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Inequalities in mathematics

I Inequalities are a core part of mathematics

Boring inequalities (type 1): true, but could be sharpened

p2 ≥ −p2 ∀p ∈ R

Boring inequalities (type 2): true, but actually an equality

p2 ≥ p2 ∀p ∈ R

Fine inequalities: true, cannot be sharpened, not always an equality

p2 ≥ 0 ∀p ∈ R

I Many inequalities stem from simple observation that squares of real
numbers cannot be negative

p2 ≥ 0 ∀p ∈ R
I Many inequalities are of Cauchy–Schwarz type

|u||v| ≥ |u · v|
here u, v are some vector, || is their length and · the inner product

I Many inequalities from convexity (Jensen’s inequality)
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Inequalities in mathematics

I Inequalities are a core part of mathematics
I Many inequalities stem from simple observation that squares of real

numbers cannot be negative

p2 ≥ 0 ∀p ∈ R

Example: given two positive real numbers a, b

algebraic mean ≥ geometric mean

Proof: take p = a− b and get from inequality above

(a− b)2 = a2 − 2ab+ b2 ≥ 0

add on both sides 4ab

a2 + 2ab+ b2 = (a+ b)2 ≥ 4ab

take square root and then divide by 2

a+ b

2
≥
√
ab
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Inequalities in mathematics

I Inequalities are a core part of mathematics
I Many inequalities stem from simple observation that squares of real

numbers cannot be negative

p2 ≥ 0 ∀p ∈ R
I Many inequalities are of Cauchy–Schwarz type

|u||v| ≥ |u · v|
here u, v are some vector, || is their length and · the inner product

.

numerous consequences
e.g. triangle inequality

|u|+ |v| ≥ |u+ v|

graphic proof evident

I Many inequalities from convexity (Jensen’s inequality)
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Inequalities in mathematics

I Inequalities are a core part of mathematics
I Many inequalities stem from simple observation that squares of real

numbers cannot be negative

p2 ≥ 0 ∀p ∈ R
I Many inequalities are of Cauchy–Schwarz type

|u||v| ≥ |u · v|
here u, v are some vector, || is their length and · the inner product

I Many inequalities from convexity (Jensen’s inequality)
.

special case of Jensen’s inequality:
secant always above convex curve
between intersection points x1, x2
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Inequalities in physics

Interesting physical consequences from mathematical inequalities
I Positivity inequalities: probabilities non-negative, P ≥ 0

I Cauchy–Schwarz inequalities: Heisenberg uncertainty, ∆x∆p ≥ 1
2

I Convexity inequalities: second law of thermodynamics, δS ≥ 0
I In gravitational context: energy inequalities

I Definition: (local) inequalities on the stress tensor Tµν
e.g. Null Energy Condition (NEC)

Tkk = Tµν k
µkν ≥ 0 ∀kµkµ = 0

I Physically plausible (positivity of energy fluxes)
I Mathematically useful (singularity theorem, area theorem [2nd law])

However: all classical energy inequalities violated by quantum effects!

Are there quantum energy conditions?
[How is 2nd law saved?]
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Example: unitarity constraints on physical parameters in quark mixing matrix

if Standard Model correct then measurements must reproduce unitarity triangle
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green: localized in coordinate space (x), delocalized in momentum space (p)
blue: mildly (de-)localized in coordinate and momentum space

orange: delocalized in coordinate space (x), localized in momentum space (p)
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Interesting physical consequences from mathematical inequalities
I Positivity inequalities: probabilities non-negative, P ≥ 0
I Cauchy–Schwarz inequalities: Heisenberg uncertainty, ∆x∆p ≥ 1

2
I Convexity inequalities: second law of thermodynamics, δS ≥ 0
I In gravitational context: energy inequalities

I Definition: (local) inequalities on the stress tensor Tµν
e.g. Null Energy Condition (NEC)

Tkk = Tµν k
µkν ≥ 0 ∀kµkµ = 0

For instance: Penrose singularity theorem from Raychaudhuri eq.

d2area

dk2
= −

(d area

dk

)2
− shear2 − 8πGTkk ≤ −8πGTkk

NEC

≤ 0

If Tkk ≥ 0 (NEC) ⇒ focussing!
(negative acceleration of area)

For experts:
d area
dk

= θ is null expansion

I Physically plausible (positivity of energy fluxes)
I Mathematically useful (singularity theorem, area theorem [2nd law])

However: all classical energy inequalities violated by quantum effects!

Are there quantum energy conditions?
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Inequalities in physics

Interesting physical consequences from mathematical inequalities
I Positivity inequalities: probabilities non-negative, P ≥ 0
I Cauchy–Schwarz inequalities: Heisenberg uncertainty, ∆x∆p ≥ 1

2
I Convexity inequalities: second law of thermodynamics, δS ≥ 0
I In gravitational context: energy inequalities

I Definition: (local) inequalities on the stress tensor Tµν
e.g. Null Energy Condition (NEC)

Tkk = Tµν k
µkν ≥ 0 ∀kµkµ = 0

I Physically plausible (positivity of energy fluxes)
I Mathematically useful (singularity theorem, area theorem [2nd law])

However: all classical energy inequalities violated by quantum effects!

NEC violated by Casimir energy, accelerated mirrors, Hawking radiation, ...

Are there quantum energy conditions?
[How is 2nd law saved?]
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Quantum energy conditions

I Definition: quantum energy condition = convexity condition for 〈Tµν〉
valid for any state and any (reasonable) quantum field theory (QFT)

I Example: Averaged Null Energy Condition (ANEC)∫
dxλkλ 〈Tµνkµkν〉 ≥ 0

valid ∀kµ(with kµkµ = 0) and ∀ states |〉 in any (reasonable) QFT

I ANEC proved under rather generic assumptions

I ANEC sufficient for focussing properties used in singularity theorems

I ANEC compatible with quantum interest conjecture

I However: ANEC is non-local (
∫

dx+)

Is there a local quantum energy condition?
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I Example: Averaged Null Energy Condition (ANEC)∫
dxλkλ 〈Tµνkµkν〉 ≥ 0

valid ∀kµ(with kµkµ = 0) and ∀ states |〉 in any (reasonable) QFT
I ANEC proved under rather generic assumptions

Faulkner, Leigh, Parrikar and Wang 1605.08072

Hartman, Kundu and Tajdini 1610.05308

I ANEC sufficient for focussing properties used in singularity theorems
I ANEC compatible with quantum interest conjecture
I However: ANEC is non-local (

∫
dx+)

Is there a local quantum energy condition?
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Quantum null energy condition (QNEC)
Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

Physical motivation from focussing properties and second law:
Replace area by area + 4G (entanglement entropy)
Modified Raychaudhuri eq., schematically:

d2area

dk2
+ 4GS′′ = −8πGTkk + 4GS′′

QNEC

≤ 0

requires for focussing property (= 2nd law) QNEC

fineprint: above we set expansion to zero, d area
dk

= 0, and shear to zero; we also set the area to unity,
√
γ = 1

thus, QNEC is implied from quantum focussing for special congruences

I Tkk = Tµνk
µkν with kµk

µ = 0 and 〈〉 denotes expectation value
I S′′: 2nd variation of EE for entangling surface deformations along kµ
I √γ: induced volume form of entangling region (black boundary curve)
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Quantum null energy condition (QNEC)
Proposed by Bousso, Fisher, Leichenauer and Wall in 1506.02669

QNEC (in D > 2) is the following inequality

〈Tkk〉 ≥
~

2π
√
γ
S′′

Obvious observations:
I if r.h.s. vanishes: semi-classical version of NEC
I if r.h.s. negative: weaker condition than NEC

(NEC can be violated while QNEC holds)
I if r.h.s. positive: stronger condition than NEC

(if QNEC holds also NEC holds)

I Tkk = Tµνk
µkν with kµk

µ = 0 and 〈〉 denotes expectation value
I S′′: 2nd variation of EE for entangling surface deformations along kµ
I √γ: induced volume form of entangling region (black boundary curve)
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Proofs (D > 2)

I For free QFTs: Bousso, Fisher, Koeller, Leichenauer and Wall, 1509.02542

I For holographic CFTs: Koeller and Leichenauer, 1512.06109

I For general CFTs: Balakrishnan, Faulkner, Khandker and Wang, 1706.09432

QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
⇒ construct vertex operator V = exp [6

c S]
I QNEC saturation equivalent to vertex operator solving Hill’s equation

V ′′ − LV = 0 L ∼ 〈Tkk〉
I QNEC saturated for vacuum, thermal states and their descendants
I QNEC not saturated in hol. CFT2 with positive bulk energy fluxes
I QNEC can be violated in hol. CFT2 with negative bulk energy fluxes
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Proofs and non-saturation (D = 2)
Ongoing work with Ecker, Sheikh-Jabbari, Stanzer and van der Schee

QNEC (in CFT2) is the following inequality
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QNEC (in CFT2) is the following inequality

〈Tkk〉 ≥ S′′ +
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c
S′ 2

c > 0 is the central charge of the CFT2

I S like anomalous operator with conformal weights (0, 0)
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Calculating QNEC holographically

calculating CFT observable holographically = some gravity calculation

AdS/CFT:

Maldacena hep-th/9711200

Gubser, Klebanov and Polyakov hep-th/9802109

Witten hep-th/9802150

holographic stress tensor:

Henningson and Skenderis hep-th/9806087

Balasubramanian and Kraus hep-th/9902121

Emparan, Johnson and Myers hep-th/9903238

de Haro, Solodukhin and Skenderis hep-th/0002230

holographic entanglement entropy (HEE):

Ryu and Takayanagi hep-th/0603001
Hubeny, Rangamani and Takayanagi 0705.0016

I need holographic computation of 〈Tkk〉
I need holographic computation of (deformations of) EE
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Calculating QNEC holographically

calculating CFT observable holographically = some gravity calculation

I need holographic computation of 〈Tkk〉

well-known AdS/CFT prescription: extract boundary stress tensor
from bulk metric expanded near AdS boundary

Example: AdS3/CFT2

ds2 =
`2

z2

(
dz2+2 dx+ dx−

)
+〈T++〉

(
dx+

)2
+〈T−−〉

(
dx−

)2
+O

(
z2
)

AdS3 boundary: z → 0
O(1) terms in metric: flux components of stress tensor 〈T±±〉
(trace vanishes, 〈T+−〉 = 0)
`: so-called AdS-radius (cosmological constant Λ = −1/`2)

I need holographic computation of (deformations of) EE
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Calculating QNEC holographically

calculating CFT observable holographically = some gravity calculation

I need holographic computation of 〈Tkk〉
I need holographic computation of (deformations of) EE

HEE = area of extremal surface

simple to calculate!

also: simple proof of strong
subadditivity inequalities
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Holographic QNEC in 4d

Holographic QNEC in 2d
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Thermal case
see work with Ecker, Stanzer and van der Schee 1710.09837

thermal states in CFT4 = black holes in AdS5

I paper-and-pencil calculation starts with Schwarzschild black brane

ds2 =
1

z2

(
− f(z) dt2 +

dz2

f(z)
+ dy2 + dx2

1 + dx2
2

)
with f(z) = 1− π4T 4z4

I determine area of minimal surfaces for small temperature, T`� 1,
and extract HEE (` = width of strip)

1

2π
S′′ ≈ −0.065

`4
+ 0.019π4T 4 − 0.083 `4π8T 8 +O

(
`8T 12

)
I do same for large temperatures, T`� 1

1

2π
S′′ ≈ −0.364π4T 4 e−

√
6`πT +O

(
e−2
√

6`πT
)

I use numerics for intermediate values of temperature
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Thermal case
see work with Ecker, Stanzer and van der Schee 1710.09837

thermal states in CFT4 = black holes in AdS5
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notational alert: L in the plot corresponds to width `

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 4d 11/19

https://arxiv.org/abs/1710.09837


Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 4d 12/19

https://arxiv.org/abs/1710.09837


Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions
I paper-and-pencil calculations with Romatschke 0803.3226

I δ-like shocks
I particle production in forward lightcone of shocks
I shortly after collision anisotropic pressure: PL/E = −3, PT /E = +2

confirmed numerically for thin shocks by Casalderrey-Solana, Heller,
Mateos and van der Schee 1305.4919

I close to shockwaves negative energy fluxes ⇒ NEC violation!
confirmed numerically and interpreted as absence of local rest frame by
Arnold, Romatschke and van der Schee 1408.2518

I consider finite width gravitational shockwaves
(pioneered numerically by Chesler and Yaffe 1011.3562)

I extract metric, holographic stress tensor and HEE numerically

I check QNEC and its saturation, particularly in region of NEC violation
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Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions

Left: energy density plot Right: black region violates NEC

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 4d 12/19

https://arxiv.org/abs/1710.09837


Colliding gravitational shockwaves and QNEC saturation
see work with Ecker, Stanzer and van der Schee 1710.09837

plasma formation in CFT4 = colliding gravitational shock waves in AdS5

toy model for quark-gluon plasma formation in heavy ion collisions
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Non-equilibrium and quantum equilibrium

A state is in quantum equilibrium when QNEC saturates
for all times and all entangling regions

Definition:

Consequences:

I Far-from-(thermal)-equilibrium state can be in quantum equilibrium

I All states dual to Bañados geometries are in quantum equilibrium

I Natural to introduce “quantum equilibration time”:
For a given separation of the entangling interval quantum
equilibration time = smallest time after which normalized QNEC
non-saturation lower than prescribed bound (e.g. 1%)

Quantum equilibrium hopefully a useful notion
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A state is in quantum equilibrium when QNEC saturates
for all times and all entangling regions

Definition:

Consequences:
I Far-from-(thermal)-equilibrium state can be in quantum equilibrium
Figure 2 from 1311.3655 (Nature Phys.)

TL

TR t = 0

Steady'state'

AdS'boosted'black'hole'
JE 6= 0

x

Bhaseen, Doyon, Lucas, Schalm

I Far from equilibrium transport in
strongly coupled CFT

I Long-time energy transport
universally via steady-state

I In AdS3/CFT2: specific Bañados
geometry with step function

I Our results imply QNEC
saturation at all times

I All states dual to Bañados geometries are in quantum equilibrium
I Natural to introduce “quantum equilibration time”:

For a given separation of the entangling interval quantum
equilibration time = smallest time after which normalized QNEC
non-saturation lower than prescribed bound (e.g. 1%)

Quantum equilibrium hopefully a useful notion
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Left: HEE Right: QNEC saturation

I All states dual to Bañados geometries are in quantum equilibrium
I Natural to introduce “quantum equilibration time”:

For a given separation of the entangling interval quantum
equilibration time = smallest time after which normalized QNEC
non-saturation lower than prescribed bound (e.g. 1%)

Quantum equilibrium hopefully a useful notion
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Half-saturation of QNEC in Vaidya

I Vaidya = simple model for bulk matter; mass function M(t)

ds2 =
1

z2
(−(1−M(t)z2) dt2 − 2 dt dz + dx2)

I Numerical studies show curious “half-saturation” for large entangling
regions l

lim
l�1

S′′ + 6
c (S′)2

〈Tkk〉
≈ 1

2

I Can be derived perturbatively for M(t) = εθ(t) with ε� 1
I If size of entangling region much larger than time, l� t0 we find

QNEC half-saturation

lim
l�t0

S′′ + 6
c (S′)2

〈Tkk〉
=

1

2
± t0

l
+O(t20/l

2) +O(ε)

I If time is much larger than entangling region we find QNEC saturation

lim
t0�l

S′′ + 6
c (S′)2

〈Tkk〉
= 1 +O(ε)
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Finite central charge corrections to QNEC

Consider global AdS3 with massive scalar field and take into account
quantum backreactions (Belin, Iqbal, Lokhande 1805.08782)

ds2 = −
(
r2 +G1(r)2

)
dt2 +

dr2

r2 +G2(r)2
+ r2 dϕ2

with Newton’s constant G = 3/(2c), mass m2 = 4h(h− 1) and

G1(r) = 1−8Gh+O(G2) G2(r) = 1−8Gh(1−1/(r2+1)2h−1)+O(G2)

I Just using (H)RT to calculate HEE yields

S′′ +
6

c
(S′)2 = − c

24
+ h− h

√
π Γ(2h+ 2)

4 Γ(2h+ 3
2)

sin4h−2 ∆ϕ

2
+O(1/c)

I For the half-interval (∆ϕ = π) large-h expansion interesting
I Just using (H)RT to calculate HEE yields

S′′ +
6

c
(S′)2 = − c

24
−#h3/2 + . . .

I From CFT perspective hard to understand where h3/2 comes from
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Bulk entropy corrections to QNEC

I Faulkner, Lewcowycz, Maldacena 1307.2892

SEE =
Area

4G
+ Sbulk

I HEE bulk corrections for AdS3 with massive scalar field backreactions
calculated in Belin, Iqbal, Lokhande 1805.08782

I For QNEC essentially need to boost their results appropriately
I In case of half-interval get precise cancellation of offending h3/2-term!
I Full result for the half-interval:

S′′ +
6

c
(S′)2 = − c

24
+

3

4
h+O(

√
h) +O(1/c)

I Backreacted boundary stress tensor flux component

〈Tkk〉 = − c

24
+ h+O(1/c)

〈Tkk〉 − S′′ −
6

c
(S′)2

∣∣
∆ϕ=π, c�h�1

=
1

4
h

QNEC non-saturation:
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Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837
I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true

I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837
I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist

I Provided first numerical studies of QNEC in AdS5/CFT4 context
1710.09837

I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837

I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837
I Shockwaves can saturate QNEC in far from equilibrium regime

I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837
I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837
I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837
I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya

I 1/c corrections can spoil saturation and require to take into account
bulk corrections to entanglement entropy

Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Summary

Quantum Null Energy Condition (QNEC)
I QNEC in words: Expectation value of null projection of stress tensor

bigger or equal than second derivative of entanglement entropy with
respect to null deformations of entangling surface

I Only known local energy condition that could be universally true
I Various proofs of QNEC exist
I Provided first numerical studies of QNEC in AdS5/CFT4 context

1710.09837
I Shockwaves can saturate QNEC in far from equilibrium regime
I QNEC sharper in AdS3/CFT2

〈Tkk〉 ≥ S′′ +
6

c
S′ 2

I QNEC saturation iff extremal surface does not cross bulk matter —
“quantum equilibrium”

I Curious QNEC “half-saturation” in Vaidya
I 1/c corrections can spoil saturation and require to take into account

bulk corrections to entanglement entropy
Daniel Grumiller — Quantum Null Energy Condition Holographic QNEC in 2d 18/19



Much to be learned about QNEC and its potential applications

Thanks for your attention!
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