
Gravity in two dimensions

Daniel Grumiller

Institute for Theoretical Physics
Vienna University of Technology
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Quantum gravity
The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

I It should exist in some form

I String theory: (perturbative) theory of quantum gravity

I Microscopic understanding of black hole entropy

I Conceptual insight — information loss problem essentially resolved

There is a lot we still do not know about quantum gravity

I Reasonable alternatives to string theory?

I Cosmological constant problem? Gravity at large distances?

I Full history of evaporating quantum black hole?

I Experimental signatures? Data?
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Gravity in lower dimensions

Riemann-tensor D2(D2−1)
12 components in D dimensions:

I 11D: 1210 (1144 Weyl and 66 Ricci)
I 10D: 825 (770 Weyl and 55 Ricci)
I 5D: 50 (35 Weyl and 15 Ricci)
I 4D: 20 (10 Weyl and 10 Ricci)

I 3D: 6 (Ricci)
I 2D: 1 (Ricci scalar)

I 2D: lowest dimension exhibiting black holes (BHs)

I Simplest gravitational theories with BHs in 2D

I 3D: lowest dimension exhibiting BHs and gravitons

I Simplest gravitational theories with BHs and gravitons in 3D
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Attempt 1: Einstein–Hilbert in and near two dimensions

Let us start with the simplest attempt. Einstein-Hilbert action in 2
dimensions:

IEH =
1

16πG

∫
d2x
√
|g|R =

1

2G
(1− γ)

A specific 2D dilaton gravity model

Result of attempt 1:
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Let us start with the simplest attempt. Einstein-Hilbert action in 2
dimensions:

IEH =
1

16πG

∫
d2x
√
|g|R =

1

2G
(1− γ)

I Action is topological

I No equations of motion

I Formal counting of number of gravitons: -1

[in D dimensions Einstein gravity has D(D− 3)/2 graviton polarizations]

A specific 2D dilaton gravity model

Result of attempt 1:
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Attempt 1: Einstein–Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert

action in 2+ε dimensions:

IEH
ε =

1

16πG(ε)

∫
d2+εx

√
|g|R
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16πG(ε)

∫
d2+εx

√
|g|R

I Weinberg: theory is asymptotically safe

I Mann: limit ε→ 0 should be possible and lead to 2D dilaton gravity

I DG, Jackiw: limit ε→ 0 (with G(ε→ 0)→ 0) yields Liouville gravity

lim
ε→0

IEH
ε =

1

16πG2

∫
d2x
√
|g|
[
XR− (∇X)2 + λe−2X

]
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Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model

Jackiw, Teitelboim (Bunster): (A)dS2 gauge theory

[Pa, Pb] = Λ εabJ [Pa, J ] = εa
bPb

describes constant curvature gravity in 2D. Algorithm:

I Start with SO(1, 2) connection A = eaPa + ωJ
I Take field strength F = dA+ 1

2 [A,A] and coadjoint scalar X
I Construct non-abelian BF theory

I =

∫
XAF

A =

∫ [
Xa(de

a + εabω ∧ eb) +X dω + εabe
a ∧ eb ΛX

]
I Eliminate Xa (Torsion constraint) and ω (Levi-Civita connection)
I Obtain the second order action

I =
1

16πG2

∫
d2x
√
−g X [R− Λ]

A specific 2D dilaton gravity model

Result of attempt 2:
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Attempt 3: Dimensional reduction
For example: spherical reduction from D dimensions

Line element adapted to spherical symmetry:

ds2 = g(D)
µν︸︷︷︸

full metric

dxµ dxν = gαβ(xγ)︸ ︷︷ ︸
2D metric

dxα dxβ − φ2(xα)︸ ︷︷ ︸
surface area

dΩ2
SD−2

,

Insert into D-dimensional EH action IEH = κ
∫

dDx
√
−g(D)R(D):

IEH = κ
2π(D−1)/2

Γ(D−12 )

∫
d2x
√
−g φD−2

[
R+

(D − 2)(D − 3)

φ2
(
(∇φ)2 − 1

) ]
Cosmetic redefinition X ∝ (λφ)D−2:

IEH =
1

16πG2

∫
d2x
√
−g
[
XR+

D − 3

(D − 2)X
(∇X)2 − λ2X(D−4)/(D−2)

]

A specific class of 2D dilaton gravity models

Result of attempt 3:
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Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider f(R) theories or/and theories with
torsion or/and theories with non-metricity

I Example: Katanaev-Volovich model (Poincare gauge theory)

IKV ∼
∫

d2x
√
−g
[
αT 2 + βR2

]
I Kummer, Schwarz: bring into first order form:

IKV ∼
∫ [

Xa(de
a + εabω ∧ eb) +X dω + εabe

a ∧ eb (αXaXa + βX2)
]

I Use same algorithm as before to convert into second order action:

IKV =
1

16πG2

∫
d2x
√
−g
[
XR+ α(∇X)2 + βX2

]

A specific 2D dilaton gravity model

Result of attempt 4:
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Attempt 5: Strings in two dimensions

Conformal invariance of the σ model

Iσ ∝
∫

d2ξ
√
|h|
[
gµνh

ij∂ix
µ∂jx

ν + α′φR+ . . .
]

requires vanishing of β-functions

βφ ∝ −4b2 − 4(∇φ)2 + 4�φ+R+ . . .

βgµν ∝ Rµν + 2∇µ∇νφ+ . . .

Conditions βφ = βgµν = 0 follow from target space action

Itarget =
1

16πG2

∫
d2x
√
−g
[
XR+

1

X
(∇X)2 − 4b2

]
where X = e−2φ

A specific 2D dilaton gravity model

Result of attempt 5:
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Selected List of Models
Black holes in (A)dS, asymptotically flat or arbitrary spaces (Wheeler property)

Model U(X) V (X)

1. Schwarzschild (1916) − 1
2X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX
3. Witten Black Hole (1991) − 1

X
−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − a
X

BX
6. Rindler ground state (1996) − a

X
BXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3
(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − a
X

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordström (1916) − 1
2X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 1
2X

−λ2 − `X
13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X
− J

4X3 − ΛX
15. KK reduced CS (2003) 0 1

2
X(c−X2)

16. KK red. conf. flat (2006) − 1
2

tanh (X/2) A sinhX

17. 2D type 0A string Black Hole − 1
X

−2b2X + b2q2

8π

18. exact string Black Hole (2005) lengthy lengthy
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Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:

I =
1

16πG2

∫
M

d2x
√
|g|
[
XR− U(X)(∇X)2 − V (X)

]
− 1

8πG2

∫
∂M

dx
√
|γ| [XK − S(X)] + I(m)

I Dilaton X defined by its coupling to curvature R
I Kinetic term (∇X)2 contains coupling function U(X)
I Self-interaction potential V (X) leads to non-trivial geometries
I Gibbons–Hawking–York boundary term guarantees Dirichlet boundary

problem for metric
I Hamilton–Jacobi counterterm contains superpotential S(X)

S(X)2 = e−
∫X U(y) dy

∫ X

V (y)e
∫ y U(z) dz dy

and guarantees well-defined variational principle δI = 0
I Interesting option: couple 2D dilaton gravity to matter
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Outline

Why lower-dimensional gravity?

Which 2D theory?

Quantum dilaton gravity with matter
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Exact path integral quantization of 2D dilaton gravity
Overview of the quantization procedure

Implement the following algorithm:

I Matter provides propagating degrees of freedom

I Consider 2D dilaton gravity with a scalar field

I Do the BRST gymnastics

I Integrate out geometry exactly!

I Obtain non-local non-polynomial matter action

I Treat matter perturbatively

I Calculate Feynman rules

I Reconstruct intermediate geometry (Virtual BHs)

I Calculate S-matrix or corrections to classical quantities (like specific
heat)
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Non-minimally coupled matter
Prominent example: Einstein-massless Klein-Gordon model (Choptuik)

I no matter: integrability, no scattering, no propagating physical modes

I with matter: no integrability in general, scattering, critical collapse

Massless scalar field S:

I(m) =

∫
d2x
√
−gF (X)(∇S)2

I minimal coupling: F = const.

I non-minimal coupling otherwise

I spherical reduction: F ∝ X
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Non-perturbative path integral quantization
Integrating out geometry exactly

I constraint analysis
{
Gi(x), Gj(x′)

}
= GkCk

ijδ(x− x′)
I BRST charge Ω = ciGi + cicjCij

kpk (ghosts ci, pk)

I gauge fixing fermion to achieve EF gauge

integrating ghost sector yields

Z[sources] =

∫
Dfδ

(
f + iδ/δje+1

)
Z̃[f, sources]

with (S̃ = S
√
f)

Z̃[f, sources] =

∫
DS̃D(ω, ea, X,Xa) det ∆F.P. exp i(Ig.f. + sources)

Can integrate over all fields except matter non-perturbatively!
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Non-local effective theory
Convert local gravity theory with matter into non-local matter theory without gravity

Generating functional for Green functions (F = 1):

Z̃[f, sources] =

∫
DS̃ exp i

∫
(Lk + Lv + Ls)d2x

Lk = ∂0S∂1S − E−1 (∂0S)2 , Lv = −w′(X̂) , Ls = σS + je+1
Ê+

1 + . . . ,

S̃ = Sf1/2 , Ê+
1 = eQ(X̂) , X̂ = a+ bx0︸ ︷︷ ︸

X

+∂−20 (∂0S)2︸ ︷︷ ︸
non−local

+ . . . , a = 0 , b = 1 ,

E−1 = w(X) +M , Ê+
1 = eQ(X) + eQ(X)U(X)∂−20 (∂0S)2 + . . .∫

DS̃ exp i

∫
Lk = exp

(
i/96π

∫
x

∫
y
fRx�

−1
xyRy

)
︸ ︷︷ ︸

Polyakov

Red: geometry, Magenta: matter, Blue: boundary conditions
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Some Feynman diagrams

lowest order non-local vertices:

V(4)(x,y)a

x y

∂0 S

q’

∂0 S

q

∂0 S

k’

∂0 S

k

+

V(4)(x,y)b

x y

∂0 S

q’

∂0 S

q

∂1 S

k’

∂0 S

k

propagator corrections:

vacuum bubbles:

vertex corrections:

I so far: calculated only lowest order vertices and propagator corrections

I partial resummations possible (similar to Bethe-Salpeter)?

I non-local loops vanish to this order
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S-matrix for s-wave gravitational scattering
Quantizing the Einstein-massless-Klein-Gordon model

ingoing s-waves q = αE, q′ = (1− α)E interact and scatter into outgoing
s-waves k = βE, k′ = (1− β)E

T (q, q′; k, k′) ∝ T̃ δ(k + k′ − q − q′)/|kk′qq′|3/2 (1a)

with Π = (k + k′)(k − q)(k′ − q) and

T̃ = Π ln
Π2

E6
+

1

Π

∑
p

p2 ln
p2

E2
·

(
3kk′qq′ − 1

2

∑
r 6=p

∑
s6=r,p

r2s2

)
(1b)

Plot of cross-section

I result finite and simple

I monomial scaling with E

I forward scattering poles Π = 0

I decay of s-waves possible

I not understood why so simple!
(intermediate results vastly more complicated)
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Other selected successes of (quantum) dilaton gravity with/without matter

I Gravity as non-abelian gauge theory Jackiw, Teitelboim ’84
I Black holes in string theory Witten ’91
I Black hole evaporation Callan, Giddings, Harvey, Strominger ’92
I Gravity as non-linear gauge theory Ikeda, Izawa ’93
I Dirac quantization Louis-Martinez, Gegenberg, Kunstatter ’94
I All classical solutions Klösch, Strobl ’96 –’98
I Virtual black holes DG, Kummer, Vassilevich ’00
I Unitary S-matrix DG, Kummer, Vassilevich ’01
I Quantum corrected specific heat DG, Kummer, Vassilevich ’03
I Liouville Field Theory Nakayama ’04
I Duality DG, Jackiw ’06
I Holographic renormalization DG, McNees ’07
I Central charge in AdS2 Hartman, Strominger ’08
I AdS2 holography Castro, DG, Larsen, McNees ’08
I Model for gravity at large distances DG ’10
I Quantization of cosmological constant? Govaerts, Zonetti ’11
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Summary

— Thank you for your attention!

I Dilaton gravity in two dimensions is surprisingly rich!

I Dilaton gravity in two dimensions provides valuable lessons for black
hole physics and quantum gravity

I Dilaton gravity in two dimensions is also capable of providing insights
into gravity at large distances

I ... there still may be surprises waiting to be discovered!
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Recent example: AdS2 holography
Two dimensions supposed to be the simplest dimension with geometry, and yet...

I extremal black holes universally include AdS2 factor
I funnily, AdS3 holography more straightforward
I study charged Jackiw–Teitelboim model as example

IJT =
α

2π

∫
d2x
√
−g

[
e−2φ

(
R+

8

L2

)
− L2

4
F 2

]

I Metric g has signature −,+ and Ricci-scalar R< 0 for AdS
I Maxwell field strength Fµν = 2E εµν dual to electric field E
I Dilaton φ has no kinetic term and no coupling to gauge field
I Cosmological constant Λ = − 8

L2 parameterized by AdS radius L
I Coupling constant α usually is positive
I δφ EOM: R = − 8

L2 ⇒ AdS2!
I δA EOM: ∇µFµν = 0 ⇒ E = constant
I δg EOM:

∇µ∇νe−2φ − gµν ∇2e−2φ+
4

L2
e−2φ gµν+

L2

2
Fµ

λ Fνλ−
L2

8
gµν F

2 = 0
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I study charged Jackiw–Teitelboim model as example

IJT =
α

2π

∫
d2x
√
−g

[
e−2φ

(
R+

8

L2

)
− L2

4
F 2

]
I Metric g has signature −,+ and Ricci-scalar R< 0 for AdS
I Maxwell field strength Fµν = 2E εµν dual to electric field E

I Dilaton φ has no kinetic term and no coupling to gauge field
I Cosmological constant Λ = − 8

L2 parameterized by AdS radius L
I Coupling constant α usually is positive
I δφ EOM: R = − 8

L2 ⇒ AdS2!
I δA EOM: ∇µFµν = 0 ⇒ E = constant
I δg EOM:

∇µ∇νe−2φ − gµν ∇2e−2φ+
4

L2
e−2φ gµν+

L2

2
Fµ

λ Fνλ−
L2

8
gµν F

2 = 0
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Some surprising results
Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

I Holographic renormalization leads to boundary mass term (CGLM)

I ∼
∫

dx
√
|γ|mA2

Nevertheless, total action gauge invariant

I Boundary stress tensor transforms anomalously (HS)

(δξ + δλ)Ttt = 2Ttt∂tξ + ξ∂tTtt −
c

24π
L∂3t ξ

where δξ + δλ is combination of diffeo- and gauge trafos that preserve
the boundary conditions (similarly: δλJt = − k

4πL∂tλ)
I Anomalous transformation above leads to central charge (HS, CGLM)

c = −24αe−2φ =
3

G2
=

3

2
kE2L2

I Positive central charge only for negative coupling constant α (CGLM)

α < 0
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Virtual black holes
Reconstruct geometry from matter

“Intermediate geometry” (caveat: off-shell!):

i0

i-

i+

ℑ-

ℑ+

y

ds2 = 2 dudr+ [1− δ(u− u0)θ(r0 − r)︸ ︷︷ ︸
localized

(2M/r+ ar+ d)] du2

I Schwarzschild and Rindler terms
I nontrivial part localized
I geometry is non-local (depends on r, u, r0, u0︸ ︷︷ ︸

y

)

I geometry asymptotically fixed (Minkowski)
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