Holography in three dimensions

Daniel Grumiller

Institute for Theoretical Physics
TU Wien

String Theory in Greater Tokyo
Tokyo, January 2015

Outline

Motivations

Holography basics

Applications

Outline

Motivations

Holography basics

Applications

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity

Keine Experimente! Konrad Adenauer , 10

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)

General motivations

- Quantum gravity
- Address conceptual issues of quantum gravity
- Black holes (thermodynamics, evaporation, information loss, microstate counting, entanglement entropy, firewalls, ...)
- String theory (is it the right theory? can there be any alternative? ...)
- Holography
- Holographic principle realized in Nature? (yes/no)
- Quantum gravity via AdS/CFT? (define quantum gravity in AdS by constructing/postulating dual CFT)
- How general is holography? (non-unitary holography, higher spin holography, flat space holography, non-AdS holography, ...)
- Applications
- Gauge gravity correspondence (plasmas, condensed matter, ...)

Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions

Specific motivation for 3D

Gravity in 3D is simpler than in higher dimensions

$$
\begin{aligned}
& \text { Simplicity is } \\
& \text { the ultimate } \\
& \text { sophistication }
\end{aligned}
$$

Goals of this talk

1. Review general aspects of holography in 3D

Goals of this talk

1. Review general aspects of holography in 3D
2. Summarize non-unitary holography $\left(\mathrm{AdS}_{3} / \log \mathrm{CFT}_{2}\right)$

Goals of this talk

1. Review general aspects of holography in 3D
2. Summarize non-unitary holography $\left(\mathrm{AdS}_{3} / \log \mathrm{CFT}_{2}\right)$
3. Address flat space holography

Goals of this talk

1. Review general aspects of holography in 3D
2. Summarize non-unitary holography $\left(\mathrm{AdS}_{3} / \log \mathrm{CFT}_{2}\right)$
3. Address flat space holography
4. Generalize to higher spin holography

Goals of this talk

1. Review general aspects of holography in 3D
2. Summarize non-unitary holography $\left(\mathrm{AdS}_{3} / \log \mathrm{CFT}_{2}\right)$
3. Address flat space holography
4. Generalize to higher spin holography
5. List selected open issues

Goals of this talk

1. Review general aspects of holography in 3D
2. Summarize non-unitary holography $\left(\mathrm{AdS}_{3} / \log \mathrm{CFT}_{2}\right)$
3. Address flat space holography
4. Generalize to higher spin holography
5. List selected open issues

Address these issues in 3D!

Outline

Motivations

Holography basics

Applications

Assumptions

Working assumptions:

- 3D

Assumptions

Working assumptions:

- 3D
- Restrict to "pure gravity" theories

Assumptions

Working assumptions:

- 3D
- Restrict to "pure gravity" theories
- Define quantum gravity by its dual field theory

Interesting dichotomy:

- Either dual field theory exists \rightarrow useful toy model for quantum gravity
- Or gravitational theory needs UV completion (within string theory) \rightarrow indication of inevitability of string theory

Assumptions

Working assumptions:

- 3D
- Restrict to "pure gravity" theories
- Define quantum gravity by its dual field theory

Interesting dichotomy:

- Either dual field theory exists \rightarrow useful toy model for quantum gravity
- Or gravitational theory needs UV completion (within string theory) \rightarrow indication of inevitability of string theory

This talk:

- Remain agnostic about dichotomy
- Focus on generic features of dual field theories that do not require string theory embedding

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D

Interesting generic constraints from CFT_{2} !
e.g. Hellerman '09, Hartman, Keller, Stoica '14

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\operatorname{AdS} \leftrightarrow$ BTZ

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\operatorname{AdS} \leftrightarrow$ BTZ
- Simple checks of Ryu-Takayanagi proposal

Gravity in 3D

AdS_{3} gravity

- Lowest dimension with black holes and (off-shell) gravitons
- Weyl $=0$, thus Riemann $=$ Ricci
- Einstein gravity: no on-shell gravitons
- Formulation as topological gauge theory (Chern-Simons)
- Dual field theory (if it exists): 2D
- Infinite dimensional asymptotic symmetries (Brown-Henneaux)
- Black holes as orbifolds of AdS_{3} (BTZ)
- Simple microstate counting from $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$
- Hawking-Page phase transition hot $\mathrm{AdS} \leftrightarrow$ BTZ
- Simple checks of Ryu-Takayanagi proposal

Caveat: while there are many string compactifications with AdS_{3} factor, applying holography just to AdS_{3} factor does not capture everything!

Holographic algorithm from gravity point of view

Universal recipe:

1. Identify bulk theory and variational principle

Example: bulk theory $=\mathrm{EH}$

$$
I \sim \int \mathrm{~d}^{3} x \sqrt{|g|}\left(R+2 / \ell^{2}\right)
$$

use Dirichlet boundary value problem (keep fixed δg at boundary)

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions

Example: asymptotically AdS background with Brown-Henneaux boundary conditions

$$
g \sim\left(\begin{array}{ccc}
g_{++}=\mathcal{O}(1) & g_{+-}=e^{2 \rho / \ell}+\mathcal{O}(1) & g_{+\rho}=\mathcal{O}\left(e^{-2 \rho / \ell}\right) \\
g_{--}=\mathcal{O}(1) & g_{-\rho}=\mathcal{O}\left(e^{-2 \rho / \ell}\right) \\
& & g_{\rho \rho}=1+\mathcal{O}\left(e^{-2 \rho / \ell}\right)
\end{array}\right)
$$

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's

- Find and classify all constraints
- Construct canonical gauge generators
- Add boundary terms and get (variation of) canonical charges
- Check integrability of canonical charges
- Check finiteness of canonical charges
- Check conservation (in time) of canonical charges
- Calculate Dirac bracket algebra of canonical charges

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges

Example:

$$
i\left\{L_{n}, L_{m}\right\}_{D . b .}=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
$$

with

$$
c=\frac{3 \ell}{2 G}
$$

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA

Trivial example:

$$
i\{,\}_{D . b .} \rightarrow[,]
$$

Less trivial example: Polyakov Bershadsky algebra in spin-3 gravity (finite quantum shifts of structure functions at finite central charge c,
e.g. $c \rightarrow c+22 / 5$ in W_{3})

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA

Example: unitary highest weight representations of Virasoro algebra

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Example: it must be a CFT with central charge $c=\frac{3 \ell}{2 G}$

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

Many examples!

Holographic algorithm from gravity point of view
Universal recipe:

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory
8. If unhappy with result go back to previous items and modify

In this talk:

Apply algorithm above to 3D (higher spin) gravity in Chern-Simons formulation

Bulk theory and variational principle

Chern-Simons theory with some gauge algebra that contains either $s l(2) \times s l(2)$ or $i s l(2)$

$$
I=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)+B[A]
$$

with boundary term $B[A]=0$ or

$$
B[A]=\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \operatorname{Tr}\left(A_{+} \mathrm{d} x^{+} A_{-} \mathrm{d} x^{-}\right)
$$

Variational principle consistent for Dirichlet, Neumann or more general boundary conditions (assume topology of cylinder or torus).

Bulk theory and variational principle

Chern-Simons theory with some gauge algebra that contains either $s l(2) \times s l(2)$ or $i s l(2)$

$$
I=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)+B[A]
$$

with boundary term $B[A]=0$ or

$$
B[A]=\frac{k}{4 \pi} \int_{\partial \mathcal{M}} \operatorname{Tr}\left(A_{+} \mathrm{d} x^{+} A_{-} \mathrm{d} x^{-}\right)
$$

Variational principle consistent for Dirichlet, Neumann or more general boundary conditions (assume topology of cylinder or torus).

Field equations:

$$
F=\mathrm{d} A+[A, A]=0
$$

A locally pure gauge \Rightarrow physics largely defined by boundary behavior!

Both soap films and Chern-Simons theories have

- essentially no bulk dynamics
- highly non-trivial boundary dynamics
- most of the physics determined by boundary conditions
- esthetic appeal (at least for me)

Examples

- Einstein gravity in AdS_{3}

Brown, Henneaux '86 Bañados '99

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3} Afshar, Cvetkovic, Ertl, DG, Johansson '11

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity

Barnich, Compere '06
Barnich, Gonzalez '13

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity
- Flat space chiral gravity

Bagchi, Detournay, DG '12 Afshar '13

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity
- Flat space chiral gravity
- Higher spin gravity in AdS_{3}

Henneaux, Rey '10
Campoleoni, Fredenhagen, Pfenninger, Theisen '10

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity
- Flat space chiral gravity
- Higher spin gravity in AdS_{3}
- Non-AdS higher spin gravity

Gary, DG, Rashkov '12 Afshar, Gary, DG, Rashkov, Riegler '12

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity
- Flat space chiral gravity
- Higher spin gravity in AdS_{3}
- Non-AdS higher spin gravity
- Lobachevsky holography

Bertin, Ertl, Ghorbani, DG, Johansson, Vassilevich '12 Afshar, Gary, DG, Rashkov, Riegler '12

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity
- Flat space chiral gravity
- Higher spin gravity in AdS_{3}
- Non-AdS higher spin gravity
- Lobachevsky holography
- Higher spin Lifshitz holography

Gutperle, Hijano, Samani '13
Gary, DG, Rashkov, Rey '14

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity
- Flat space chiral gravity
- Higher spin gravity in AdS_{3}
- Non-AdS higher spin gravity
- Lobachevsky holography
- Higher spin Lifshitz holography
- Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13
Gonzalez, Matulich, Pino, Troncoso '13
Gary, DG, Riegler, Rosseel '14

Examples

- Einstein gravity in AdS_{3}
- Conformal gravity in AdS_{3}
- Flat space Einstein gravity
- Flat space chiral gravity
- Higher spin gravity in AdS_{3}
- Non-AdS higher spin gravity
- Lobachevsky holography
- Higher spin Lifshitz holography
- Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13
Gonzalez, Matulich, Pino, Troncoso '13
Gary, DG, Riegler, Rosseel '14

- ... and many more (Schrödinger, warped AdS, more general backgrounds with anisotropic scale invariance, less symmetric asymptotic backgrounds, to be discovered)

Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Background and fluctuations

Take suitable group element b (often: $b=e^{\rho L_{0}}$) and make Ansatz for connection

$$
A=b^{-1}\left(\mathrm{~d}+\hat{a}^{(0)}+a^{(0)}+a^{(1)}\right) b
$$

- $\hat{a}^{(0)} \sim \mathcal{O}(1)$: determines asymptotic background
- $a^{(0)} \sim \mathcal{O}(1)$: determines state-dependent fluctuations
- $a^{(1)} \sim o(1):$ sub-leading fluctuations

Boundary-condition preserving gauge transformations generated by ϵ

$$
\epsilon=b^{-1}\left(\epsilon^{(0)}+\epsilon^{(1)}\right) b
$$

with $\epsilon^{(0)} \sim \mathcal{O}(1)$ (subject to constraints) and $\epsilon^{(1)} \sim o(1)$
Metric is then determined from

$$
g_{\mu \nu}=\frac{1}{2} \operatorname{Tr}\left[A_{\mu}^{e} A_{\nu}^{e}\right]
$$

where A^{e} is a suitable projection of A identified with the (zu-)vielbein

Example: AdS holography in Einstein gravity

Cartoon of AdS_{3} :

Asymptotic AdS background:

$$
\mathrm{d} s^{2} \sim \mathrm{~d} \rho^{2}+e^{2 \rho} 2 \mathrm{~d} x^{+} \mathrm{d} x^{-}
$$

Example: AdS holography in Einstein gravity

Cartoon of AdS_{3} :

Asymptotic AdS background:

$$
\mathrm{d} s^{2} \sim \mathrm{~d} \rho^{2}+e^{2 \rho} 2 \mathrm{~d} x^{+} \mathrm{d} x^{-}
$$

Connection decomposed into two $s l(2)$ parts, $A=b^{-1}\left(\mathrm{~d}+\hat{a}^{(0)}+a^{(0)}\right) b$ and similarly for \bar{A} :
$\underbrace{b=e^{\rho L_{0}}}_{\text {group element }}$

Neglect trivial pure gauge contribution from $a^{(1)}$

Example: AdS holography in Einstein gravity

Cartoon of AdS_{3} :

Asymptotic AdS background:

$$
\mathrm{d} s^{2} \sim \mathrm{~d} \rho^{2}+e^{2 \rho} 2 \mathrm{~d} x^{+} \mathrm{d} x^{-}
$$

Connection decomposed into two $\operatorname{sl}(2)$ parts, $A=b^{-1}\left(\mathrm{~d}+\hat{a}^{(0)}+a^{(0)}\right) b$ and similarly for \bar{A} :

$$
\begin{array}{lll}
\hat{a}_{\rho}^{(0)}=0 & \Rightarrow & \hat{A}_{\rho}=L_{0} \\
\hat{a}_{+}^{(0)}=L_{1} & \Rightarrow & \hat{A}_{+}=e^{\rho} L_{1} \\
\hat{a}_{-}^{(0)}=0 & \Rightarrow & \hat{A}_{-}=0
\end{array}
$$

Example: AdS holography in Einstein gravity
Cartoon of AdS_{3} :

Asymptotic AdS background:

$$
\mathrm{d} s^{2} \sim \mathrm{~d} \rho^{2}+e^{2 \rho} 2 \mathrm{~d} x^{+} \mathrm{d} x^{-}
$$

Connection decomposed into two $s l(2)$ parts, $A=b^{-1}\left(\mathrm{~d}+\hat{a}^{(0)}+a^{(0)}\right) b$ and similarly for \bar{A} :

$$
\begin{array}{lll}
\hat{a}_{\rho}^{(0)}=0 & \Rightarrow & \hat{A}_{\rho}=L_{0} \\
\hat{a}_{+}^{(0)}=L_{1} & \Rightarrow & \hat{A}_{+}=e^{\rho} L_{1} \\
\hat{a}_{-}^{(0)}=0 & \Rightarrow & \hat{A}_{-}=0
\end{array}
$$

State-dependent contribution $A=\hat{A}+\Delta A$:

$$
a_{+}^{(0)}=\mathcal{L}\left(x^{+}\right) L_{-1} \quad \Rightarrow \quad \Delta A_{+}=e^{-\rho} \mathcal{L}\left(x^{+}\right) L_{-1}
$$

Metric:

$$
g_{\mu \nu}=\frac{1}{2} \operatorname{Tr}\left[\left(A_{\mu}-\bar{A}_{\mu}\right)\left(A_{\nu}-\bar{A}_{\nu}\right)\right]
$$

Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Canonical analysis and boundary charges

Story a la Brown-Henneaux: bulk generators of gauge transformations acquire boundary pieces, the canonical boundary charges $Q[\epsilon]$

Canonical analysis and boundary charges

Story a la Brown-Henneaux: bulk generators of gauge transformations acquire boundary pieces, the canonical boundary charges $Q[\epsilon]$

Background independent result:

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \oint \operatorname{Tr}\left(\epsilon^{(0)} \delta a_{\varphi}^{(0)} \mathrm{d} \varphi\right)
$$

- Manifestly finite! $(|\delta Q|<\infty)$
- Non-trivial? (δQ state-dependent?)
- Integrable? $(\delta Q \rightarrow Q$?)
- Conserved? $\left(\partial_{t} Q=0\right.$? $)$

Canonical analysis and boundary charges

Story a la Brown-Henneaux: bulk generators of gauge transformations acquire boundary pieces, the canonical boundary charges $Q[\epsilon]$

Background independent result:

$$
\delta Q[\epsilon]=\frac{k}{2 \pi} \oint \operatorname{Tr}\left(\epsilon^{(0)} \delta a_{\varphi}^{(0)} \mathrm{d} \varphi\right)
$$

- Manifestly finite! $(|\delta Q|<\infty)$
- Non-trivial? (δQ state-dependent?)
- Integrable? $(\delta Q \rightarrow Q$?)
- Conserved? $\left(\partial_{t} Q=0\right.$? $)$

> If any of these is answered with 'no' then back to square one in algorithm!

Example: AdS holography in Einstein gravity

Consider again only the A-sector (\bar{A}-sector is analogous)
Split gauge parameter into components:

$$
\epsilon^{(0)}=\epsilon_{1} L_{1}+\epsilon_{0} L_{0}+\epsilon_{-1} L_{-1}
$$

Solve constraint that local gauge trafos generated by $\epsilon^{(0)}$ preserve boundary conditions

$$
\partial_{\mu} \epsilon^{(0) a}+f^{a}{ }_{b c}\left(\hat{a}_{\mu}^{(0)}+a_{\mu}^{(0)}\right)^{b} \epsilon^{(0) c}=\mathcal{O}\left(a_{\mu}^{(0)}\right)^{a}
$$

Example: AdS holography in Einstein gravity
Consider again only the A-sector (\bar{A}-sector is analogous)
Split gauge parameter into components:

$$
\epsilon^{(0)}=\epsilon_{1} L_{1}+\epsilon_{0} L_{0}+\epsilon_{-1} L_{-1}
$$

Solve constraint that local gauge trafos generated by $\epsilon^{(0)}$ preserve boundary conditions

$$
\partial_{\mu} \epsilon^{(0) a}+f_{b c}^{a}\left(\hat{a}_{\mu}^{(0)}+a_{\mu}^{(0)}\right)^{b} \epsilon^{(0) c}=\mathcal{O}\left(a_{\mu}^{(0)}\right)^{a}
$$

Result for components of $\epsilon^{(0)}$:

$$
\epsilon_{1}=\epsilon\left(x^{+}\right) \quad \epsilon_{0}=\epsilon^{\prime}\left(x^{+}\right) \quad \epsilon_{-1}=\epsilon^{\prime \prime}\left(x^{+}\right)+\mathcal{L}\left(x^{+}\right) \epsilon\left(x^{+}\right)
$$

Canonical charges:

$$
Q\left[\epsilon^{(0)}\right]=\frac{k}{2 \pi} \oint \mathrm{~d} \varphi \mathcal{L}\left(x^{+}\right) \epsilon\left(x^{+}\right)
$$

Fourier modes:

$$
\mathcal{L}\left(x^{+}\right) \sim \sum_{n} L_{n} e^{i n x^{+}}
$$

Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Classical asymptotic symmetry algebra
Dirac bracket algebra of canonical boundary charges:

$$
\left\{Q\left[\epsilon_{1}\right], Q\left[\epsilon_{2}\right]\right\}=\delta_{\epsilon_{2}} Q\left[\epsilon_{1}\right]
$$

- Either evaluate left hand side directly (Dirac brackets)
- Or evaluate right hand side (usually easier)

Exactly like in seminal Brown-Henneaux work!

Example: AdS holography in Einstein gravity

- Variation of state-dependent function:

$$
\delta_{\varepsilon} \mathcal{L}=\mathcal{L}^{\prime} \varepsilon+2 \mathcal{L} \varepsilon^{\prime}+\frac{k}{2 \pi} \varepsilon^{\prime \prime \prime}
$$

Example: AdS holography in Einstein gravity

- Variation of state-dependent function:

$$
\delta_{\varepsilon} \mathcal{L}=\mathcal{L}^{\prime} \varepsilon+2 \mathcal{L} \varepsilon^{\prime}+\frac{k}{2 \pi} \varepsilon^{\prime \prime \prime}
$$

- Coincides with anomalous trafo of (holomorphic part of) stress tensor in CFT with Brown-Henneaux central charge $(8 k=\ell / G)$

$$
c=\frac{3 \ell}{2 G}
$$

Example: AdS holography in Einstein gravity

- Variation of state-dependent function:

$$
\delta_{\varepsilon} \mathcal{L}=\mathcal{L}^{\prime} \varepsilon+2 \mathcal{L} \varepsilon^{\prime}+\frac{k}{2 \pi} \varepsilon^{\prime \prime \prime}
$$

- Coincides with anomalous trafo of (holomorphic part of) stress tensor in CFT with Brown-Henneaux central charge $(8 k=\ell / G)$

$$
c=\frac{3 \ell}{2 G}
$$

- Alternatively: Dirac bracket algebra of canonical boundary charges:

$$
\left\{\mathcal{L}\left(x^{+}\right), \mathcal{L}\left(\bar{x}^{+}\right)\right\}=\mathcal{L}^{\prime} \delta\left(x^{+}-\bar{x}^{+}\right)+2 \mathcal{L} \delta^{\prime}\left(x^{+}-\bar{x}^{+}\right)+\frac{k}{2 \pi} \delta^{\prime \prime \prime}\left(x^{+}-\bar{x}^{+}\right)
$$

Example: AdS holography in Einstein gravity

- Variation of state-dependent function:

$$
\delta_{\varepsilon} \mathcal{L}=\mathcal{L}^{\prime} \varepsilon+2 \mathcal{L} \varepsilon^{\prime}+\frac{k}{2 \pi} \varepsilon^{\prime \prime \prime}
$$

- Coincides with anomalous trafo of (holomorphic part of) stress tensor in CFT with Brown-Henneaux central charge ($8 k=\ell / G$)

$$
c=\frac{3 \ell}{2 G}
$$

- Alternatively: Dirac bracket algebra of canonical boundary charges:

$$
\left\{\mathcal{L}\left(x^{+}\right), \mathcal{L}\left(\bar{x}^{+}\right)\right\}=\mathcal{L}^{\prime} \delta\left(x^{+}-\bar{x}^{+}\right)+2 \mathcal{L} \delta^{\prime}\left(x^{+}-\bar{x}^{+}\right)+\frac{k}{2 \pi} \delta^{\prime \prime \prime}\left(x^{+}-\bar{x}^{+}\right)
$$

- Converting $i\{,\} \rightarrow[$,$] and introducing Fourier modes yields$

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
$$

- Again, the bar-sector is completely analogous

Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Quantum asymptotic symmetry algebra

- Analysis so far only reliable in limit $k \rightarrow \infty$!

Quantum asymptotic symmetry algebra

- Analysis so far only reliable in limit $k \rightarrow \infty$!
- Introducing normal ordering in expressions like

$$
\sum_{p \in \mathbb{Z}}: J_{n-p} J_{p}:=\sum_{p \geq 0} J_{n-p} J_{p}+\sum_{p<0} J_{p} J_{n-p}
$$

can make semi-classical algebra inconsistent

Quantum asymptotic symmetry algebra

- Analysis so far only reliable in limit $k \rightarrow \infty$!
- Introducing normal ordering in expressions like

$$
\sum_{p \in \mathbb{Z}}: J_{n-p} J_{p}:=\sum_{p \geq 0} J_{n-p} J_{p}+\sum_{p<0} J_{p} J_{n-p}
$$

can make semi-classical algebra inconsistent

- First example I am aware of: Henneaux-Rey 2010 in spin-3 AdS gravity

Quantum violations of Jacobi-identities possible!

Quantum asymptotic symmetry algebra

- Analysis so far only reliable in limit $k \rightarrow \infty$!
- Introducing normal ordering in expressions like

$$
\sum_{p \in \mathbb{Z}}: J_{n-p} J_{p}:=\sum_{p \geq 0} J_{n-p} J_{p}+\sum_{p<0} J_{p} J_{n-p}
$$

can make semi-classical algebra inconsistent

- First example I am aware of: Henneaux-Rey 2010 in spin-3 AdS gravity

Quantum violations of Jacobi-identities possible!

- Resolution: deform suitable structure constants/functions and demand validity of Jacobi identities

Quantum asymptotic symmetry algebra

- Analysis so far only reliable in limit $k \rightarrow \infty$!
- Introducing normal ordering in expressions like

$$
\sum_{p \in \mathbb{Z}}: J_{n-p} J_{p}:=\sum_{p \geq 0} J_{n-p} J_{p}+\sum_{p<0} J_{p} J_{n-p}
$$

can make semi-classical algebra inconsistent

- First example I am aware of: Henneaux-Rey 2010 in spin-3 AdS gravity

Quantum violations of Jacobi-identities possible!

- Resolution: deform suitable structure constants/functions and demand validity of Jacobi identities
- Result is quantum asymptotic symmetry algebra, valid also at finite Chern-Simons level k

Example: Lobachevsky holography in spin-3 gravity see Afshar, Gary, DG, Rashkov, Riegler '12 for details

Solving Jacobi identities yields (quantum) Polyakov-Bershadsky algebra

$$
\begin{aligned}
{\left[J_{n}, J_{m}\right]=} & \frac{2 \hat{k}+3}{3} n \delta_{n+m, 0} \\
{\left[J_{n}, \hat{L}_{m}\right]=} & n J_{n+m} \\
{\left[J_{n}, \hat{G}_{m}^{ \pm}\right]=} & \pm G_{m+n}^{ \pm} \\
{\left[\hat{L}_{n}, \hat{L}_{m}\right]=} & (n-m) \hat{L}_{m+n}+\frac{\hat{c}}{12} n\left(n^{2}-1\right) \delta_{n+m, 0} \\
{\left[\hat{L}_{n}, \hat{G}_{m}^{ \pm}\right]=} & \left(\frac{n}{2}-m\right) \hat{G}_{n+m}^{ \pm} \\
{\left[\hat{G}_{n}^{+}, \hat{G}_{m}^{-}\right]=} & -(\hat{k}+3) \hat{L}_{m+n}+\frac{3}{2}(\hat{k}+1)(n-m) J_{m+n}+3 \sum_{p \in \mathbb{Z}}: J_{m+n-p} J_{p}: \\
& \quad+\frac{(\hat{k}+1)(2 \hat{k}+3)}{2}\left(n^{2}-\frac{1}{4}\right) \delta_{m+n, 0}
\end{aligned}
$$

with central charge $\hat{c}=-(2 \hat{k}+3)(3 \hat{k}+1) /(\hat{k}+3)=-6 \hat{k}+\mathcal{O}(1)$

Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Unitary representations of quantum asymptotic symmetry algebra Standard questions:

- Is current algebra level non-negative?
- Is central charge non-negative?
- Are there any negative norm states?
- Are there null states?

To be decided case-by-case!

Unitary representations of quantum asymptotic symmetry algebra
Standard questions:

- Is current algebra level non-negative?
- Is central charge non-negative?
- Are there any negative norm states?
- Are there null states?

To be decided case-by-case!

Example: AdS holography in Einstein gravity

- ASA: two copies of Virasoro with central charge $c=\frac{3 \ell}{2 G}$
- Minimal requirement: $\ell / G \geq 0$
- Usual analysis of unitary representations of Virasoro

Holographic algorithm from gravity point of view

1. Identify bulk theory and variational principle
2. Fix background and impose suitable boundary conditions
3. Perform canonical analysis and check consistency of bc's
4. Derive (classical) asymptotic symmetry algebra and central charges
5. Improve to quantum ASA
6. Study unitary representations of quantum ASA
7. Identify/constrain dual field theory

Example: AdS holography in Einstein gravity

Fact:

ASA is 2 d conformal algebra with central charges $c=\bar{c}=\frac{3 \ell}{2 G}$

Example: AdS holography in Einstein gravity

Fact:

ASA is 2 d conformal algebra with central charges $c=\bar{c}=\frac{3 \ell}{2 G}$

Consequence:
Dual field theory (if it exists) must be a CFT_{2}

Example: AdS holography in Einstein gravity

Fact:

ASA is 2 d conformal algebra with central charges $c=\bar{c}=\frac{3 \ell}{2 G}$

Consequence:

Dual field theory (if it exists) must be a CFT_{2}

Key open issue at this stage:

Identify precisely dual CFT or show its (non-)existence

Outline

Motivations

Holography basics

Applications

Non-unitary holography

Quoted from workshop webpage "Bits, Branes, Black Holes - Black Holes and Information" (KITP Santa Barbara 2012):

1. How general is holography?

To what extent do (previous) lessons rely on the particular constructions used to date? Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?

Non-unitary holography

Quoted from workshop webpage "Bits, Branes, Black Holes - Black Holes and Information" (KITP Santa Barbara 2012):

1. How general is holography?

To what extent do (previous) lessons rely on the particular constructions used to date? Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?

Historically: holography intimately related to/derived from unitarity ('t Hooft '93, Susskind '94)

Non-unitary holography

Quoted from workshop webpage "Bits, Branes, Black Holes - Black Holes and Information" (KITP Santa Barbara 2012):

1. How general is holography?

To what extent do (previous) lessons rely on the particular constructions used to date? Are they tied to stringy effects and to string theory in particular, or are they general lessons for quantum gravity?

Historically: holography intimately related to/derived from unitarity ('t Hooft '93, Susskind '94)

Specific question addressed here:
Does holography apply only to unitary theories?

Short answer: no

Example: critical topologically massive gravity (review: DG, Riedler, Rosseel, Zojer '13)

- Action (Deser, Jackiw, Templeton '82):
$I_{\mathrm{TMG}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left[R+\frac{2}{\ell^{2}}+\frac{1}{2 \mu} \varepsilon^{\lambda \mu \nu} \Gamma^{\rho}{ }_{\lambda \sigma}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)\right]$

Short answer: no
Example: critical topologically massive gravity (review: DG, Riedler, Rosseel, Zojer '13)

- Action (Deser, Jackiw, Templeton '82):
$I_{\mathrm{TMG}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left[R+\frac{2}{\ell^{2}}+\frac{1}{2 \mu} \varepsilon^{\lambda \mu \nu} \Gamma^{\rho}{ }_{\lambda \sigma}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)\right]$
- Critical tuning: $\mu \ell=1$ (Li, Song, Strominger '08)

$$
c=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right) \quad \bar{c}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right)=0
$$

Short answer: no
Example: critical topologically massive gravity (review: DG, Riedler, Rosseel, Zojer '13)

- Action (Deser, Jackiw, Templeton '82):
$I_{\mathrm{TMG}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left[R+\frac{2}{\ell^{2}}+\frac{1}{2 \mu} \varepsilon^{\lambda \mu \nu} \Gamma^{\rho}{ }_{\lambda \sigma}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)\right]$
- Critical tuning: $\mu \ell=1$ (Li, Song, Strominger '08)

$$
c=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right) \quad \bar{c}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right)=0
$$

- Conjecture (DG, Johansson '08): dual field theory is $\log \mathrm{CFT}_{2}$, with log partner for stress tensor (see my upcoming talk at IPMU)

Short answer: no
Example: critical topologically massive gravity (review: DG, Riedler, Rosseel, Zojer '13)

- Action (Deser, Jackiw, Templeton '82):
$I_{\mathrm{TMG}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left[R+\frac{2}{\ell^{2}}+\frac{1}{2 \mu} \varepsilon^{\lambda \mu \nu} \Gamma^{\rho}{ }_{\lambda \sigma}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)\right]$
- Critical tuning: $\mu \ell=1$ (Li, Song, Strominger '08)

$$
c=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right) \quad \bar{c}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right)=0
$$

- Conjecture (DG, Johansson '08): dual field theory is $\log \mathrm{CFT}_{2}$, with log partner for stress tensor (see my upcoming talk at IPMU)
- More recent analysis (Vafa '14): holography for CFTs with $U(N+k \mid k)$ gauge group (perturbatively in $1 / N$ indistinguishable from unitary theories)

Short answer: no
Example: critical topologically massive gravity (review: DG, Riedler, Rosseel, Zojer '13)

- Action (Deser, Jackiw, Templeton '82):
$I_{\mathrm{TMG}}=\frac{1}{16 \pi G} \int \mathrm{~d}^{3} x \sqrt{-g}\left[R+\frac{2}{\ell^{2}}+\frac{1}{2 \mu} \varepsilon^{\lambda \mu \nu} \Gamma^{\rho}{ }_{\lambda \sigma}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\nu \rho}+\frac{2}{3} \Gamma^{\sigma}{ }_{\mu \tau} \Gamma^{\tau}{ }_{\nu \rho}\right)\right]$
- Critical tuning: $\mu \ell=1$ (Li, Song, Strominger '08)

$$
c=\frac{3 \ell}{2 G}\left(1+\frac{1}{\mu \ell}\right) \quad \bar{c}=\frac{3 \ell}{2 G}\left(1-\frac{1}{\mu \ell}\right)=0
$$

- Conjecture (DG, Johansson '08): dual field theory is $\log \mathrm{CFT}_{2}$, with log partner for stress tensor (see my upcoming talk at IPMU)
- More recent analysis (Vafa '14): holography for CFTs with $U(N+k \mid k)$ gauge group (perturbatively in $1 / N$ indistinguishable from unitary theories)
- Holography logically independent from unitarity

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)
if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)
if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)

if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

- Works straightforwardly sometimes, otherwise not
- Example where it works nicely: asymptotic symmetry algebra
- Take linear combinations of Virasoro generators $\mathcal{L}_{n}, \overline{\mathcal{L}}_{n}$

$$
L_{n}=\mathcal{L}_{n}-\overline{\mathcal{L}}_{-n} \quad M_{n}=\frac{1}{\ell}\left(\mathcal{L}_{n}+\overline{\mathcal{L}}_{-n}\right)
$$

- Make Inönü-Wigner contraction $\ell \rightarrow \infty$ on ASA

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[M_{n}, M_{m}\right] } & =0
\end{aligned}
$$

- This is nothing but the BMS_{3} algebra (or $\mathrm{GCA}_{2}, \mathrm{URCA}_{2}, \mathrm{CCA}_{2}$)!
- Example where it does not work easily: boundary conditions!
- Example where it does not work at all: highest weight conditions!

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...)
if holography is true \Rightarrow must work in flat space
Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Flat space holography (Barnich et al, Bagchi et al, Strominger et al, ...) if holography is true \Rightarrow must work in flat space

Just take large AdS radius limit of $10^{4} \mathrm{AdS} / \mathrm{CFT}$ papers?

Not in general! Must (also) work intrinsically in flat space! Interesting example:

- unitarity of flat space quantum gravity
- extrapolate from AdS: should be unitary (?)
- extrapolate from dS: should be non-unitary (?)
- directly in flat space: both options realized, depending on details of model

Many open issues in flat space holography!

Next few slides: mention a couple of recent results

Flat space chiral gravity
Bagchi, Detournay, DG '12

Conjecture:

Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{C} S G}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:

Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula
- No issues with logarithmic modes/log CFTs

Flat space chiral gravity
Bagchi, Detournay, DG '12
Conjecture:
Conformal Chern-Simons gravity at level $k=1 \simeq$ chiral extremal CFT with central charge $c=24$

$$
I_{\mathrm{CSG}}=\frac{k}{4 \pi} \int\left(\Gamma \wedge \mathrm{~d} \Gamma+\frac{2}{3} \Gamma \wedge \Gamma \wedge \Gamma\right)+\text { flat space bc's }
$$

- Symmetries match (Brown-Henneaux type of analysis)
- Trace and gravitational anomalies match
- Perturbative states match (Virasoro descendants of vacuum)
- Gaps in spectra match
- Microscopic counting of $S_{\text {FSC }}$ reproduced by chiral Cardy formula
- No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

$$
Z(q)=J(q)=\frac{1}{q}+196884 q+\mathcal{O}\left(q^{2}\right)
$$

Entanglement entropy of Galilean CFTs and flat space holography

 Bagchi, Basu, DG, Riegler '14
Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

with

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0}
\end{aligned}
$$

and

- ℓ_{x} : spatial distance
- ℓ_{y} : temporal distance
- a : UV cutoff (lattice size)

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCFT}}=\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$
- flat space Einstein gravity: $c_{L}=0, c_{M} \neq 0$

Entanglement entropy of Galilean CFTs and flat space holography Bagchi, Basu, DG, Riegler '14

Using methods similar to CFT:

$$
S_{\mathrm{EE}}^{\mathrm{GCTT}}=\underbrace{\frac{c_{L}}{6} \ln \frac{\ell_{x}}{a}}_{\text {like CFT }}+\underbrace{\frac{c_{M}}{6} \frac{\ell_{y}}{\ell_{x}}}_{\text {like grav anomaly }}
$$

- flat space chiral gravity: $c_{L} \neq 0, c_{M}=0$
- flat space Einstein gravity: $c_{L}=0, c_{M} \neq 0$

Same results obtained holographically!

- Using methods similar to Ammon, Castro Iqbal '13, de Boer, Jottar '13, Castro, Detournay, Iqbal, Perlmutter '14
- geodesics \Rightarrow Wilson lines

Flat space higher spin gravity
Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

isl(3) algebra (spin 3 extension of global part of BMS/GCA algebra)

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m} \\
{\left[U_{n}, V_{m}\right] } & =(n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2:

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

Flat space higher spin gravity

Afshar, Bagchi, Fareghbal, DG, Rosseel '13, Gonzalez, Matulich, Pino, Troncoso '13

- AdS gravity in CS formulation: spin $2 \rightarrow$ spin $3 \sim \operatorname{sl}(2) \rightarrow \mathrm{sl}(3)$
- Flat space: similar!

$$
S_{\mathrm{CS}}^{\mathrm{flat}}=\frac{k}{4 \pi} \int \mathrm{CS}(\mathcal{A})
$$

with isl(3) connection ($e^{a}=$ "zuvielbein")

$$
\mathcal{A}=e^{a} T_{a}+\omega^{a} J_{a} \quad T_{a}=\left(M_{n}, V_{m}\right) \quad J_{a}=\left(L_{n}, U_{m}\right)
$$

- Same type of boundary conditions as for spin 2 :

$$
\mathcal{A}(r, t, \varphi)=b^{-1}(r)(\mathrm{d}+a(t, \varphi)+o(1)) b(r)
$$

- Flat space boundary conditions: $b(r)=\exp \left(\frac{1}{2} r M_{-1}\right)$ and

$$
\begin{aligned}
a(t, \varphi)= & \left(M_{1}-M(\varphi) M_{-1}-V(\varphi) V_{-2}\right) \mathrm{d} t \\
& +\left(L_{1}-M(\varphi) L_{-1}-V(\varphi) U_{-2}-L(\varphi) M_{-1}-Z(\varphi) V_{-2}\right) \mathrm{d} \varphi
\end{aligned}
$$

- Spin 3 charges:

$$
Q\left[\varepsilon_{M}, \varepsilon_{L}, \varepsilon_{V}, \varepsilon_{U}\right] \sim \oint\left(\varepsilon_{M}(\varphi) M(\varphi)+\varepsilon_{L}(\varphi) L(\varphi)+\varepsilon_{V}(\varphi) V(\varphi)+\varepsilon_{U}(\varphi) U(\varphi)\right)
$$

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ' 13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
\Lambda_{n}= & \sum_{p}: L_{p} M_{n-p}:-\frac{3}{10}(n+2)(n+3) M_{n} \quad \Theta_{n}=\sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

other commutators as in $\operatorname{isl}(3)$ with $n \in \mathbb{Z}$

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!

Flat space higher spin gravity
Asymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel '13

- Do either Brown-Henneaux type of analysis or İnönü-Wigner contraction of two copies of quantum W_{3}-algebra
- Obtain new type of W-algebra as extension of BMS ("BMW")

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right]=} & (n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right]=} & (n-m) M_{n+m}+\frac{c_{M}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[U_{n}, U_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) L_{n+m}+\frac{192}{c_{M}}(n-m) \Lambda_{n+m} \\
& -\frac{96\left(c_{L}+\frac{44}{5}\right)}{c_{M}^{2}}(n-m) \Theta_{n+m}+\frac{c_{L}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0} \\
{\left[U_{n}, V_{m}\right]=} & (n-m)\left(2 n^{2}+2 m^{2}-n m-8\right) M_{n+m}+\frac{96}{c_{M}}(n-m) \Theta_{n+m} \\
& +\frac{c_{M}}{12} n\left(n^{2}-1\right)\left(n^{2}-4\right) \delta_{n+m, 0}
\end{aligned}
$$

- Note quantum shift and poles in central terms!
- Analysis generalizes to flat space contractions of other W-algebras

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra

Unitarity in flat space
Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Unitarity in flat space

Unitarity leads to further contraction DG, Riegler, Rosseel '14

Facts:

- Unitarity in GCA requires $c_{M}=0$ (see paper for caveats!)
- Non-triviality requires then $c_{L} \neq 0$
- Generalization to contracted higher spin algebras straightforward
- All of them contain GCA as subalgebra
- $c_{M}=0$ is necessary for unitarity

Limit $c_{M} \rightarrow 0$ requires further contraction: $U_{n} \rightarrow c_{M} U_{n}$ Doubly contracted algebra has unitary representations:

$$
\begin{aligned}
{\left[L_{n}, L_{m}\right] } & =(n-m) L_{n+m}+\frac{c_{L}}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \\
{\left[L_{n}, M_{m}\right] } & =(n-m) M_{n+m} \\
{\left[L_{n}, U_{m}\right] } & =(2 n-m) U_{n+m} \\
{\left[M_{n}, U_{m}\right]=\left[L_{n}, V_{m}\right] } & =(2 n-m) V_{n+m} \\
{\left[U_{n}, U_{m}\right] } & \propto\left[U_{n}, V_{m}\right]=96(n-m) \sum_{p} M_{p} M_{n-p}
\end{aligned}
$$

Higher spin states decouple and become null states!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:
Flat space chiral gravity
Bagchi, Detournay, DG, 1208.1658

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Minimal model holography
Gaberdiel, Gopakumar, 1011.2986, 1207.6697

Unitarity in flat space
Generic flat space W-algebras DG, Riegler, Rosseel '14

1. $\mathrm{NO}-\mathrm{GO}$:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Example:

Flat space higher spin gravity (Galilean W_{3} algebra)
Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768
Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. NO-GO:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

> Compatible with "spirit" of various no-go results in higher dimensions!

Unitarity in flat space

Generic flat space W-algebras DG, Riegler, Rosseel '14

1. NO-GO:

Generically (see paper) you can have only two out of three:

- Unitarity
- Flat space
- Non-trivial higher spin states

Compatible with "spirit" of various no-go results in higher dimensions!

2. YES-GO:

There is (at least) one counter-example, namely a Vasiliev-type of theory, where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!
Vasiliev-type flat space chiral higher spin gravity?

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...

Unitarity in flat space
Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!

Unitarity in flat space
Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !

Unitarity in flat space

Flat space W_{∞}-algebra compatible with unitarity DG, Riegler, Rosseel '14

- We do not know if flat space chiral higher spin gravity exists...
- ...but its existence is at least not ruled out by the no-go result!
- If it exists, this must be its asymptotic symmetry algebra:

$$
\begin{aligned}
{\left[\mathcal{V}_{m}^{i}, \mathcal{V}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{V}_{m+n}^{i+j-2 r}+c_{\mathcal{V}}^{i}(m) \delta^{i j} \delta_{m+n, 0} \\
{\left[\mathcal{V}_{m}^{i}, \mathcal{W}_{n}^{j}\right] } & =\sum_{r=0}^{\left\lfloor\frac{i+j}{2}\right\rfloor} g_{2 r}^{i j}(m, n) \mathcal{W}_{m+n}^{i+j-2 r} \quad\left[\mathcal{W}_{m}^{i}, \mathcal{W}_{n}^{j}\right]=0
\end{aligned}
$$

where

$$
c_{\mathcal{V}}^{i}(m)=\#(i, m) \times c \quad \text { and } \quad c=-\bar{c}
$$

- Vacuum descendants $\mathcal{W}_{m}^{i}|0\rangle$ are null states for all i and m !
- AdS parent theory: no trace anomaly, but gravitational anomaly (Like in conformal Chern-Simons gravity \rightarrow Vasiliev type analogue?)

Selected open issues

We have answered an ϵ of the open questions.

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- Bondi news and holography?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- Bondi news and holography?
- (holographic) entanglement entropy in other non-CFT contexts?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- Bondi news and holography?
- (holographic) entanglement entropy in other non-CFT contexts?
- other non-AdS holography examples?

Selected open issues

We have answered an ϵ of the open questions.

Here are a few more ϵ s:

- further checks of flat space chiral gravity (2-, 3-point correlators, semi-classical partition function, ...)
- existence of flat space chiral higher spin gravity?
- Bondi news and holography?
- (holographic) entanglement entropy in other non-CFT contexts?
- other non-AdS holography examples?

Still missing: comprehensive family of simple models such that

- dual (conformal) field theory identified
- exists for $c \sim \mathcal{O}(1)$ (ultra-quantum limit)
- exists for $c \rightarrow \infty$ (semi-classical limit)
... or prove that no such model \exists, unless UV-completed to string theory!

Thanks for your attention!

Vladimir Bulatov, M.C.Escher Circle Limit III in a rectangle

