X + gµν
X

`2
= 0

Equations of motion above solved by

X = r , gµν dxµ dxν =
(r2
`2
−M

)
dt2 +

dr2
r2

`2
−M

There is an important catch, however: Boundary terms tricky!
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Boundary terms, Part I
Gibbons–Hawking–York boundary terms: quantum mechanical toy model

Let us start with an bulk Hamiltonian action

IB =

tf∫
ti

dt [−ṗq −H(q, p)]

Want to set up a Dirichlet boundary value problem q = fixed at ti, tf
Problem:

δIB = 0 requires q δp = 0 at boundary

Solution: add “Gibbons–Hawking–York” boundary term

IE = IB + IGHY , IGHY = pq|tfti

As expected IE =
tf∫
ti

[pq̇ −H(q, p)] is standard Hamiltonian action
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Boundary terms, Part II
Gibbons–Hawking–York boundary terms in gravity — something still missing!

That was easy! In gravity the result is

IGHY = −
∫
∂M

dx
√
γ X K

where γ (K) is determinant (trace) of first (second) fundamental form.
Euclidean action with correct boundary value problem is

IE = IB + IGHY

The boundary lies at r = r0, with r0 →∞. Are we done?

No! Serious Problem! Variation of IE yields

δIE ∼ EOM + δX(boundary − term)− lim
r0→∞

∫
∂M

dt δγ

Asymptotic metric: γ = r2/`2 +O(1). Thus, δγ may be finite!

δIE 6= 0 for some variations that preserve boundary conditions!!!
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Boundary terms, Part III
Holographic renormalization: quantum mechanical toy model

Key observation: Dirichlet boundary problem not changed under

IE → Γ = IE − ICT = IEH + IGHY − ICT

with
ICT = S(q, t)|tf

Improved action:

Γ =

tf∫
ti

dt [−ṗq −H(q, p)] + pq|tfti − S(q, t)|tf

First variation (assuming p = ∂H/∂p):

δΓ =
(
p− ∂S(q, t)

∂q

)
δq

∣∣∣∣tf = 0?

Works if S(q, t) is Hamilton’s principal function!
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Boundary terms, Part IV
Holographic renormalization in AdS2 gravity

Hamilton’s principle function
I Solves the Hamilton–Jacobi equation

I Does not change boundary value problem when added to action
I Is capable to render δΓ = 0 even when δIE 6= 0
I Reasonable Ansatz: Holographic counterterm = Solution of

Hamilton–Jacobi equation!

In case of AdS2 gravity this Ansatz yields

ICT = −
∫
∂M

dx
√
γ
X

`

Action consistent with boundary value problem and variational principle:

Γ = −1
2

∫
M
d2x
√
g
[
X
(
R+

2
`2
)]
−
∫
∂M

dx
√
γ X K +

∫
∂M

dx
√
γ
X

`

δΓ = 0 for all variations that preserve the boundary conditions!
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Thermodynamics of Black Holes as a Simple Application

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] = IE [gcl, Xcl] + δIE + . . .

I The leading term is the ‘on-shell’ action.
I The linear term should vanish on solutions gcl and Xcl.

If nothing goes wrong get partition function

Z ∼ exp
(
− IE [gcl, Xcl]

)
× . . .

Accessibility of the semi-classical approximation requires

1. IE [gcl, Xcl]−∞

→ violated in AdS gravity!

2. δIE [gcl, Xcl; δg, δX]0

→ violated in AdS gravity!

Everything goes wrong with IE!

In particular, do not get correct free energy F = TIE = −∞ or entropy

S =∞
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Thermodynamics of Black Holes as a Simple Application

Consider small perturbation around classical solution

Γ[gcl + δg,Xcl + δX] = Γ[gcl, Xcl] + δΓ + . . .

I The leading term is the ‘on-shell’ action.
I The linear term should vanish on solutions gcl and Xcl.

If nothing goes wrong get partition function

Z ∼ exp
(
− Γ[gcl, Xcl]

)
× . . .

Accessibility of the semi-classical approximation requires

1. Γ[gcl, Xcl] > −∞ → ok in AdS gravity!
2. δΓ[gcl, Xcl; δg, δX] = 0 → ok in AdS gravity!

Everything works with Γ!

In particular, do get correct free energy F = TIE = M −TS and entropy

S = 2πX
∣∣
horizon

= Area/4
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Summary and algorithm of holographic renormalization
In any dimension, for any asymptotics — may arise also in quantum field theory!

I Start with bulk action IB

I Check consistency of boundary value problem
I If necessary, add boundary term IGHY
I Check consistency of variational principle
I If necessary, subtract holographic counterterm ICT
I Use improved action

Γ = IB + IGHY − ICT

for applications!
I Applications include thermodynamics from Euclidean path integral

and calculation of holographic stress tensor in AdS/CFT
I Straightforward applications in quantum field theory?

Possibly!

Thank you for your attention!
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... and thanks to my collaborators!
Some literature on AdS2 holography

D. Grumiller and R. McNees, “Thermodynamics of black holes in two
(and higher) dimensions,” JHEP 0704, 074
[arXiv:hep-th/0703230].

T. Hartman and A. Strominger, “Central charge for AdS2 quantum
gravity,” [arXiv:0803.3621 [hep-th]].

M. Alishahiha and F. Ardalan, “Central charge for 2D gravity on AdS2

and AdS2/CFT1 correspondence,” [arXiv:0805.1861 [hep-th]].

R. Gupta and A. Sen, “AdS(3)/CFT(2) to AdS(2)/CFT(1),”
[arXiv:0806.0053 [hep-th]].

A. Castro, D. Grumiller, R. McNees and F. Larsen, “Holographic
description of AdS2 black holes,” [arXiv:0810.xxxx [hep-th]].

Thanks to Bob McNees for providing the LATEX beamerclass!
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