Gravity in two dimensions

Daniel Grumiller

Institute for Theoretical Physics
Vienna University of Technology
Université catholique de Louvain, Belgium, April 2011

Outline

Why lower-dimensional gravity?

Which 2D theory?

Quantum dilaton gravity with matter

Outline

Why lower-dimensional gravity?

Which 2D theory?

Quantum dilaton gravity with matter

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity
- Microscopic understanding of black hole entropy

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity
- Microscopic understanding of black hole entropy
- Conceptual insight - information loss problem essentially resolved

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity
- Microscopic understanding of black hole entropy
- Conceptual insight - information loss problem essentially resolved

There is a lot we still do not know about quantum gravity

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity
- Microscopic understanding of black hole entropy
- Conceptual insight - information loss problem essentially resolved

There is a lot we still do not know about quantum gravity

- Reasonable alternatives to string theory?

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity
- Microscopic understanding of black hole entropy
- Conceptual insight - information loss problem essentially resolved

There is a lot we still do not know about quantum gravity

- Reasonable alternatives to string theory?
- Cosmological constant problem? Gravity at large distances?

Quantum gravity

The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity
- Microscopic understanding of black hole entropy
- Conceptual insight - information loss problem essentially resolved

There is a lot we still do not know about quantum gravity

- Reasonable alternatives to string theory?
- Cosmological constant problem? Gravity at large distances?
- Full history of evaporating quantum black hole?

Quantum gravity
The Holy Grail of theoretical physics

There is a lot we do know about quantum gravity already

- It should exist in some form
- String theory: (perturbative) theory of quantum gravity
- Microscopic understanding of black hole entropy
- Conceptual insight - information loss problem essentially resolved

There is a lot we still do not know about quantum gravity

- Reasonable alternatives to string theory?
- Cosmological constant problem? Gravity at large distances?
- Full history of evaporating quantum black hole?
- Experimental signatures? Data?

Gravity in lower dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)

Gravity in lower dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)

Gravity in lower dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- 2D: lowest dimension exhibiting black holes (BHs)
- Simplest gravitational theories with BH in 2D

Gravity in lower dimensions

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 11D: 1210 (1144 Weyl and 66 Ricci)
- 10D: 825 (770 Weyl and 55 Ricci)
- 5D: 50 (35 Weyl and 15 Ricci)
- 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)
- 2D: 1 (Ricci scalar)
- 2D: lowest dimension exhibiting black holes (BHs)
- Simplest gravitational theories with BHs in 2D
- 3D: lowest dimension exhibiting BH and gravitons
- Simplest gravitational theories with BHs and gravitons in 3D

Outline

Why lower-dimensional gravity?

Which 2D theory?

Quantum dilaton gravity with matter

Attempt 1: Einstein-Hilbert in and near two dimensions
Let us start with the simplest attempt. Einstein-Hilbert action in 2 dimensions:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{2} x \sqrt{|g|} R=\frac{1}{2 G}(1-\gamma)
$$

Attempt 1: Einstein-Hilbert in and near two dimensions

Let us start with the simplest attempt. Einstein-Hilbert action in 2 dimensions:

$$
I_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{2} x \sqrt{|g|} R=\frac{1}{2 G}(1-\gamma)
$$

- Action is topological
- No equations of motion
- Formal counting of number of gravitons: -1
[in D dimensions Einstein gravity has $D(D-3) / 2$ graviton polarizations]

Attempt 1: Einstein-Hilbert in and near two dimensions
Let us continue with the next simplest attempt. Einstein-Hilbert action in $2+\epsilon$ dimensions:

$$
I_{\mathrm{EH}}^{\epsilon}=\frac{1}{16 \pi G(\epsilon)} \int \mathrm{d}^{2+\epsilon} x \sqrt{|g|} R
$$

Attempt 1: Einstein-Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert action in $2+\epsilon$ dimensions:

$$
I_{\mathrm{EH}}^{\epsilon}=\frac{1}{16 \pi G(\epsilon)} \int \mathrm{d}^{2+\epsilon} x \sqrt{|g|} R
$$

- Weinberg: theory is asymptotically safe
- Mann: limit $\epsilon \rightarrow 0$ should be possible and lead to 2D dilaton gravity
- DG, Jackiw: limit $\epsilon \rightarrow 0$ (with $G(\epsilon \rightarrow 0) \rightarrow 0$) yields Liouville gravity

$$
\lim _{\epsilon \rightarrow 0} I_{E H}^{\epsilon}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{|g|}\left[X R-(\nabla X)^{2}+\lambda e^{-2 X}\right]
$$

Attempt 1: Einstein-Hilbert in and near two dimensions

Let us continue with the next simplest attempt. Einstein-Hilbert action in $2+\epsilon$ dimensions:

$$
I_{\mathrm{EH}}^{\epsilon}=\frac{1}{16 \pi G(\epsilon)} \int \mathrm{d}^{2+\epsilon} x \sqrt{|g|} R
$$

- Weinberg: theory is asymptotically safe
- Mann: limit $\epsilon \rightarrow 0$ should be possible and lead to 2D dilaton gravity
- DG, Jackiw: limit $\epsilon \rightarrow 0$ (with $G(\epsilon \rightarrow 0) \rightarrow 0$) yields Liouville gravity

$$
\lim _{\epsilon \rightarrow 0} I_{E H}^{\epsilon}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{|g|}\left[X R-(\nabla X)^{2}+\lambda e^{-2 X}\right]
$$

Result of attempt 1 :
A specific 2D dilaton gravity model

Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model
Jackiw, Teitelboim (Bunster): (A) dS_{2} gauge theory

$$
\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \quad\left[P_{a}, J\right]=\epsilon_{a}{ }^{b} P_{b}
$$

describes constant curvature gravity in 2D.
Algorithm:

Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model Jackiw, Teitelboim (Bunster): (A) dS_{2} gauge theory

$$
\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \quad\left[P_{a}, J\right]=\epsilon_{a}^{b} P_{b}
$$

describes constant curvature gravity in 2D. Algorithm:

- Start with $S O(1,2)$ connection $A=e^{a} P_{a}+\omega J$

Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model Jackiw, Teitelboim (Bunster): (A) dS_{2} gauge theory

$$
\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \quad\left[P_{a}, J\right]=\epsilon_{a}^{b} P_{b}
$$

describes constant curvature gravity in 2D. Algorithm:

- Start with $S O(1,2)$ connection $A=e^{a} P_{a}+\omega J$
- Take field strength $F=\mathrm{d} A+\frac{1}{2}[A, A]$ and coadjoint scalar X

Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model Jackiw, Teitelboim (Bunster): (A) dS_{2} gauge theory

$$
\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \quad\left[P_{a}, J\right]=\epsilon_{a}{ }^{b} P_{b}
$$

describes constant curvature gravity in 2D. Algorithm:

- Start with $S O(1,2)$ connection $A=e^{a} P_{a}+\omega J$
- Take field strength $F=\mathrm{d} A+\frac{1}{2}[A, A]$ and coadjoint scalar X
- Construct non-abelian BF theory

$$
I=\int X_{A} F^{A}=\int\left[X_{a}\left(\mathrm{~d} e^{a}+\epsilon_{b}^{a} \omega \wedge e^{b}\right)+X \mathrm{~d} \omega+\epsilon_{a b} e^{a} \wedge e^{b} \Lambda X\right]
$$

Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model Jackiw, Teitelboim (Bunster): (A) dS_{2} gauge theory

$$
\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \quad\left[P_{a}, J\right]=\epsilon_{a}{ }^{b} P_{b}
$$

describes constant curvature gravity in 2D. Algorithm:

- Start with $S O(1,2)$ connection $A=e^{a} P_{a}+\omega J$
- Take field strength $F=\mathrm{d} A+\frac{1}{2}[A, A]$ and coadjoint scalar X
- Construct non-abelian BF theory

$$
I=\int X_{A} F^{A}=\int\left[X_{a}\left(\mathrm{~d} e^{a}+\epsilon^{a}{ }_{b} \omega \wedge e^{b}\right)+X \mathrm{~d} \omega+\epsilon_{a b} e^{a} \wedge e^{b} \Lambda X\right]
$$

- Eliminate X_{a} (Torsion constraint) and ω (Levi-Civita connection)

Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model Jackiw, Teitelboim (Bunster): (A) dS_{2} gauge theory

$$
\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \quad\left[P_{a}, J\right]=\epsilon_{a}{ }^{b} P_{b}
$$

describes constant curvature gravity in 2D. Algorithm:

- Start with $S O(1,2)$ connection $A=e^{a} P_{a}+\omega J$
- Take field strength $F=\mathrm{d} A+\frac{1}{2}[A, A]$ and coadjoint scalar X
- Construct non-abelian BF theory

$$
I=\int X_{A} F^{A}=\int\left[X_{a}\left(\mathrm{~d} e^{a}+\epsilon^{a}{ }_{b} \omega \wedge e^{b}\right)+X \mathrm{~d} \omega+\epsilon_{a b} e^{a} \wedge e^{b} \Lambda X\right]
$$

- Eliminate X_{a} (Torsion constraint) and ω (Levi-Civita connection)
- Obtain the second order action

$$
I=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{-g} X[R-\Lambda]
$$

Attempt 2: Gravity as a gauge theory and the Jackiw-Teitelboim model Jackiw, Teitelboim (Bunster): (A) dS_{2} gauge theory

$$
\left[P_{a}, P_{b}\right]=\Lambda \epsilon_{a b} J \quad\left[P_{a}, J\right]=\epsilon_{a}{ }^{b} P_{b}
$$

describes constant curvature gravity in 2D. Algorithm:

- Start with $S O(1,2)$ connection $A=e^{a} P_{a}+\omega J$
- Take field strength $F=\mathrm{d} A+\frac{1}{2}[A, A]$ and coadjoint scalar X
- Construct non-abelian BF theory

$$
I=\int X_{A} F^{A}=\int\left[X_{a}\left(\mathrm{~d} e^{a}+\epsilon^{a}{ }_{b} \omega \wedge e^{b}\right)+X \mathrm{~d} \omega+\epsilon_{a b} e^{a} \wedge e^{b} \Lambda X\right]
$$

- Eliminate X_{a} (Torsion constraint) and ω (Levi-Civita connection)
- Obtain the second order action

$$
I=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{-g} X[R-\Lambda]
$$

Result of attempt 2:
A specific 2D dilaton gravity model

Attempt 3: Dimensional reduction

For example: spherical reduction from D dimensions
Line element adapted to spherical symmetry:

$$
\mathrm{d} s^{2}=\underbrace{g_{\mu \nu}^{(D)}}_{\text {full metric }} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\underbrace{g_{\alpha \beta}\left(x^{\gamma}\right)}_{2 D \text { metric }} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}-\underbrace{\phi^{2}\left(x^{\alpha}\right)}_{\text {surface area }} \mathrm{d} \Omega_{S_{D-2}}^{2}
$$

Attempt 3: Dimensional reduction

For example: spherical reduction from D dimensions
Line element adapted to spherical symmetry:

$$
\mathrm{d} s^{2}=\underbrace{g_{\mu \nu}^{(D)}}_{\text {full metric }} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\underbrace{g_{\alpha \beta}\left(x^{\gamma}\right)}_{2 D \text { metric }} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}-\underbrace{\phi^{2}\left(x^{\alpha}\right)}_{\text {surface area }} \mathrm{d} \Omega_{S_{D-2}}^{2}
$$

Insert into D-dimensional EH action $I_{E H}=\kappa \int \mathrm{d}^{D} x \sqrt{-g^{(D)}} R^{(D)}$:

$$
I_{E H}=\kappa \frac{2 \pi^{(D-1) / 2}}{\Gamma\left(\frac{D-1}{2}\right)} \int \mathrm{d}^{2} x \sqrt{-g} \phi^{D-2}\left[R+\frac{(D-2)(D-3)}{\phi^{2}}\left((\nabla \phi)^{2}-1\right)\right]
$$

Attempt 3: Dimensional reduction

For example: spherical reduction from D dimensions
Line element adapted to spherical symmetry:

$$
\mathrm{d} s^{2}=\underbrace{g_{\mu \nu}^{(D)}}_{\text {full metric }} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\underbrace{g_{\alpha \beta}\left(x^{\gamma}\right)}_{2 D \text { metric }} \mathrm{d} x^{\alpha} \mathrm{d} x^{\beta}-\underbrace{\phi^{2}\left(x^{\alpha}\right)}_{\text {surface area }} \mathrm{d} \Omega_{S_{D-2}}^{2}
$$

Insert into D-dimensional EH action $I_{E H}=\kappa \int \mathrm{d}^{D} x \sqrt{-g^{(D)}} R^{(D)}$:
$I_{E H}=\kappa \frac{2 \pi^{(D-1) / 2}}{\Gamma\left(\frac{D-1}{2}\right)} \int \mathrm{d}^{2} x \sqrt{-g} \phi^{D-2}\left[R+\frac{(D-2)(D-3)}{\phi^{2}}\left((\nabla \phi)^{2}-1\right)\right]$
Cosmetic redefinition $X \propto(\lambda \phi)^{D-2}$:
$I_{E H}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{-g}\left[X R+\frac{D-3}{(D-2) X}(\nabla X)^{2}-\lambda^{2} X^{(D-4) /(D-2)}\right]$
Result of attempt 3:
A specific class of 2D dilaton gravity models

Attempt 4: Poincare gauge theory and higher power curvature theories Basic idea: since EH is trivial consider $f(R)$ theories or/and theories with torsion or/and theories with non-metricity

Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider $f(R)$ theories or/and theories with torsion or/and theories with non-metricity

- Example: Katanaev-Volovich model (Poincare gauge theory)

$$
I_{\mathrm{KV}} \sim \int \mathrm{~d}^{2} x \sqrt{-g}\left[\alpha T^{2}+\beta R^{2}\right]
$$

- Kummer, Schwarz: bring into first order form:

$$
I_{\mathrm{KV}} \sim \int\left[X_{a}\left(\mathrm{~d} e^{a}+\epsilon_{b}^{a} \omega \wedge e^{b}\right)+X \mathrm{~d} \omega+\epsilon_{a b} e^{a} \wedge e^{b}\left(\alpha X^{a} X_{a}+\beta X^{2}\right)\right]
$$

- Use same algorithm as before to convert into second order action:

$$
I_{\mathrm{KV}}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{-g}\left[X R+\alpha(\nabla X)^{2}+\beta X^{2}\right]
$$

Attempt 4: Poincare gauge theory and higher power curvature theories

Basic idea: since EH is trivial consider $f(R)$ theories or/and theories with torsion or/and theories with non-metricity

- Example: Katanaev-Volovich model (Poincare gauge theory)

$$
I_{\mathrm{KV}} \sim \int \mathrm{~d}^{2} x \sqrt{-g}\left[\alpha T^{2}+\beta R^{2}\right]
$$

- Kummer, Schwarz: bring into first order form:

$$
I_{\mathrm{KV}} \sim \int\left[X_{a}\left(\mathrm{~d} e^{a}+\epsilon_{b}^{a} \omega \wedge e^{b}\right)+X \mathrm{~d} \omega+\epsilon_{a b} e^{a} \wedge e^{b}\left(\alpha X^{a} X_{a}+\beta X^{2}\right)\right]
$$

- Use same algorithm as before to convert into second order action:

$$
I_{\mathrm{KV}}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{-g}\left[X R+\alpha(\nabla X)^{2}+\beta X^{2}\right]
$$

Result of attempt 4:
A specific 2D dilaton gravity model

Attempt 5: Strings in two dimensions
Conformal invariance of the σ model

$$
I_{\sigma} \propto \int \mathrm{d}^{2} \xi \sqrt{|h|}\left[g_{\mu \nu} h^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu}+\alpha^{\prime} \phi \mathcal{R}+\ldots\right]
$$

requires vanishing of β-functions

$$
\begin{aligned}
\beta^{\phi} & \propto-4 b^{2}-4(\nabla \phi)^{2}+4 \square \phi+R+\ldots \\
\beta_{\mu \nu}^{g} & \propto R_{\mu \nu}+2 \nabla_{\mu} \nabla_{\nu} \phi+\ldots
\end{aligned}
$$

Conditions $\beta^{\phi}=\beta_{\mu \nu}^{g}=0$ follow from target space action

$$
I_{\text {target }}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{-g}\left[X R+\frac{1}{X}(\nabla X)^{2}-4 b^{2}\right]
$$

where $X=e^{-2 \phi}$

Attempt 5: Strings in two dimensions
Conformal invariance of the σ model

$$
I_{\sigma} \propto \int \mathrm{d}^{2} \xi \sqrt{|h|}\left[g_{\mu \nu} h^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu}+\alpha^{\prime} \phi \mathcal{R}+\ldots\right]
$$

requires vanishing of β-functions

$$
\begin{aligned}
\beta^{\phi} & \propto-4 b^{2}-4(\nabla \phi)^{2}+4 \square \phi+R+\ldots \\
\beta_{\mu \nu}^{g} & \propto R_{\mu \nu}+2 \nabla_{\mu} \nabla_{\nu} \phi+\ldots
\end{aligned}
$$

Conditions $\beta^{\phi}=\beta_{\mu \nu}^{g}=0$ follow from target space action

$$
I_{\text {target }}=\frac{1}{16 \pi G_{2}} \int \mathrm{~d}^{2} x \sqrt{-g}\left[X R+\frac{1}{X}(\nabla X)^{2}-4 b^{2}\right]
$$

where $X=e^{-2 \phi}$

Result of attempt 5:

A specific 2D dilaton gravity model

Selected List of Models

Black holes in (A)dS, asymptotically flat or arbitrary spaces (Wheeler property)

Model	$U(X)$	$V(X)$
1. Schwarzschild (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}$
2. Jackiw-Teitelboim (1984)	0	ΛX
3. Witten Black Hole (1991)	$-\frac{1}{X}$	$-2 b^{2} X$
4. CGHS (1992)	0	$-2 b^{2}$
5. (A)dS2 ground state (1994)	$-\frac{a}{X}$	$B X$
6. Rindler ground state (1996)	$-\frac{a}{X}$	$B X^{a}$
7. Black Hole attractor (2003)	0	$B X^{-1}$
8. Spherically reduced gravity $(N>3)$	$-\frac{N-3}{(N-2) X}$	$-\lambda^{2} X^{(N-4) /(N-2)}$
9. All above: ab-family (1997)	$-\frac{a}{X}$	$B X^{a+b}$
10. Liouville gravity	a	$b e^{\alpha X}$
11. Reissner-Nordström (1916)	$-\frac{1}{2 X}$	$-\lambda^{2}+\frac{Q^{2}}{X}$
12. Schwarzschild-(A)dS	$-\frac{1}{2 X}$	$-\lambda^{2}-\ell X$
13. Katanaev-Volovich (1986)	α	$\beta X^{2}-\Lambda$
14. BTZ/Achucarro-Ortiz (1993)	0	$\frac{Q^{2}}{X}-\frac{J}{4 X^{3}}-\Lambda X$
15. KK reduced CS (2003)	0	$\frac{1}{2} X\left(c-X^{2}\right)$
16. KK red. conf. flat (2006)	$-\frac{1}{2} \tanh (X / 2)$	$A \sinh X$
17. 2D type 0A string Black Hole	$-\frac{1}{X}$	$-2 b^{2} X+\frac{b^{2} q^{2}}{8 \pi}$
18. exact string Black Hole (2005)	lengthy	lengthy

Synthesis of all attempts: Dilaton gravity in two dimensions
Second order action:

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

Synthesis of all attempts: Dilaton gravity in two dimensions
Second order action:

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R

Synthesis of all attempts: Dilaton gravity in two dimensions
Second order action:

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$

Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries

Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries
- Gibbons-Hawking-York boundary term guarantees Dirichlet boundary problem for metric

Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries
- Gibbons-Hawking-York boundary term guarantees Dirichlet boundary problem for metric
- Hamilton-Jacobi counterterm contains superpotential $S(X)$

$$
S(X)^{2}=e^{-\int^{X} U(y) \mathrm{d} y} \int^{X} V(y) e^{\int^{y} U(z) \mathrm{d} z} \mathrm{~d} y
$$

and guarantees well-defined variational principle $\delta I=0$

Synthesis of all attempts: Dilaton gravity in two dimensions

Second order action:

$$
\begin{aligned}
I & =\frac{1}{16 \pi G_{2}} \int_{\mathcal{M}} \mathrm{d}^{2} x \sqrt{|g|}\left[X R-U(X)(\nabla X)^{2}-V(X)\right] \\
& -\frac{1}{8 \pi G_{2}} \int_{\partial \mathcal{M}} \mathrm{d} x \sqrt{|\gamma|}[X K-S(X)]+I^{(m)}
\end{aligned}
$$

- Dilaton X defined by its coupling to curvature R
- Kinetic term $(\nabla X)^{2}$ contains coupling function $U(X)$
- Self-interaction potential $V(X)$ leads to non-trivial geometries
- Gibbons-Hawking-York boundary term guarantees Dirichlet boundary problem for metric
- Hamilton-Jacobi counterterm contains superpotential $S(X)$

$$
S(X)^{2}=e^{-\int^{X} U(y) \mathrm{d} y} \int^{X} V(y) e^{\int^{y} U(z) \mathrm{d} z} \mathrm{~d} y
$$

and guarantees well-defined variational principle $\delta I=0$

- Interesting option: couple 2D dilaton gravity to matter

Outline

Why lower-dimensional gravity?

Which 2D theory?

Quantum dilaton gravity with matter

Exact path integral quantization of 2D dilaton gravity

 Overview of the quantization procedure Implement the following algorithm:
Exact path integral quantization of 2D dilaton gravity

 Overview of the quantization procedure Implement the following algorithm:- Matter provides propagating degrees of freedom

Exact path integral quantization of 2D dilaton gravity Overview of the quantization procedure

Implement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field

Exact path integral quantization of 2D dilaton gravity Overview of the quantization procedure

Implement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field
- Do the BRST gymnastics

Exact path integral quantization of 2D dilaton gravity Overview of the quantization procedure

Implement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field
- Do the BRST gymnastics
- Integrate out geometry exactly!

Exact path integral quantization of 2D dilaton gravity Overview of the quantization procedure

Implement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field
- Do the BRST gymnastics
- Integrate out geometry exactly!
- Obtain non-local non-polynomial matter action

Exact path integral quantization of 2D dilaton gravity Overview of the quantization procedure

Implement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field
- Do the BRST gymnastics
- Integrate out geometry exactly!
- Obtain non-local non-polynomial matter action
- Treat matter perturbatively

Exact path integral quantization of 2D dilaton gravity Overview of the quantization procedure

Implement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field
- Do the BRST gymnastics
- Integrate out geometry exactly!
- Obtain non-local non-polynomial matter action
- Treat matter perturbatively
- Calculate Feynman rules

Exact path integral quantization of 2D dilaton gravity Overview of the quantization procedure

Implement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field
- Do the BRST gymnastics
- Integrate out geometry exactly!
- Obtain non-local non-polynomial matter action
- Treat matter perturbatively
- Calculate Feynman rules
- Reconstruct intermediate geometry (Virtual BHs)

Exact path integral quantization of 2D dilaton gravity

 Overview of the quantization procedureImplement the following algorithm:

- Matter provides propagating degrees of freedom
- Consider 2D dilaton gravity with a scalar field
- Do the BRST gymnastics
- Integrate out geometry exactly!
- Obtain non-local non-polynomial matter action
- Treat matter perturbatively
- Calculate Feynman rules
- Reconstruct intermediate geometry (Virtual BHs)
- Calculate S-matrix or corrections to classical quantities (like specific heat)

Non-minimally coupled matter
Prominent example: Einstein-massless Klein-Gordon model (Choptuik)

- no matter: integrability, no scattering, no propagating physical modes
- with matter: no integrability in general, scattering, critical collapse

Non-minimally coupled matter

Prominent example: Einstein-massless Klein-Gordon model (Choptuik)

- no matter: integrability, no scattering, no propagating physical modes
- with matter: no integrability in general, scattering, critical collapse Massless scalar field S :

$$
I^{(m)}=\int \mathrm{d}^{2} x \sqrt{-g} F(X)(\nabla S)^{2}
$$

- minimal coupling: $F=$ const.
- non-minimal coupling otherwise
- spherical reduction: $F \propto X$

Non-perturbative path integral quantization
Integrating out geometry exactly

- constraint analysis $\left\{G^{i}(x), G^{j}\left(x^{\prime}\right)\right\}=G^{k} C_{k}^{i j} \delta\left(x-x^{\prime}\right)$
- BRST charge $\Omega=c^{i} G_{i}+c^{i} c^{j} C_{i j}{ }^{k} p_{k}$ (ghosts c^{i}, p_{k})
- gauge fixing fermion to achieve EF gauge

Non-perturbative path integral quantization Integrating out geometry exactly

- constraint analysis $\left\{G^{i}(x), G^{j}\left(x^{\prime}\right)\right\}=G^{k} C_{k}^{i j} \delta\left(x-x^{\prime}\right)$
- BRST charge $\Omega=c^{i} G_{i}+c^{i} c^{j} C_{i j}{ }^{k} p_{k}$ (ghosts c^{i}, p_{k})
- gauge fixing fermion to achieve EF gauge integrating ghost sector yields

$$
Z[\text { sources }]=\int \mathcal{D} f \delta\left(f+i \delta / \delta j_{e_{1}^{+}}\right) \tilde{Z}[f, \text { sources }]
$$

with $(\tilde{S}=S \sqrt{f})$

$$
\tilde{Z}[f, \text { sources }]=\int \mathcal{D} \tilde{S} \mathcal{D}\left(\omega, e^{a}, X, X^{a}\right) \operatorname{det} \Delta_{F . P .} \exp i\left(I_{g . f .}+\text { sources }\right)
$$

Can integrate over all fields except matter non-perturbatively!

Non-local effective theory
Convert local gravity theory with matter into non-local matter theory without gravity
Generating functional for Green functions $(F=1)$:

$$
\begin{gathered}
\tilde{Z}[f, \text { sources }]=\int \mathcal{D} \tilde{S} \exp i \int\left(\mathcal{L}^{k}+\mathcal{L}^{v}+\mathcal{L}^{s}\right) d^{2} x \\
\mathcal{L}^{k}=\partial_{0} S \partial_{1} S-E_{1}^{-}\left(\partial_{0} S\right)^{2}, \mathcal{L}^{v}=-w^{\prime}(\hat{X}), \mathcal{L}^{s}=\sigma S+j_{e_{1}^{+}} \hat{E}_{1}^{+}+\ldots,
\end{gathered}
$$

Non-local effective theory

Convert local gravity theory with matter into non-local matter theory without gravity
Generating functional for Green functions $(F=1)$:

$$
\begin{gathered}
\tilde{Z}[f, \text { sources }]=\int \mathcal{D} \tilde{S} \exp i \int\left(\mathcal{L}^{k}+\mathcal{L}^{v}+\mathcal{L}^{s}\right) d^{2} x \\
\mathcal{L}^{k}=\partial_{0} S \partial_{1} S-E_{1}^{-}\left(\partial_{0} S\right)^{2}, \mathcal{L}^{v}=-w^{\prime}(\hat{X}), \mathcal{L}^{s}=\sigma S+j_{e_{1}^{+}} \hat{E}_{1}^{+}+\ldots, \\
\tilde{S}=S f^{1 / 2}, \hat{E}_{1}^{+}=e^{Q(\hat{X})}, \hat{X}=\underbrace{a+b x^{0}}_{X}+\underbrace{\partial_{0}^{-2}\left(\partial_{0} S\right)^{2}}_{\text {non-local }}+\ldots, a=0, b=1, \\
E_{1}^{-}=w(X)+M, \quad \hat{E}_{1}^{+}=e^{Q(X)}+e^{Q(X)} U(X) \partial_{0}^{-2}\left(\partial_{0} S\right)^{2}+\ldots \\
\int \mathcal{D} \tilde{S} \exp i \int \mathcal{L}^{k}=\exp \underbrace{\left(i / 96 \pi \int_{x} \int_{y} f R_{x} \square_{x y}^{-1} R_{y}\right)}_{\text {Polyakov }}
\end{gathered}
$$

Red: geometry, Magenta: matter, Blue: boundary conditions

Some Feynman diagrams

 propagator corrections:

- so far: calculated only lowest order vertices and propagator corrections
- partial resummations possible (similar to Bethe-Salpeter)?
- non-local loops vanish to this order

S-matrix for s-wave gravitational scattering

Quantizing the Einstein-massless-Klein-Gordon model
ingoing s-waves $q=\alpha E, q^{\prime}=(1-\alpha) E$ interact and scatter into outgoing s-waves $k=\beta E, k^{\prime}=(1-\beta) E$

S-matrix for s-wave gravitational scattering
Quantizing the Einstein-massless-Klein-Gordon model ingoing s-waves $q=\alpha E, q^{\prime}=(1-\alpha) E$ interact and scatter into outgoing s-waves $k=\beta E, k^{\prime}=(1-\beta) E$

$$
\begin{equation*}
T\left(q, q^{\prime} ; k, k^{\prime}\right) \propto \tilde{T} \delta\left(k+k^{\prime}-q-q^{\prime}\right) /\left|k k^{\prime} q q^{\prime}\right|^{3 / 2} \tag{1a}
\end{equation*}
$$

with $\Pi=\left(k+k^{\prime}\right)(k-q)\left(k^{\prime}-q\right)$ and

$$
\begin{equation*}
\tilde{T}=\Pi \ln \frac{\Pi^{2}}{E^{6}}+\frac{1}{\Pi} \sum_{p} p^{2} \ln \frac{p^{2}}{E^{2}} \cdot\left(3 k k^{\prime} q q^{\prime}-\frac{1}{2} \sum_{r \neq p} \sum_{s \neq r, p} r^{2} s^{2}\right) \tag{1b}
\end{equation*}
$$

Plot of cross-section

- result finite and simple
- monomial scaling with E
- forward scattering poles $\Pi=0$
- decay of s-waves possible
- not understood why so simple! (intermediate results vastly more complicated)

Other selected successes of (quantum) dilaton gravity with/without matter

- Gravity as non-abelian gauge theory Jackiw, Teitelboim '84
- Black holes in string theory Witten '91
- Black hole evaporation Callan, Giddings, Harvey, Strominger '92
- Gravity as non-linear gauge theory Ikeda, Izawa '93
- Dirac quantization Louis-Martinez, Gegenberg, Kunstatter '94
- All classical solutions Klösch, Strobl '96 -'98
- Virtual black holes DG, Kummer, Vassilevich '00
- Unitary S-matrix DG, Kummer, Vassilevich '01
- Quantum corrected specific heat DG, Kummer, Vassilevich '03
- Liouville Field Theory Nakayama '04
- Duality DG, Jackiw '06
- Holographic renormalization DG, McNees '07
- Central charge in AdS_{2} Hartman, Strominger '08
- AdS_{2} holography Castro, DG, Larsen, McNees '08
- Model for gravity at large distances DG '10
- Quantization of cosmological constant? Govaerts, Zonetti '11

Summary

- Dilaton gravity in two dimensions is surprisingly rich!

Summary

- Dilaton gravity in two dimensions is surprisingly rich!
- Dilaton gravity in two dimensions provides valuable lessons for black hole physics and quantum gravity

Summary

- Dilaton gravity in two dimensions is surprisingly rich!
- Dilaton gravity in two dimensions provides valuable lessons for black hole physics and quantum gravity
- Dilaton gravity in two dimensions is also capable of providing insights into gravity at large distances

Summary

- Dilaton gravity in two dimensions is surprisingly rich!
- Dilaton gravity in two dimensions provides valuable lessons for black hole physics and quantum gravity
- Dilaton gravity in two dimensions is also capable of providing insights into gravity at large distances
- ... there still may be surprises waiting to be discovered!

Summary - Thank you for your attention!

- Dilaton gravity in two dimensions is surprisingly rich!
- Dilaton gravity in two dimensions provides valuable lessons for black hole physics and quantum gravity
- Dilaton gravity in two dimensions is also capable of providing insights into gravity at large distances
- ... there still may be surprises waiting to be discovered!

Some literature

© J．D．Brown，＂LOWER DIMENSIONAL GRAVITY，＂World Scientific Singapore（1988）．

D．Grumiller，W．Kummer，and D．Vassilevich，＂Dilaton gravity in two dimensions，＂Phys．Rept． 369 （2002）327－429，hep－th／0204253．

Q D．Grumiller，R．Meyer，＂Ramifications of lineland，＂Turk．J．Phys． 30 （2006）349－378，hep－th／0604049．

固 D．Grumiller，R．McNees，＂Thermodynamics of black holes in two（and higher）dimensions，＂JHEP 0704 （2007）074，hep－th／0703230．

直 D．Grumiller，R．Jackiw，＂Liouville gravity from Einstein gravity，＂0712．3775．
围 J．Govaerts，S．Zonetti，＂Quantized cosmological constant in $1+1$ dimensional quantum gravity with coupled scalar matter，＂ 1102.4957.

Thanks to Bob McNees for providing the LATEX beamerclass！

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E
- Dilaton ϕ has no kinetic term and no coupling to gauge field

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E
- Dilaton ϕ has no kinetic term and no coupling to gauge field
- Cosmological constant $\Lambda=-\frac{8}{L^{2}}$ parameterized by AdS radius L

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E
- Dilaton ϕ has no kinetic term and no coupling to gauge field
- Cosmological constant $\Lambda=-\frac{8}{L^{2}}$ parameterized by AdS radius L
- Coupling constant α usually is positive

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E
- Dilaton ϕ has no kinetic term and no coupling to gauge field
- Cosmological constant $\Lambda=-\frac{8}{L^{2}}$ parameterized by AdS radius L
- Coupling constant α usually is positive
- $\delta \phi \mathrm{EOM}: R=-\frac{8}{L^{2}} \quad \Rightarrow \quad \mathrm{AdS}_{2}$!

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E
- Dilaton ϕ has no kinetic term and no coupling to gauge field
- Cosmological constant $\Lambda=-\frac{8}{L^{2}}$ parameterized by AdS radius L
- Coupling constant α usually is positive
- $\delta \phi \mathrm{EOM}: R=-\frac{8}{L^{2}} \quad \Rightarrow \quad \mathrm{AdS}_{2}$!
- δA EOM: $\nabla_{\mu} F^{\mu \nu}=0 \quad \Rightarrow \quad E=$ constant

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E
- Dilaton ϕ has no kinetic term and no coupling to gauge field
- Cosmological constant $\Lambda=-\frac{8}{L^{2}}$ parameterized by AdS radius L
- Coupling constant α usually is positive
- $\delta \phi \mathrm{EOM}: R=-\frac{8}{L^{2}} \quad \Rightarrow \quad \mathrm{AdS}_{2}$!
- $\delta A \mathrm{EOM}: \nabla_{\mu} F^{\mu \nu}=0 \quad \Rightarrow \quad E=$ constant
- δg EOM: complicated for non-constant dilaton...

$$
\nabla_{\mu} \nabla_{\nu} e^{-2 \phi}-g_{\mu \nu} \nabla^{2} e^{-2 \phi}+\frac{4}{L^{2}} e^{-2 \phi} g_{\mu \nu}+\frac{L^{2}}{2} F_{\mu}^{\lambda} F_{\nu \lambda}-\frac{L^{2}}{8} g_{\mu \nu} F^{2}=0
$$

Recent example: AdS_{2} holography

Two dimensions supposed to be the simplest dimension with geometry, and yet...

- extremal black holes universally include AdS_{2} factor
- funnily, AdS_{3} holography more straightforward
- study charged Jackiw-Teitelboim model as example

$$
I_{\mathrm{JT}}=\frac{\alpha}{2 \pi} \int \mathrm{~d}^{2} x \sqrt{-g}\left[e^{-2 \phi}\left(R+\frac{8}{L^{2}}\right)-\frac{L^{2}}{4} F^{2}\right]
$$

- Metric g has signature,-+ and Ricci-scalar $R<0$ for AdS
- Maxwell field strength $F_{\mu \nu}=2 E \varepsilon_{\mu \nu}$ dual to electric field E
- Dilaton ϕ has no kinetic term and no coupling to gauge field
- Cosmological constant $\Lambda=-\frac{8}{L^{2}}$ parameterized by AdS radius L
- Coupling constant α usually is positive
- $\delta \phi \mathrm{EOM}: R=-\frac{8}{L^{2}} \quad \Rightarrow \quad \mathrm{AdS}_{2}$!
- δA EOM: $\nabla_{\mu} F^{\mu \nu}=0 \quad \Rightarrow \quad E=$ constant
- δg EOM: ...but simple for constant dilaton: $e^{-2 \phi}=\frac{L^{4}}{4} E^{2}$

$$
\frac{4}{L^{2}} e^{-2 \phi} g_{\mu \nu}+\frac{L^{2}}{2} F_{\mu}^{\lambda} F_{\nu \lambda}-\frac{L^{2}}{8} g_{\mu \nu} F^{2}=0
$$

Some surprising results
Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

- Holographic renormalization leads to boundary mass term (CGLM)

$$
I \sim \int \mathrm{~d} x \sqrt{|\gamma|} m A^{2}
$$

Nevertheless, total action gauge invariant

Some surprising results

Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

- Holographic renormalization leads to boundary mass term (CGLM)

$$
I \sim \int \mathrm{~d} x \sqrt{|\gamma|} m A^{2}
$$

Nevertheless, total action gauge invariant

- Boundary stress tensor transforms anomalously (HS)

$$
\left(\delta_{\xi}+\delta_{\lambda}\right) T_{t t}=2 T_{t t} \partial_{t} \xi+\xi \partial_{t} T_{t t}-\frac{c}{24 \pi} L \partial_{t}^{3} \xi
$$

where $\delta_{\xi}+\delta_{\lambda}$ is combination of diffeo- and gauge trafos that preserve the boundary conditions (similarly: $\delta_{\lambda} J_{t}=-\frac{k}{4 \pi} L \partial_{t} \lambda$)

Some surprising results

Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

- Holographic renormalization leads to boundary mass term (CGLM)

$$
I \sim \int \mathrm{~d} x \sqrt{|\gamma|} m A^{2}
$$

Nevertheless, total action gauge invariant

- Boundary stress tensor transforms anomalously (HS)

$$
\left(\delta_{\xi}+\delta_{\lambda}\right) T_{t t}=2 T_{t t} \partial_{t} \xi+\xi \partial_{t} T_{t t}-\frac{c}{24 \pi} L \partial_{t}^{3} \xi
$$

where $\delta_{\xi}+\delta_{\lambda}$ is combination of diffeo- and gauge trafos that preserve the boundary conditions (similarly: $\delta_{\lambda} J_{t}=-\frac{k}{4 \pi} L \partial_{t} \lambda$)

- Anomalous transformation above leads to central charge (HS, CGLM)

$$
c=-24 \alpha e^{-2 \phi}=\frac{3}{G_{2}}=\frac{3}{2} k E^{2} L^{2}
$$

Some surprising results

Hartman, Strominger = HS Castro, DG, Larsen, McNees = CGLM

- Holographic renormalization leads to boundary mass term (CGLM)

$$
I \sim \int \mathrm{~d} x \sqrt{|\gamma|} m A^{2}
$$

Nevertheless, total action gauge invariant

- Boundary stress tensor transforms anomalously (HS)

$$
\left(\delta_{\xi}+\delta_{\lambda}\right) T_{t t}=2 T_{t t} \partial_{t} \xi+\xi \partial_{t} T_{t t}-\frac{c}{24 \pi} L \partial_{t}^{3} \xi
$$

where $\delta_{\xi}+\delta_{\lambda}$ is combination of diffeo- and gauge trafos that preserve the boundary conditions (similarly: $\delta_{\lambda} J_{t}=-\frac{k}{4 \pi} L \partial_{t} \lambda$)

- Anomalous transformation above leads to central charge (HS, CGLM)

$$
c=-24 \alpha e^{-2 \phi}=\frac{3}{G_{2}}=\frac{3}{2} k E^{2} L^{2}
$$

- Positive central charge only for negative coupling constant α (CGLM)

$$
\alpha<0
$$

Virtual black holes
Reconstruct geometry from matter
"Intermediate geometry" (caveat: off-shell!):

$$
\mathrm{d} s^{2}=2 \mathrm{~d} u \mathrm{~d} r+[1-\underbrace{\delta\left(u-u_{0}\right) \theta\left(r_{0}-r\right)}_{\text {localized }}(2 M / r+a r+d)] \mathrm{d} u^{2}
$$

- Schwarzschild and Rindler terms
- nontrivial part localized
- geometry is non-local (depends on r, u, r_{0}, u_{0})

