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Quantum gravity
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It should exist in some form
String theory: (perturbative) theory of quantum gravity
Microscopic understanding of black hole entropy
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Conceptual insight — information loss problem essentially resolved

[ There is a lot we still do not know about quantum gravity ]
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Reasonable alternatives to string theory?
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Quantum gravity
The Holy Grail of theoretical physics

[ There is a lot we do know about quantum gravity already ]

It should exist in some form
String theory: (perturbative) theory of quantum gravity
Microscopic understanding of black hole entropy

vV v v Y

Conceptual insight — information loss problem essentially resolved

[ There is a lot we still do not know about quantum gravity ]

» Reasonable alternatives to string theory?
» Cosmological constant problem? Gravity at large distances?
» Full history of evaporating quantum black hole?
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Quantum gravity
The Holy Grail of theoretical physics

[ There is a lot we do know about quantum gravity already ]

It should exist in some form
String theory: (perturbative) theory of quantum gravity
Microscopic understanding of black hole entropy

vV v v Y

Conceptual insight — information loss problem essentially resolved

[ There is a lot we still do not know about quantum gravity ]

Reasonable alternatives to string theory?
Cosmological constant problem? Gravity at large distances?
Full history of evaporating quantum black hole?

vV v . vy

Experimental signatures? Data?
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Gravity in lower dimensions
D?(D?-1)

Riemann-tensor =—55— components in D dimensions:

» 11D: 1210 (1144 Weyl and 66 Ricci)
» 10D: 825 (770 Weyl and 55 Ricci)

» 5D: 50 (35 Weyl and 15 Ricci)

» 4D: 20 (10 Weyl and 10 Ricci)
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Gravity in lower dimensions

. D2(D2—1) . . . .
Riemann-tensor ——{3—— components in D dimensions:

11D: 1210 (1144 Weyl and 66 Ricci)
10D: 825 (770 Weyl and 55 Ricci)
5D: 50 (35 Weyl and 15 Ricci)

4D: 20 (10 Weyl and 10 Ricci)

3D: 6 (Ricci)

2D: 1 (Ricci scalar)

\4
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» 2D: lowest dimension exhibiting black holes (BHs)
» Simplest gravitational theories with BHs in 2D
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Gravity in lower dimensions

. D2(D2—1) . . . .
Riemann-tensor ——{3—— components in D dimensions:

11D: 1210 (1144 Weyl and 66 Ricci)
10D: 825 (770 Weyl and 55 Ricci)
5D: 50 (35 Weyl and 15 Ricci)

4D: 20 (10 Weyl and 10 Ricci)

3D: 6 (Ricci)

2D: 1 (Ricci scalar)

\4

vV vy VvYYy

» 2D: lowest dimension exhibiting black holes (BHs)
» Simplest gravitational theories with BHs in 2D

» 3D: lowest dimension exhibiting BHs and gravitons

» Simplest gravitational theories with BHs and gravitons in 3D
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Which 2D theory?
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Attempt 1: Einstein—Hilbert in and near two dimensions

Let us start with the simplest attempt. Einstein-Hilbert action in 2
dimensions:

I 22/|g|R= = (1 -
EH 16G/dr’qR 'Y)
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Attempt 1: Einstein—Hilbert in and near two dimensions

Let us start with the simplest attempt. Einstein-Hilbert action in 2
dimensions:

I 22/|g|R= = (1 -
EH 16G/dT’qR '7)

» Action is topological
» No equations of motion
» Formal counting of number of gravitons: -1

[in D dimensions Einstein gravity has D(D — 3)/2 graviton polarizations]
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Attempt 1: Einstein—Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert
action in 24€ dimensions:

1
Inw = ——— /d2+€$\/ |9’R

167 G(e)
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Attempt 1: Einstein—Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert
action in 24€ dimensions:

1
I4 € _ d2+€ /
o 167 G(e) / w9l R

> Weinberg: theory is asymptotically safe
» Mann: limit € — 0 should be possible and lead to 2D dilaton gravity
» DG, Jackiw: limit e — 0 (with G(e — 0) — 0) yields Liouville gravity

! /dzwﬁ [XR— (VX)*+ /\672)(}

lim Ipp€ =
50 FH T 160Gy
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Attempt 1: Einstein—Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert
action in 24€ dimensions:

1
I4 € _ d2+€ /
o 167 G(e) / w9l R

> Weinberg: theory is asymptotically safe
» Mann: limit € — 0 should be possible and lead to 2D dilaton gravity
» DG, Jackiw: limit e — 0 (with G(e — 0) — 0) yields Liouville gravity

: z — 2 —2X
167 G5 ,/d 2|9l [XR— (VX)?+ he Y]

lim g =
e—0

Result of attempt 1:]

A specific 2D dilaton gravity model
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Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model

Jackiw, Teitelboim (Bunster): (A)dS, gauge theory
[P, Po) = ANeaw  [Pa,J] = €."Py

describes constant curvature gravity in 2D. Algorithm:
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Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model

Jackiw, Teitelboim (Bunster): (A)dS, gauge theory
[Pa, P)) = AeayJ [P, J] =" Py
describes constant curvature gravity in 2D. Algorithm:
» Start with SO(1,2) connection A = ¢*P, + wJ

» Take field strength F' = dA + %[A, A] and coadjoint scalar X
» Construct non-abelian BF theory

I:/XAFA:/[Xa(dea—i-eabw/\eb)—i—de—i—eabea/\ebAX

D. Grumiller — Gravity in two dimensions Which 2D theory? 8/26



Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model
Jackiw, Teitelboim (Bunster): (A)dS, gauge theory
[P, Po) = ANeaw  [Pa,J] = €."Py

describes constant curvature gravity in 2D. Algorithm:
» Start with SO(1,2) connection A = ¢*P, + wJ
> Take field strength F' = dA + 1[A, A] and coadjoint scalar X
» Construct non-abelian BF theory

I:/XAFA:/[Xa(dea—i-eabw/\eb)—i—de—i—eabea/\ebAX

» Eliminate X, (Torsion constraint) and w (Levi-Civita connection)
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Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model

Jackiw, Teitelboim (Bunster): (A)dS, gauge theory
[P, Po) = ANeaw  [Pa,J] = €."Py
describes constant curvature gravity in 2D. Algorithm:
» Start with SO(1,2) connection A = ¢*P, + wJ

» Take field strength F' = dA + %[A, A] and coadjoint scalar X
» Construct non-abelian BF theory

I:/XAFA:/[Xa(dea—i-eabw/\eb)—i—de—i—eabea/\ebAX

» Eliminate X, (Torsion constraint) and w (Levi-Civita connection)
» Obtain the second order action

I= 22v/—g X [R— A
167 Gy ,/( V=g X[R = Al
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Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model

Jackiw, Teitelboim (Bunster): (A)dS, gauge theory
[P, Po) = ANeaw  [Pa,J] = €."Py
describes constant curvature gravity in 2D. Algorithm:
» Start with SO(1,2) connection A = ¢*P, + wJ

» Take field strength F' = dA + %[A, A] and coadjoint scalar X
» Construct non-abelian BF theory

I:/XAFA:/[Xa(dea—i-eabw/\eb)—i—de—i—eabea/\ebAX

» Eliminate X, (Torsion constraint) and w (Levi-Civita connection)
» Obtain the second order action

I= 22v/—g X [R— A
167 Gy ,/( V=g X[R = Al

Result of attempt 2:}

A specific 2D dilaton gravity model ]
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Attempt 3: Dimensional reduction
For example: spherical reduction from D dimensions

Line element adapted to spherical symmetry:
ds? = gfg) dat dz” = gap(z?) dz¥da? — ¢2(z®) dQ%}}2 ,
~— ~—— N——

full metric 2D metric surface area
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Attempt 3: Dimensional reduction
For example: spherical reduction from D dimensions

Line element adapted to spherical symmetry:
ds? = gfg) dat dz” = gap(z?) dz¥da? — ¢2(z®) dQ%}}2 ,
~— ~—— N——

full metric 2D metric surface area

Insert into D-dimensional EH action Iy = /fdex\/—g(D)R(D):

omD-D/2 boaln  (D—2)(D—3)
T /dx\/?gqb R+ e

Ipp =k

(Vo) =1)]
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Attempt 3: Dimensional reduction
For example: spherical reduction from D dimensions

Line element adapted to spherical symmetry:
ds? = gfg) dat dz” = gap(z?) dz¥da? — ¢2(z®) dQ%}}2 ,
~— ~—— N——

full metric 2D metric surface area
Insert into D-dimensional EH action I = /fdex\/—g(D)R(D):

o (D-1)/2

D—-2)(D -3
(=) ¢
Cosmetic redefinition X oc (A¢)? 2
_ 1 2, D-3 2 _ 2y (D—4)/(D-2)
IE‘]’-[—167TG2 /duL '{}{XR—F(D—Q)X(VX) A X }

Result of attempt 3:]

A specific class of 2D dilaton gravity models ]
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Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider f(R) theories or/and theories with
torsion or/and theories with non-metricity
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Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider f(R) theories or/and theories with
torsion or/and theories with non-metricity
» Example: Katanaev-Volovich model (Poincare gauge theory)

Ty ~ / d*z\/—g [aT? + BR?]
» Kummer, Schwarz: bring into first order form:
Ty ~ / [Xa(de“ + €"pw A eb) + X dw + egpe® A el (aX*X, + BXQ)]
> Use same algorithm as before to convert into second order action:

1 .
/(12;5\/—(] {XR +a(VX)? + ﬁXz}

] 7 =
VT 16r Gy
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Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider f(R) theories or/and theories with
torsion or/and theories with non-metricity
» Example: Katanaev-Volovich model (Poincare gauge theory)

Ty ~ / d*z\/—g [aT? + BR?]
» Kummer, Schwarz: bring into first order form:
Ty ~ / [Xa(de“ + €"pw A eb) + X dw + egpe® A el (aX*X, + BXQ)]
> Use same algorithm as before to convert into second order action:

1 .
= — /(IQ;L'\/—,(]{XR—}—Q(VX)Q—#—HXZ}
167 Gy .

Result of attempt 4:]

Iiey

A specific 2D dilaton gravity model ]
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Attempt 5: Strings in two dimensions

Conformal invariance of the ¢ model
I, /d2§\/|h| [9,wh 0;2"0;z" + o/ dR + ... ]
requires vanishing of S-functions

B? o —4b? — 4(V¢)2 +40¢+ R+ ...
zl,ocRW—i—QVMVV(b—i-...

Conditions ¢ = Biw = 0 follow from target space action

1

- | |
J— 122,/= [XR —(VX)? — 4p?
et = T (o Q/‘ zv/—g ++ (VX)

where X = ¢=2¢
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Attempt 5: Strings in two dimensions

Conformal invariance of the ¢ model
I, /d2§\/|h| [9,wh 0;2"0;z" + o/ dR + ... ]
requires vanishing of S-functions

B? o —4b? — 4(V¢)2 +40¢+ R+ ...
9, X Ry + 2V, Vud + ...
Conditions 3% = 37, = 0 follow from target space action
1

. | |
A 123,/= [XR ~ (VX 2—4&}
et = T (o Q/‘ zv/—g ++ (VX)

where X = ¢=2¢

Result of attempt 5:}

A specific 2D dilaton gravity model ]
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Selected List of Models
Black holes in (A)dS, asymptotically flat or arbitrary spaces (Wheeler property)

| Model U(X) V(X)
1. Schwarzschild (1916) —5x %
2. Jackiw-Teitelboim (1984) 0 AX
3. Witten Black Hole (1991) -+ —20°X
4. CGHS (1992) 0 —2b*
5. (A)dS> ground state (1994) —% BX
6. Rindler ground state (1996) -% BX“
7. Black Hole attractor (2003) 0 BXx™!
8. Spherically reduced gravity (N > 3) —(NN__Q‘;’X N2 X (N=)/(N=2)
9. All above: ab-family (1997) -2 BX*tt
10. Liouville gravity a be™X
11. Reissner-Nordstrom (1916) -5 -2\ 4 %2
12. Schwarzschild-(A)dS % -2 —iX
13. Katanaev-Volovich (1986) ! BX% — A
14. BTZ/Achucarro-Ortiz (1993) 0 &L L AX
15. KK reduced CS (2003) 0 1X(c—X?)
16. KK red. conf. flat (2006) —1 tanh (X/2) Asinh X
17. 2D type OA string Black Hole -1 2’ X + £
18. exact string Black Hole (2005) lengthy lengthy
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Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:
1
167 G2

1
d XK —S(X)] + 1™
s |, arVRl XK =00+

/M d*z+/|g| [XR - U(X)(VX)? - V(X)]
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Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:
1
167 G2

1
d XK —S(X)] + 1™
s |, arVRl XK =00+

/M d*z/|g| [XR - U(X)(VX)? - V(X)]

» Dilaton X defined by its coupling to curvature R
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Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:
1
167 G2

1
d XK —S(X)] + 1™
s |, arVRl XK =00+

/M d*z+/|g| [XR - U(X)(VX)* = V(X)]

» Dilaton X defined by its coupling to curvature R
» Kinetic term (V.X)? contains coupling function U (.X)
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Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:
1
I= d? XR-UXVX)?-V(X
g eVl XR - U)(VXP - V()

1
- d XK —S(X)] + 1™
s |, arVRl XK =00+

» Dilaton X defined by its coupling to curvature R
> Kinetic term (VX)? contains coupling function U(X)
» Self-interaction potential V' (X') leads to non-trivial geometries
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Synthesis of all attempts: Dilaton gravity in two dimensions
Second order action:
1
I= d? XR-U(X)(VX)*-V(X
g eVl [XR = U (VX - V()]

1
dzv/|y| [XK — S(X)] + 1™
5 |, VRl XK = s00)+

Dilaton X defined by its coupling to curvature R

Kinetic term (V.X)? contains coupling function U (X)
Self-interaction potential V' (X) leads to non-trivial geometries
Gibbons—Hawking—York boundary term guarantees Dirichlet boundary
problem for metric

vV vyVvYyy
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Synthesis of all attempts: Dilaton gravity in two dimensions
Second order action:
1
I= d? XR-U(X)(VX)*-V(X
g eVl [XR = U (VX - V()]

1
d XK — S(X)] + 1™
5 . VAl XK = S0+

v

Dilaton X defined by its coupling to curvature R

Kinetic term (V.X)? contains coupling function U (X)
Self-interaction potential V' (X) leads to non-trivial geometries
Gibbons—Hawking—York boundary term guarantees Dirichlet boundary
problem for metric

Hamilton—Jacobi counterterm contains superpotential S(X)

X
S(X)2 — fX U(y) dy/ V(y)efy U(z)dz dy

vYvyy

v

and guarantees well-defined variational principle 61 =0
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Synthesis of all attempts: Dilaton gravity in two dimensions
Second order action:
1
I= d? XR-U(X)(VX)*-V(X
g eVl [XR = U (VX - V()]

1
—~ d XK — S(X)] + 1t
s |, arVRl XK =00+

v

Dilaton X defined by its coupling to curvature R

Kinetic term (V.X)? contains coupling function U (X)
Self-interaction potential V' (X) leads to non-trivial geometries
Gibbons—Hawking—York boundary term guarantees Dirichlet boundary
problem for metric

Hamilton—Jacobi counterterm contains superpotential S(X)

X
S(X)2 — fX U(y) dy/ V(y)efy U(z)dz dy

vYvyy

v

and guarantees well-defined variational principle 61 =0
> Interesting option: couple 2D dilaton gravity to matter
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Outline

Quantum dilaton gravity with matter
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure

Implement the following algorithm:
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure
Implement the following algorithm:

» Matter provides propagating degrees of freedom

» Consider 2D dilaton gravity with a scalar field
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure
Implement the following algorithm:
» Matter provides propagating degrees of freedom
» Consider 2D dilaton gravity with a scalar field
» Do the BRST gymnastics
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure
Implement the following algorithm:
» Matter provides propagating degrees of freedom
» Consider 2D dilaton gravity with a scalar field
» Do the BRST gymnastics

> Integrate out geometry exactly!
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure
Implement the following algorithm:
» Matter provides propagating degrees of freedom
» Consider 2D dilaton gravity with a scalar field
» Do the BRST gymnastics
> Integrate out geometry exactly!
» Obtain non-local non-polynomial matter action
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure
Implement the following algorithm:
» Matter provides propagating degrees of freedom
» Consider 2D dilaton gravity with a scalar field
Do the BRST gymnastics

Integrate out geometry exactly!

v

v

v

Obtain non-local non-polynomial matter action

\4

Treat matter perturbatively
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure
Implement the following algorithm:
» Matter provides propagating degrees of freedom
» Consider 2D dilaton gravity with a scalar field
Do the BRST gymnastics

v

v

Integrate out geometry exactly!

v

Obtain non-local non-polynomial matter action

\4

Treat matter perturbatively

v

Calculate Feynman rules
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure

Implement the following algorithm:

>

>

>

Matter provides propagating degrees of freedom
Consider 2D dilaton gravity with a scalar field
Do the BRST gymnastics

Integrate out geometry exactly!

Obtain non-local non-polynomial matter action
Treat matter perturbatively

Calculate Feynman rules

Reconstruct intermediate geometry (Virtual BHs)
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure
Implement the following algorithm:
» Matter provides propagating degrees of freedom
» Consider 2D dilaton gravity with a scalar field
» Do the BRST gymnastics
> Integrate out geometry exactly!
» Obtain non-local non-polynomial matter action
» Treat matter perturbatively
» Calculate Feynman rules
» Reconstruct intermediate geometry (Virtual BHs)

» Calculate S-matrix or corrections to classical quantities (like specific
heat)
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Non-minimally coupled matter
Prominent example: Einstein-massless Klein-Gordon model (Choptuik)

» no matter: integrability, no scattering, no propagating physical modes

» with matter: no integrability in general, scattering, critical collapse
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Non-minimally coupled matter
Prominent example: Einstein-massless Klein-Gordon model (Choptuik)

» no matter: integrability, no scattering, no propagating physical modes

» with matter: no integrability in general, scattering, critical collapse

Massless scalar field S

Im = / d%z/—gF(X)(VS)?

» minimal coupling: F' = const.
» non-minimal coupling otherwise

» spherical reduction: F' o« X

D. Grumiller — Gravity in two dimensions Quantum dilaton gravity with matter 16/26



Non-perturbative path integral quantization
Integrating out geometry exactly

> constraint analysis {G'(z), G/ (')} = GFCY6(x — o)
» BRST charge Q = ¢'G; + '/ Cy;Fpy (ghosts ¢, py)

» gauge fixing fermion to achieve EF gauge
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Non-perturbative path integral quantization
Integrating out geometry exactly

> constraint analysis {G'(z), G/ (')} = GFCY6(x — o)
» BRST charge Q = ¢'G; + '/ Cy;Fpy (ghosts ¢, py)

» gauge fixing fermion to achieve EF gauge

integrating ghost sector yields
Z[sources] = /Df5 (f + i5/5jeir) Z[f, sources]
with (S = SV/f)
Z[f, sources] = /DS’D(w, e, X, X*) det Ap.p expi(l, s + sources)

Can integrate over all fields except matter non-perturbatively!
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Non-local effective theory
Convert local gravity theory with matter into non-local matter theory without gravity

Generating functional for Green functions (F = 1):
Z|f, sources] = /DS expi/(ﬁk + LY + L%)d*x

LF=0y80,S — By (00S)%, L' = —w/(X), L =08 + chEf +...,
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Non-local effective theory
Convert local gravity theory with matter into non-local matter theory without gravity

Generating functional for Green functions (F = 1):
Z|f, sources] = /DS expi/(ﬁk + LY + L%)d*x

LF=0y80,S — By (00S)%, L' = —w/(X), L =08 + chEf +...,

525f1/2, Ef:eQ(X), X:a+bx0+aa2(805)2+...,a:O, b=1,
— —

X non—local

C=w(X)+ M, Ef =90 £ 20 (x)9,2(808) + . ..

/Dgexpi/ﬁk = exp (i/967r/ foD;ley)
zJy

Polyakov

Red: geometry, Magenta: matter, Blue: boundary conditions

D. Grumiller — Gravity in two dimensions Quantum dilaton gravity with matter 18/26



Some Feynman diagrams

lowest order non-local vertices: vertex corrections:
9 S

VO, g SR A CR9 S

£

propagator corrections:

vacuum bubbles:

» so far: calculated only lowest order vertices and propagator corrections
» partial resummations possible (similar to Bethe-Salpeter)?

» non-local loops vanish to this order
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S-matrix for s-wave gravitational scattering
Quantizing the Einstein-massless-Klein-Gordon model

ingoing s-waves ¢ = aF, ¢ = (1 — ) F interact and scatter into outgoing
s-waves k = SE, k' = (1 - B)E
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S-matrix for s-wave gravitational scattering
Quantizing the Einstein-massless-Klein-Gordon model

ingoing s-waves ¢ = aF, ¢ = (1 — «)F interact and scatter into outgoing
s-waves k = SE, k' = (1 - B)E

T(q,q's k. k') o To(k + kK —q—¢')/|kk' qq'|** (1a)
with IT = (k + k") (k — ¢)(k' — ¢) and
H2 2
T = HlnE6+ Zp lnE2 <3kk/qqlzzr5) (1b)
TF#D SFET,D

Plot of cross-section

> result finite and simple

» monomial scaling with £

» forward scattering poles II = 0
> decay of s-waves possible

» not understood why so simple!

(intermediate results vastly more complicated)
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Other selected successes of (quantum) dilaton gravity with/without matter

>
| 4
>
>
>
>
>
>
>
>
>
| 4
>
>
>
>

Gravity as non-abelian gauge theory
Black holes in string theory

Black hole evaporation

Gravity as non-linear gauge theory
Dirac quantization

All classical solutions

Virtual black holes

Unitary S-matrix

Quantum corrected specific heat
Liouville Field Theory

Duality

Holographic renormalization

Central charge in AdSs

AdSs holography

Model for gravity at large distances
Quantization of cosmological constant?
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Summary

» Dilaton gravity in two dimensions is surprisingly rich!
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hole physics and quantum gravity
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Summary

» Dilaton gravity in two dimensions is surprisingly rich!

» Dilaton gravity in two dimensions provides valuable lessons for black
hole physics and quantum gravity

» Dilaton gravity in two dimensions is also capable of providing insights
into gravity at large distances

D. Grumiller — Gravity in two dimensions Quantum dilaton gravity with matter 22/26



Summary

v

Dilaton gravity in two dimensions is surprisingly rich!

Dilaton gravity in two dimensions provides valuable lessons for black
hole physics and quantum gravity

Dilaton gravity in two dimensions is also capable of providing insights
into gravity at large distances

> ... there still may be surprises waiting to be discovered!

v

v
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Summary — Thank you for your attention!

v

Dilaton gravity in two dimensions is surprisingly rich!

Dilaton gravity in two dimensions provides valuable lessons for black
hole physics and quantum gravity

Dilaton gravity in two dimensions is also capable of providing insights
into gravity at large distances

> ... there still may be surprises waiting to be discovered!

v
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

» extremal black holes universally include AdSs factor
» funnily, AdS3 holography more straightforward
» study charged Jackiw—Teitelboim model as example

8 L?
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

v

extremal black holes universally include AdSs factor
funnily, AdS3 holography more straightforward
study charged Jackiw—Teitelboim model as example

2
_ G 2./ |.—20 [ p 8 L=
IJT—27T/d TN/ —g |:€ <11+I/2>—4F

Metric ¢ has signature —, + and Ricci-scalar 7< 0 for AdS

A

v
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

v

extremal black holes universally include AdSs factor
funnily, AdS3 holography more straightforward
study charged Jackiw—Teitelboim model as example

8 L?

Metric ¢ has signature —, + and Ricci-scalar 7< 0 for AdS
Maxwell field strength F,, = 2F ¢, dual to electric field

A
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

v

extremal black holes universally include AdSs factor
funnily, AdS3 holography more straightforward
study charged Jackiw—Teitelboim model as example

@ iy 8 L? .
Ir = o /d%?vﬁ [(’ 2¢ <H+L2> —4f‘2}

Metric ¢ has signature —, + and Ricci-scalar 7< 0 for AdS
Maxwell field strength F,, = 2F ¢, dual to electric field
Dilaton ¢ has no kinetic term and no coupling to gauge field

A

v vyy
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

» extremal black holes universally include AdSs factor
» funnily, AdS3 holography more straightforward
» study charged Jackiw—Teitelboim model as example

oy 8 L? .
IJT = % /de\//T |:€_ZO <,[1)+ L—)> — lﬁ‘2:|

Metric ¢ has signature —, + and Ricci-scalar 7< 0 for AdS
Maxwell field strength F,, = 2F ¢, dual to electric field
Dilaton ¢ has no kinetic term and no coupling to gauge field
Cosmological constant A — — , parameterized by AdS radius /.

v vyYVvYyy
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

» extremal black holes universally include AdSs factor
» funnily, AdS3 holography more straightforward
» study charged Jackiw—Teitelboim model as example

«Q o 8 L? .
Lp=— [z g |le2 (rn+ ) - F?
JT 27(_ d x\/ g |:(’ < 1 + L—)> l

Metric ¢ has signature —, + and Ricci-scalar 7< 0 for AdS
Maxwell field strength F,, = 2F ¢, dual to electric field
Dilaton ¢ has no kinetic term and no coupling to gauge field
Cosmological constant A — — , parameterized by AdS radius /.
Coupling constant « usually is positive

vV vyVvyVvVvyy
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

» extremal black holes universally include AdSs factor
» funnily, AdS3 holography more straightforward
» study charged Jackiw—Teitelboim model as example

«Q o 8 L? .
Lp=— [z g |le2 (rn+ ) - F?
JT 27(_ d x\/ g |:(’ < 1 + L—)> l

Metric ¢ has signature —, + and Ricci-scalar 7< 0 for AdS
Maxwell field strength F,, = 2F ¢, dual to electric field
Dilaton ¢ has no kinetic term and no coupling to gauge field
Cosmological constant A — — , parameterized by AdS radius /.
Coupling constant « usually is positive

d¢ EOM: R = — 5, = AdS,!

L2

vV vy VvVTYyysy
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

» extremal black holes universally include AdSs factor
» funnily, AdS3 holography more straightforward
» study charged Jackiw—Teitelboim model as example

o Yy 8 L? .
IJT:% dQQJVT!/ [(’ 2¢ <H+L2>_lﬁz}

Metric ¢ has signature —, + and Ricci-scalar 7< 0 for AdS
Maxwell field strength F,, = 2F ¢, dual to electric field
Dilaton ¢ has no kinetic term and no coupling to gauge field
Cosmological constant A — — , parameterized by AdS radius /.
Coupling constant « usually is positive

0¢p EOM: R:—% = AdS,!

0A EOM: V, FH' =0 = E = constant

vV VvV VvyVvyVvyYyy
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

>

extremal black holes universally include AdSs factor

» funnily, AdS3 holography more straightforward

» study charged Jackiw—Teitelboim model as example
8 L?
IJT—i de\/j(/ (3_ j1+ _7}72
27 L2
» Metric ¢ has signature —, + and Ricci-scalar /< 0 for AdS
» Maxwell field strength F,, = 2/ ¢, dual to electric field £
» Dilaton ¢ has no kinetic term and no coupling to gauge field
> Cosmological constant A — — -, parameterized by AdS radius /.
» Coupling constant « usuaIIy is positive
» 5¢ EOM: R = — " = AdS,!
» 0A EOM: V,, F/“’ =0 = E = constant
» og EOM: compllcated for non-constant dilaton...
_ _og, 4 L? L? ‘
V.V,e 2 _ G V2e 2®+ﬁ e~ (/W—i— F F"/\_(T G 2 =0
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Recent example: AdSs holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

» extremal black holes universally include AdSs factor
» funnily, AdS3 holography more straightforward
» study charged Jackiw—Teitelboim model as example

8\ L
IJT—i de\/j(/ (3_ j1+ _7}72
27 L2

0A EOM: V, F/“’ =0 = E = constant
59 EOM: ...but simple for constant dilaton: e~ 2¢ = "—] E?

» Metric ¢ has signature —, + and Ricci-scalar /< 0 for AdS

» Maxwell field strength F,, = 2/ ¢, dual to electric field £

» Dilaton ¢ has no kinetic term and no coupling to gauge field

> Cosmological constant A — — -, parameterized by AdS radius /.
» Coupling constant « usuaIIy is positive

> 6¢ EOM: 2 = — ° = AdS,!

>

>

2

1 L? L? ‘
F e 2 (//u/+ Fy E/)\ (//1// FZ =0
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Some surprising results

Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

» Holographic renormalization leads to boundary mass term (CGLM)

Iw/dazx/d mA?

Nevertheless, total action gauge invariant
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Some surprising results
Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

» Holographic renormalization leads to boundary mass term (CGLM)
I~ /daj\/i///A2

Nevertheless, total action gauge invariant

» Boundary stress tensor transforms anomalously (HS)

C
(0¢ + 6x) Tyt = 2T34:04& + £0; Ty — Eﬁ@f’f
where d¢ + dy is combination of diffeo- and gauge trafos that preserve

the boundary conditions (similarly: §yJ; = —ﬁf,at)\)
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Some surprising results
Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

» Holographic renormalization leads to boundary mass term (CGLM)

I~ /daj\/f///A2

Nevertheless, total action gauge invariant

» Boundary stress tensor transforms anomalously (HS)
&

(0¢ + 6x) Tyt = 2T34:04& + £0; Ty — Eﬁ@f’ﬁ

where d¢ + dy is combination of diffeo- and gauge trafos that preserve
the boundary conditions (similarly: §yJ; = —Zf—'%f,at)\)
» Anomalous transformation above leads to central charge (HS, CGLM)
3 3

c=—240e % = (Tz = 5/;E2]‘3
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Some surprising results
Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

» Holographic renormalization leads to boundary mass term (CGLM)

I~ /daj\/f///A2

Nevertheless, total action gauge invariant

» Boundary stress tensor transforms anomalously (HS)
&
(0¢ + 6x) Tyt = 2T34:04& + £0; Ty — Eﬁ@f’f
where d¢ + dy is combination of diffeo- and gauge trafos that preserve
the boundary conditions (similarly: §yJ; = —Zf—'%f,at)\)
» Anomalous transformation above leads to central charge (HS, CGLM)

3 3. 5 5
c=—240e % = (Tz = 5/;E‘)lf

» Positive central charge only for negative coupling constant v (CGLM)

a<0

D. Grumiller — Gravity in two dimensions Quantum dilaton gravity with matter 25/26



Virtual black holes

Reconstruct geometry from matter

“Intermediate geometry” (caveat: off-shell!):

o+
i

3*
L]
WY ,.o
iy '...
... ™
o, o o — - e
L ..o
3 LI
LIPS
)
)
v

ds? = 2dudr +[1 — 6(u — ug)0(ro — r)(2M/r + ar + d)] du?

[\

localized
» Schwarzschild and Rindler terms
» nontrivial part localized
» geometry is non-local (depends on 7, u, g, up)
——
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